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Abstract

Testing and fault localization are very expensive software engineering tasks that have been
tried to be automated. Although many successful techniques have been designed, the actual
change of the code for fixing the discovered faults is still a human-only task. Even in the ideal
case in which automated tools could tell us exactly where the location of a fault is, it is not
always trivial how to fix the code. In this paper we analyse the possibility of automating the
complex task of fixing faults. We propose to model this task as a search problem, and hence
to use for example evolutionary algorithms to solve it. We then discuss the potential of this
approach and how its current limits can be addressed in the future. This task is extremely
challenging and mainly unexplored in literature. Hence, this paper only covers an initial
investigation and gives directions for future work. A research prototype called JAFF and a
case study are presented to give first validation of this approach.

Keyword: Repair, Fault Localization, Automated Debugging, Genetic Programming, Search
Based Software Engineering, Coevolution.

1 Introduction

Software testing is used to reveal the presence of faults in computer programs [50]. Even if no
fault is found, testing cannot guarantee that the software is fault-free. However, testing can be
used to increase our confidence in the software reliability. Unfortunately, testing is expensive,
time consuming and tedious. It is estimated that testing requires around 50% of the total cost of
software development [14]. This is the reason why there has been a lot of effort spent to automate
this expensive software engineering task.

Even if an optimal automated system for doing software testing existed, we still need to know
where the faults are located, that in order to be able to fix them. Automated techniques can help
the tester in this task [26, 65, 78].

Although in some cases it is possible to automatically locate the faults, there is still the need
to modify the code to remove the faults. Is it possible to automate the task of fixing faults? This
would be the natural next step if we seek a full automation of software engineering. And it would
be particularly helpful in the cases of complex software in which, although the faulty part of code
can be identified, it is difficult to provide a patch for the fault. This would also be a step forward
to achieve corporate visions like for example IBM’s Autonomic Computing [40].

There has been work on fixing code automatically (e.g., [63, 61, 68, 25]). Unfortunately, in
that work there are heavy constraints on the type of modifications that can be automatically done
on the source code. Hence, only limited classes of faults can be addressed. The reason for putting
these constraints is that there are infinite ways to do modifications on a program, and checking all
of them is impossible.
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In this paper we investigate whether it is possible to automatically fix faults in source code
without putting any particular restriction on their type. Because the space of possible modifications
cannot be exhaustively evaluated, we model this task as a search problem [30, 18].

The reformulation of software engineering as a search problem (i.e., Search Based Software
Engineering) has been widely studied in the recent years. Many software engineering tasks have
been modelled in this way with successful results (e.g., testing [48]). In many software engineering
cases, search algorithms seem to have better performance than more traditional techniques (e.g.,
[34, 12]). This was our motivation for applying search algorithms on the task of automatically
repairing faulty software.

Given as input a faulty program and a set of test cases that reveal the presence of a fault, we
want to modify the program to make it able to pass all the given test cases. To decide which
modifications to do, we use a search algorithm. Note that we want to correct the source code, and
not the state of the computation when it becomes corrupted (as for example in [23]).

The search space of all possible programs is infinite. However, “programmers do not create
programs at random” [22]. Therefore, it is reasonable to assume that in most cases the sequences
of modifications to repair software would not be very long. This assumption makes the task less
difficult.

We discussed the idea of fixing software with search algorithms in a doctoral symposium paper
[7], and we then presented very preliminary results on a sorting routine using a limited Lisp-like
programming language [11]. In this paper, we present a novel prototype that is able to handle a
large sub-set of the Java programming language. The case study is based on realistic Java software.

Different types of search algorithms could be used. In this initial investigation, we consider
and compare three search algorithms. We use a random search as baseline. Then we consider a
single individual algorithm (i.e., a variant of a Hill Climbing) and a population based algorithm
(i.e., Genetic Programming [52]).

To improve the performance of these algorithms, we present a novel search operator that is
based on current fault localization techniques. This operator is able to narrow down the search
effort to promising sub-areas of the search space. Besides providing an empirical validation, we
also theoretically analysed which are the conditions for which this operator is helpful.

The main contributions of this paper are:

• we analyse in detail the task of repairing faulty software in an automatic way, and we propose
and describe how to use search algorithms to tackle it.

• we characterise the search space of software repair and we explain for which types of faults
our novel approach can scale up.

• to improve the performance, we present a novel search operator. This operator is not lim-
ited to the software repairing problem. It can be extended to other applications in which
programs are evolved.

• we present a Java prototype called JAFF (Java Automatic Fault Fixer) for validating our
automatic approach for repairing faulty software.

• we extend search based software engineering with a new application on an important soft-
ware engineering problem that has not been addressed before using search algorithms. The
use of search algorithms (and in particular evolutionary algorithms) could overcome the
difficulties of this problem that have been described in literature.

The paper is organised as follows. Section 2 gives a brief overview of the automation of the
debugging activity. Section 3 describes how software repair can be modelled as a search problem.
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The analysed search algorithms are described in Section 4. The novel search operator is presented
in Section 5. Our research prototype JAFF is presented in Section 6. The case study on which
the proposed framework is evaluated follows in Section 7. Section 8 outlines the limitations of
repairing software automatically. Future directions of research are discussed in Section 9. Finally,
Section 10 concludes the paper.

2 Related Work

Debugging consists of two separated phases. First, we need to locate the parts of the code that is
responsible for the faults. Then, we need to repair the software to make it correct. This means we
need to modify the code to fix it. These changes to the code are often called patch.

Several different techniques have been proposed to help software developers to debug faulty
software. We briefly discuss them. For more details about the early techniques, old surveys were
published in 1993 [26] and 1998 [65]. A more updated and comprehensive analysis of the debug-
ging problem can be found in Zeller’s book [78] and partially in Jones’s thesis [37].

2.1 Fault Localization

One of the first techniques to help to locate faults is Algorithmic Debugging [59, 27]. Using a
divide-and-conquer strategy, the computation tree is analysed to find which sub-computation is
incorrect. This approach has two main limitations. First, an oracle for each sub-computation is
required. This is often too expensive to provide. Second, the precision of the technique is too
coarse-grained.

A slice [70] is a set of code statements that can influence the value of a particular variable at
a certain time during the execution of the software. Debugging techniques can exploit these slices
to focus on only the parts of the code that can be responsible for the modification of suspicious
variables [69, 42, 79].

In delta debugging [76, 77, 19, 13] a passing execution is compared against a similar (from
the point of view of the execution flow) one that is instead failed. A binary search is done on
the memory states of these two executions to narrow down the inspection of suspicious code.
The memory states of the failing execution are altered to see whether these alterations remove
the failure. This technique is computationally very expensive. Finding two test cases with nearly
identical execution path, but one passing and the other failing, can be difficult. If all the provided
test cases fail, then this technique cannot be applied.

Software developers often make common mistakes that are practically independent from the
semantic of the software. Typical example is opening a stream and then not closing it. Another is
sub-classing a method with a new one that has very similar name (doing this has the wrong result
of having a new method instead of sub-classing the previous one). Many of these mistakes can be
found by statically analysing the source code without running any test case. A set of bug patterns
can be defined and used to see if a program has any of this known mistakes [33, 56, 66]. One
one hand, this technique has the limitation that it can find only faults for which a pattern can be
defined. On the other hand, it is a very cheap technique that does not require any test case. It can
be easily applied on large real-world software and it can point out many possible sources of faults.
This type of static analysis can be improved with data mining techniques applied to real-world
source code repositories [71].

In large real-world software, it is common that parts of code result from copy-and-paste ac-
tivities. This has been shown to be very prone to introduce faults, because for example often the
developers forget to modify identifiers. If the software does not give any compiling error, then it
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is very difficult to find this type of fault. Data mining techniques to identify copy-and-paste faults
have been proposed [45].

If the behavioural model of software is available (expressed for example with a finite state
machine), one black-box approach is to identify which components of the model are wrongly
implemented in the code [74]. Similar to Mutation Testing [22], the idea is to mutate the model
with operators that mimic common types of mistakes done by software developers. Confirming
sequences are then generated from the mutated models and validated against the tested program
[74]. The mutated models represent hypothesis about the nature of the faults.

To understand the reason why a fault appears, software developers speculate about the possible
reasons. This translates to questions about the code. Tools like Whyline [41] automatically present
to the user questions about properties of the output, and then they try to give explanations/answers
based on the code and the program execution.

Given a set of test cases, coverage criteria can be used as an heuristic to locate faults [55].
One the one hand, parts of code that are executed only by passed test cases cannot be responsible
for the faults. On the other hand, code that is executed only by the failing test cases is highly
suspicious. Focusing only on this latter type of information gives poor results, because usually
most faulty statements are executed by both passing and failing test cases. The Nearest-Neighbour
Queries technique [55] compares coverage of one passed test case against one failed test case.
But in contrast to previous work [5], the two test cases are chosen based on heuristics on their
execution flow distance.

Tarantula is a coverage criteria debugging tool that has been quite successful in literature
[39, 38, 37]. It is simple to implement, fast to execute and the obtained results are good in average.
The idea is to execute all the given test cases, and for each statement s in the code we keep
track of how many failed (failed(s)) and passed (passed(s)) test cases execute them. Using this
information, for each statement s we calculate the function H(s):

H(s) = 1−
passed(s)

totalpassed

passed(s)
totalpassed + failed(s)

totalfailed

.

For H(s) close to the value 1, it means that the statement s is highly suspicious. On the other
hand, for H(s) close to 0 it is likely that s is not responsible for the fault. Using function H , we
can rank all the statements in the code. The software testers will hence start to investigate the code
from the most suspicious statements.

This function H is just an heuristic. Although it works well in many cases, it does not guaran-
tee to produce good results. Extensions of the Tarantula technique have hence been proposed (e.g.,
[15, 73]). However, one possible limitation of tools like Tarantula is that they can only identify
blocks of suspicious code. Inside a block, they cannot point out which is the particular statement
responsible for the fault.

2.2 Software Repair

Compared to fault localization, there has been much less work on software repair. Early attempts
to repair software automatically were done by Stumptner and Wotowa [63, 64]. Given a fault
model that represents a particular type of fault (e.g., wrong left-hand side assignments), then an
exhaustive enumeration of all possible programs were made for that fault model.

Buccafurri et al. investigated to extend model checking with artificial intelligence techniques
to repair software [16]. Formal specifications in computational tree logic for concurrent sys-
tems expressed in Kripke models were considered. Model checking was extended with abductive
reasoning and heuristics to narrow down the search space. This line of research has then been
extended by for example Zhang and Ding [80].
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The use of model checking for software repair has been also studied for linear temporal logic
specifications by Jobstmann et al. [36, 61]. The repair task is modelled as a game. Although
heuristics to narrow down the search space are presented, the exponential nature of model checking
still remains. Similar work has been done for boolean programs [28, 58].

Weimer presented an algorithm based on model checking to repair safety-policy violations
[68]. Wang and Cheng considered graphical state transition specifications, and they presented an
heuristic to reduce the search space of repairs for model state graphs [67]. He and Gupta presented
an algorithm for software repair that, given a formal specification, is based on analysing program
execution traces and it uses hypotheses on program states [31]. There has been also work on
software repair with artificial intelligence techniques based on proof solving [25, 24].

Although heuristics for decreasing the search space have been proposed, the applicability of
these techniques is constrained by their “exhaustive search” nature.

3 Software Repair as a Search Problem

Given as input the code of a faulty program and a set of test cases, the goal is to modify the code
to obtain a new version that is able to pass all of these test cases. We model this problem as a
search problem [30, 18]. Given a set of operators to modify the code, we search for a sequence of
modifications that leads to a faultless version.

In a search problem, the number of possible candidate solutions is too high to enumerate all
of them. The set of all possible candidate solutions is called the search space. A search algorithm
can only analyse/evaluate a subset of the search space. The choice of which candidate solutions to
evaluate depends on heuristics based on the solutions evaluated so far.

The candidate solutions that solve the problem are called global optima. There can be more
than one global optimum in the search space. A local optimum is a solution that is the best among
its neighbourhood in the search space. The neighbourhood definition (i.e., the distance among
solutions) is problem and representation dependent. For example, in a bit-string representation, all
the solutions that differ of only one bit can be considered as neighbours.

In this section, we first define which search operators can be used. Then we present an heuristic
(i.e., the fitness function) to guide the search for the repair. Finally, we analyse the properties of
the search space.

3.1 Search Operators

In the search problem we are analysing in this paper, search operators consist of modifications of
the source code. A modification can be for example removing a statement or modifying the value
of a constant.

Given a set of operators, it is important that, for each possible pair of programs, a sequence of
operations should exist to transform one of these programs into the other. If this property holds,
then each possible fault related to the source code can be addressed. In fact, there would be a
sequence of operations to transform the faulty program in a correct one. Unfortunately, the fact
that this sequence exists does not mean that it is easy to find it.

Depending on the context, a search operator could make the modified program not possible to
be compiled. To avoid this problem, search operators should be based on the grammar of the used
programming language.

Valid modifications could lead to programs that never stop. This could happen for example if
the predicate in a while statement is replaced by true constant. A way to address this problem is
to give a time limit for the execution of the programs on the test cases. The time limit could be
heuristically chosen based on the execution time of the faulty program.
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3.2 Fitness Function

The fitness function of a program P is based on how many test cases in the given set T are passed.
If it is possible to define a degree for how badly a test case is failed, then this information can be
exploited in the fitness function for making the search space smoother.

For example, for each assertion in the test cases, we can calculate a distance d. If an assertion
a is passed, then d(a) = 0. In case in which a numeric value v is compared against an expected
value r, then we can use d(a) = |v − r|. In case of booleans, we have d(a) = 1 if they do not
match. For comparison of string objects, we can calculate for example their edit distance. For
other types of predicates, different heuristics could be designed.

Given T (P ) the set of assertions in the test cases after executing P , the semantic fitness to
minimise is defined as:

fs(P ) = ω(
∑

a∈T (P )

d(a)) ,

where ω is any normalising function in [0,1]. In case in which there is any error (e.g., the program
P cannot be compiled or its execution exceeds the time limit), then a death penalty is applied (i.e,
fs(P ) = 1).

A sequence of modifications could make the input program very large. This is a problem that
in literature is called bloat [46]. Common techniques to fight it are penalising the size of the
programs and putting constraints on their maximum allowed size. For simplicity, for the rest of
the paper we define the size as the number of nodes in the abstract syntax tree of the program.

For contrasting bloat, in the fitness function we penalise long programs. However, we also need
to penalise too short programs. In fact, the original assumption [22] is that the faulty program is
not too structurally far from a global optimum. Although a very long program can still be correct
(e.g., it might contain a lot of junk code that is not executed), that is not true in general for short
programs. Given N(P ) the number of the nodes of P , Por the original faulty program, and given
the constant δ (e.g., δ = 10), then the node penalisation is defined as:

p(P ) =


ω(N(P )) if N(P ) > N(Por) + δ ,
1 if N(P ) < N(Por)− δ ,
0 otherwise .

Finally, the employed fitness function to minimise is:

f(P ) = γfs(P ) + p(P ) , (1)

where γ is a weight to make the semantic score more important (for example we could choose the
value γ = 128, see [46]).

3.3 Search Space

Enumerating the entire space of programs is not feasible because it is infinite. Even if we put
constraints to the size of the programs we are looking for, it is still an extremely large search space
[43]. However, in the case of fixing faults, we assume that the faulty program is not too distant
from a global optimum [22], i.e. with only few modifications we can sample a correct program.

If we limit our search in this neighbourhood of modifications, we would have a search space
that is roughly:

S = (mN)k , (2)

where N is the number of nodes of the faulty program, m is the number of different modi-
fications that can be done on each node, and finally k is the minimum number of modifications
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for reaching a global optimum. Note that Equation 2 is a loose simplification, because the three
variables are correlated: the size of the program can change after a code modification, and not all
the modifications can be done on all the possible nodes because the modifications might depend
on the type of the nodes, etc. At any rate, Equation 2 gives an idea of the size of the restricted
search space.

What type of faults can we expect in real-world software? Empirical analyses of large real-
world software show that nearly 10% of the faults can be fixed with only one line of code modifi-
cation [53, 21]). Half of the faults can be corrected by changing up to 10 lines. Most of the faults
(i.e., up to 95%) can be fixed with no more than 50 line modifications. Therefore, in many cases
the value of needed modifications k is low (e.g., between 1 and 10).

Although the search space increases polynomially in N with exponent k that is supposed to
be low , it is still an extremely large search space if we consider programs of millions or even just
thousands of lines of code. A first consequence of Equation 2 is that fixing faults in entire software
is not feasible, the search space is simply too large even for just evaluating the closest neighbour
solutions. However, we can restrict our approach to units of computation (e.g., single functions
and classes), in the same way as unit testing is done. In other words, we can use a sort of unit fault
fixing, in which modules are tested with unit tests and, if they are failed, our framework could be
used to fix these units.

Even if we restrict the scope of our application to units of computation, the variable m is still
problematic. When we insert new code, for real-world languages (e.g., Java) there might be many
possible different instructions (e.g, loops and switches). Although the number of these instructions
is a constant depending on the language, that is not true for the possible objects and static functions
that can be used (they are infinite, and already too many if we restrict for example to just the Java
API). In the search, we could just ignore the classes that are not used in the software under test
(e.g., in a sorting algorithm we would not try to add a TCP socket), but that limits the scope of our
approach (although it could be argued that it would have little impact on real-world faults).

The empirical study in [21] shows that half of the faults can be fixed by doing modifications
in a single method. For simplicity, we call it the single method assumption. If we focus on
this type of faults, the search space can be further decreased. In fact, we can make a different
search for each method that could be the cause of the fault. For each search, only the code of the
considered method can be modified. The assumption is that the functions that are called inside the
target method are considered correct. Because these searches are independent, they can be run in
parallel.

Let l be the average length of the functions. Depending on the programming style, we can
reasonably estimate that it would be something like 1 ≤ l ≤ 100. Given N the size of the
software, we would roughly have N/l methods. A loose estimation of the search space size would
hence be:

S = (N/l)(ml)k = mklk−1N . (3)

If we compare Equation 2 with Equation 3, we can see that the single method assumption
reduces the search space by the factor (N/l)k−1.

Scalability is an important issue that requires to be addressed. At the increase of the size
N of the software, we want to know how much more difficult it would be to repair it. With no
assumption on the type of faults, the search space is large Θ(eN ). An exponential search space
would make already difficult the repair of tiny toy software. Under the assumption that software
is not coded at random, by Equation 2 the search space would be large Θ(Nk). A polynomial
search space could make possible to handle faults that require only few modifications even in large
systems, because for example 10% of faults can be repaired with only one line modification. Under
the single method assumption, by Equation 3 the search space would be linear Θ(N).
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We cannot expect to be able to automatically repair all the types of faults. However, many real-
world faults adhere to some specific assumptions. If these assumptions are exploited, the search
space can be drastically reduced.

4 Analysed Search Algorithms

Different search algorithms exist in literature, but none of them is the best on all possible problems
[72]. However, for any particular class of problems, there can be search algorithms that perform
better on that class. This is one reason why different search algorithms need to be compared and
analysed when a new class of problems is tackled.

To our best knowledge, we are aware of no previous work on applying search techniques to
software repair. Therefore, in this paper we compare three different types of search algorithm. We
use a random search as a baseline to evaluate the other techniques. We then compare a single indi-
vidual algorithm (i.e., a variant of Hill Climbing) against a search algorithm that uses populations
(i.e., Genetic Programming).

These three algorithms are only a small sample of all possible search algorithms used in liter-
ature. Other algorithms could be more suited for the task of repairing software. However, these
three search algorithms can give first useful validation of the approach of modelling the task of
fixing faulty software as a search problem.

To make the comparison more fair, these three algorithms use the same set of program modifi-
cations and the same fitness function. Because the employed set of code modifications come from
the Genetic Programming literature, without loss of generalisation we call them mutations.

4.1 Search Operators

There are several types of Genetic Programming mutations in literature. In our framework, for
the the mutation operators we use the one implemented the library ECJ [2]. The choice of the
mutation operators has a drastic effect on the final performance. However, a discussion about the
proper choice of mutation operators is postponed to Section 9.

Given k a random node, we use the following mutation operators:

• Point Mutation: the sub-tree rooted at k is replaced with a new random sub-tree with
bounded depth.

• OneNode Mutation: k is replaced by a random node with same constraints and arity.

• AllNodes Mutation: each node of the sub-tree of k is randomly replaced with a new node,
but with same type constraints and arity.

• Demote Mutation: a new node m is inserted between k and the parent of k. Hence, k
becomes a child of m. The other children of m will be random terminals.

• Promote Mutation: the sub-tree rooted at the parent of k will be replaced by the sub-tree
rooted in k.

• Swap Mutation: two children of k are randomly chosen. The sub-trees rooted at these two
nodes are swapped.

In the case of a mutation event, 1 out of these 6 mutation operators is chosen with uniform
probability. However, these mutation operators can be too destructive (e.g., a point mutation on
the root would generate a completely new program). This is a serious problem, because if the
original faulty program does not have a good fitness, then we could quickly converge to very small
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and unfit programs (this because smaller programs are rewarded for contrasting bloat). Hence,
we changed them such that the number of modified nodes is upper bounded by a relatively small
constant (e.g., point mutation can only be applied on sub-trees with at most a depth of 4).

Given a set of mutations, it is important that, for each possible pair of programs, a sequence
of mutations should exist to transform one of these programs into the other. If this property holds,
then each possible fault related to the source code can be addressed. In fact, there would be a
sequence of mutations to transform the faulty program in a correct one. Unfortunately, the fact
that this sequence exist does not mean that it is easy to find. Note that it is just enough to have a
point mutation to satisfy this property.

When programs are mutated, the search operators can break the syntax of the used language.
To avoid this problem, in Strongly Typed Genetic Programming [49] each node has a type and
a set of constraints regarding the types of its children. The search operators are such that once
applied the constraints still remain satisfied.

Unfortunately, in the case of real-world programming languages, node constraints might de-
pend on their context besides the direct parents and children. For example, the Java compiler
checks whether all statements are reachable, and that might depend on the feasibility of the pred-
icates of the previous branches. One way to address this problem would be to use a more general
system for defining the constraints (but that might be very challenging to implement). Other op-
tion would be to use a sort of “post-processing” for the mapping from genotype to phenotype (i.e.,
using repairing rules). Finally, syntactically incorrect programs might just have a fitness penal-
isation. All of these techniques have both benefits and negative sides, and they are common in
constraint handling for optimisation problems.

4.2 Random Search

A random program is extremely unlikely that would be a correct implementation of any non-trivial
software. We hence consider of little interest comparing search algorithms against a pure random
search.

The Random Search (RS) we analyse is based on random mutations of the input program. Let
M be the maximum number of allowed mutations. The pseudo-code of the algorithm would be:

1. Check if stopping criterion is satisfied.

2. Randomly choose m in 1 ≤ m ≤M .

3. Apply m mutations to a new copy P ′ of input program P .

4. If P ′ is global optimum, return P ′, otherwise go back to step 1.

4.3 Hill Climbing

Hill Climbing (HC) is a search algorithm that belongs to the class of local search algorithms.
That means that given a starting point I0, it looks at neighbour solutions Z(I0) that are “near” to
I0. If a better solution I ′ ∈ Z(I0) exists, then the next point I1 will be I ′. The same procedure
of looking at the neighbour solutions is then repeated on I1, until a final point Ii is reached,
where ∀I ′ ∈ Z(Ii) : f(I ′) ≥ f(Ii), assuming we want to minimise function f . This means that
no neighbour solution is better, and the algorithm is said to be stuck in either a local or global
optimum. If Ii is not a global optimum, then HC can restart from a new different point I0.

HC is not a single specific algorithm, but a family of algorithms. In fact, we need to define
how the neighbourhood Z is generated, the strategy ψ for visiting Z, and finally how to do the
restarts.
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Applying a common HC in software repair is problematic. In fact, starting the search from a
random program (i.e., a random I0) would be equivalent to the task of generating programs from
scratch. Using search algorithms for this latter task is very difficult [10, 54]. Instead of starting
from a random program, we can start from the input program P . The neighbour Z would be
defined by the mutation operators. However, there would be still the problem of how doing the
restarts once HC is stuck in a global optimum.

In our variant of HC, we do not use any restart. We use a dynamic Z that is large enough
for not being completely explored during the search. Like for RS, we apply a random number m
of mutations each time we sample a new program. Note that this approach makes the algorithms
similar to a (1+1) Evolutionary Algorithm. For simplicity, for this variant of HC we just use the
name HC instead of inventing a new name.

The pseudo-code of the algorithm would be:

1. P is a copy of the input program.

2. Check if stopping criterion is satisfied.

3. Randomly choose m in 1 ≤ m ≤M .

4. Apply m mutations to a new copy P ′ of P .

5. If f(P ′) < f(P ), then P = P ′

6. If P is global optimum, return P , otherwise go back to step 2.

4.4 Genetic Programming

Genetic Programming (GP) [52] is a paradigm for evolving programs to solve for example ma-
chine learning tasks. A genetic program is often represented as a tree, in which each node is a
function whose inputs are the children of that node. A population of programs is maintained at
each generation, where individuals are chosen to fill the next population accordingly to a problem
specific fitness function. The programs are modified at each generation by evolutionary inspired
operators like crossover and mutation.

Given a set of test cases, if we use GP in its common way, it will be quite difficult to evolve
a correct program from scratch [54, 10]. The problem is that we aim to a faultless program that
should overfit its training data, because even if one test case is failed, we would know for sure that
the program is still faulty.

Because developers do not implement software at random [22], we can exploit the input faulty
program for the seeding of the initial population. For example, all the individuals in the first
population might be copies of the input program.

Starting from a solution that is close to a global optimum has an impact on the types of the
search operations that should be used. For example, in many GP applications crossover is preferred
over mutation. But in our case it is the opposite, mostly because for the lack of diversity in the
population.

5 Novel Search Operator

To improve the performance of search algorithms, domain knowledge needs to be exploited. In
the case of repairing software, if we have some reasons to believe that a fault is generated by a
particular area of the code, we can concentrate our search effort in that area.
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One way to make this decision is to use fault localization techniques, like for example Tarantula
(see Section 2.1). On one hand, the more accurate the technique is the better results we can expect
to obtain. On the other hand, because we need to use this fault localization technique each time
we need to modify a program, we need that it should be quick to compute.

Given a fault localization technique that ranks the suspiciousness of the statements in the code,
let t be the number of nodes (in the syntax tree) that are related to the fault. Let s be the number
of nodes that are given the same rank as these t nodes, whereas l is the number of nodes that have
lower rank and h is the number of nodes that have higher rank. The total number of nodes in the
program is given by l+ s+ t+h. An ideal fault localization technique would have h = 0 and s as
small as possible (remember that tools like Tarantula rank entire blocks of code, so in most cases
s > 0).

The novel search operators we propose is quite simple. When we mutate a program and we
need to choose a random node, we randomly pick up n nodes. Then, we apply a tournament
selection based on the rank. In other words, we apply the mutation only on the node that has
higher rank among these n nodes (i.e., n is the node bias). In case there are several nodes with this
highest rank, we randomly choose one of them.

Let δ be the probability of choosing one of the t incriminated nodes in a tournament of size n.
The following are obvious properties of δ:

δ(1) =
t

l + s+ t+ h
,

lim
n→∞

δ(n) =
{

0 if h > 0 ,
t

t+s otherwise .

For n = 1, we are actually not using the novel operator. If we are using an ideal fault localiza-
tion technique (i.e., h is always equal to 0), then it is best to use a tournament size as large as we
can. Unfortunately, we cannot assume to have such an ideal tool. For large values of n, we would
hence expect a decrease in performance. But, for which values of n can we obtain better results
even if h > 0? In other words, the novel operator is useful only if δ(n) > δ(1) even for h > 0. Of
course, the more accurate the fault localization technique is, the better result we can expect. But
we want to get better results even if it does not rank perfectly. To answer to this research question,
we need to formally calculate the probability δ:

δ(n) =
(
1−
(
1− t

l + s+ t

)n)(
1− h

l + s+ t+ h

)n
n∑

i=1

n−i∑
j=0

(( i

i+ j

)(n
i

)(
n− i

j

)(
ln−i−jsjti

(l + s+ t)n − (l + s)n

))
.

(4)
Formal proof of this Equation 4 is provided in Appendix A. If we are not sure of the quality of

the employed fault localization tool, a conservative option would be to use a small n. The smallest
value is n = 2. Under which conditions δ(2) is better than δ(1)? Their ratio is:

δ(2)
δ(1)

=
l + (l + s+ t)
h+ (l + s+ t)

.

Hence, we get an improvement if just l > h. Note that the fact of having an improvement
is independent of the values s and t. This means that even in case of a high error rate, our novel
search operator still gives better results.

Figure 1 shows a 3D plot of the probability δ(n) when l = 10, s = 1, t = 1, 1 ≤ n ≤ 20 and
0 ≤ h ≤ 19. Even for h > 0, there are values of n for which δ(n) increases up to a peak that is
higher than δ(1), but then it decreases.
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Figure 1: Values of probability δ(n) when l = 10, s = 1, t = 1, 1 ≤ n ≤ 20 and 0 ≤ h ≤ 19.

We are using this novel search operator for the task of repairing software. However, it can
be easily extended for example to GP applications in which there is a control flow in the evolved
programs (i.e., if the employed language uses conditional statements and/or loops).

6 JAFF: Java Automatic Fault Fixer

6.1 The Framework

To validate the approach of automatically repairing faulty software with search algorithms, we
developed a framework called JAFF (Java Automatic Fault Fixer). JAFF has been written in Java,
and it supports the repair of software written in a sub-set of the Java programming language. Input
to the framework is a Java program and a set of test cases. Test cases are written as JUnit tests [3]
.

Input programs are automatically parsed and for each method a configuration file is generated
to use the framework. The test cases need to be instrumented to make it possible to inform the
framework of their outputs and for handling exceptions. This instrumentation can be automati-
cally done, but our current prototype does not have this feature yet. At the current moment, the
framework can be run only by command line. No graphical interface has been developed yet.

For the development of the search algorithms, we used the open source library ECJ [2]. It is a
powerful library for evolutionary computation in Java. Unfortunately, the common price of using
a general library is loss of efficiency. Moreover, we needed to extend its node constraint system to
handle some basic polymorphic types.
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Programs are transformed in their syntax trees. Search operators (i.e., the mutations) are ap-
plied to the syntax trees. Each time a tree is mutated, to evaluate its fitness value we convert it back
to Java source code and then we compile it. This compiled code is run against the instrumented
JUnit tests. The compilation of programs is done with the Javassist tool [17].

Our tool features the novel search operator described in Section 5. In particular, for the fault
localization technique we use Tarantula [38].

6.2 Technical Problems

Developing a tool for automatically repairing software is a challenging task. Many technical prob-
lems need to be addressed. We hence describe them, and we specify which of them our tool does
not properly handle yet.

Because in each search a large amount of programs are sampled and tested, the efficiency of
how the programs are modified and executed is critical. Unfortunately, this efficiency depends
on the programming language. The following discussion about Java might not apply to other
languages (e.g., C++).

In many GP systems, programs are executed by interpretation. In other words, these GP
systems also provide a virtual machine for executing the GP trees without the need to generate
machine code. This approach works well for simple languages and when the programs are not
computationally expensive.

Because rewriting a Java virtual machine is not an affordable option, we chose to compile our
GP trees directly in Java bytecode, and then to execute them inside a Java virtual machine. Unless
the execution of the test cases is comparatively expensive, the efficiency of this compilation process
is very important.

A wide set of problems do need to be addressed. Some of them are similar to the problems
that are faced in Mutation Testing (see for example [35]).

• We need to compile the code at each fitness evaluation, hence for efficiency we should not
touch the file system. In other words, we should not compile a code and then save the results
in a file and load/execute it. This means we need to compile directly in memory. For doing
this we should not call an external compiler, because it would run on a separate process, and
modifying a compiler for making it communicating by process signals (for example) would
be too complicated and inefficient.

• Running each program on a different process would be too expensive, particularly in Java
because we would need to start a new virtual machine at each fitness evaluation. However, in
Java loading and running the programs in the same virtual machine of the framework is not
a particular problem, as long as the exceptions are properly handled (some issues would still
be there as for example instructions like System.exit(1)). This would not be easy to do in
languages like C, in which avoiding pointer operations corrupting the state of the framework
would not be straightforward.

• We might want to modify the code of a method, but that might be inside a very large class.
Hence, we need to be able to recompile single methods and leaving untouched the rest of
their classes.

• When we obtain a new version of a class, for executing it we need to load it in the virtual
machine. However, all the other classes that depend on it (like for example the classes
containing the test cases) would still point on the old implementation. Although it is possible
to reload all of them with a different class loader, it would be more efficient to do the
modifications directly on the loaded old version (in fact there might be too many test cases
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that would need to be reloaded). Unfortunately, this functionality is not directly provided in
Java. Another option would be to instrument the software such that to support its dynamic
updating (e.g., [51]), but doing this would introduce another set of limitations and problems
(see [51] for more details).

• A modified method might enter in an infinite loop. To avoid that, its code can be instru-
mented such that each loop and recursive call is checked against a global counter. The upper
limit of this counter might be estimated on the execution of the faulty program on the set of
test cases. Unfortunately, in some cases doing that is not enough. The method could corrupt
the internal state of its class and then calling other methods that will loop forever because
the state is corrupted. On one hand, we can instrument all the code that can be executed by
the analysed method. On the other hand, we can run each program on a separate thread, and
then giving a time limit to their execution. Executing new threads and synchronising them
might be expensive (remember that we would need to do it at each fitness evaluation), but
it would have a lower cost than the compilation of the program and the run of its test cases.
Moreover, putting time constraints would help to penalise evolved code that becomes too
inefficient.

• We do search operations on the source code and then we compile it. For efficiency, another
option would be to directly modify the bytecode. Because reverse engineering on bytecode
(we would need it for showing the results to the user) is nowadays not particularly difficult
(particularly if no obfuscation technique is employed), we will investigate this option in the
future (although it would require quite a lot of re-factoring of our framework). Moreover, it
could make easier the implementation of the constraint system for the GP engine.

• Implementing a correct constraint system for the complete Java language is a very time
consuming task. Although our current prototype has a sophisticated constraint system, it
is possible that legal mutations of syntax trees in our system would end up in programs
that cannot be compiled in Java. To mitigate the problem of evolved programs that do not
compile, we use a simple post-processing when we translate GP trees back to Java programs.
In particular, in the translation we ignore all the statements that come in the same block after
return, break and continue commands (because they will result in non-reachable statement
compiling errors). In the other cases in which the programs have compiling errors, we just
give a death penalty in their fitness value.

To compile Java code we use Javassist [17]. It allows us to compile code directly in memory,
and to update single methods directly in the virtual machine. Although its use solves many of the
technical issues described before, it unfortunately introduces new ones related to the features of
the Java language that are supported. At any rate, such limitations might be solved in its future
releases. The description of following limitations are taken from the Javassist documentation:

• The new syntax introduced by J2SE 5.0 (including enums and generics) has not been sup-
ported.

• Array initializers, a comma-separated list of expressions enclosed by braces { and }, are not
available unless the array dimension is one.

• Inner classes or anonymous classes are not supported.

• Labeled continue and break statements are not supported.

• The compiler does not correctly implement the Java method dispatch algorithm. The com-
piler may confuse if methods defined in a class have the same name but take different pa-
rameter lists.
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Table 1: Employed primitives. They are grouped by type. Their name is consistent with their se-
mantics. When the semantics of the primitives could be ambiguous, a short description is provided.
More than one primitive can have same name (but different arity and/or constraints).

Type Name Description
Arithmetic + ,− , ∗ , / , % , << , >> , & ,∼ Typical arithmetic operators.
Unary Modification ++ ,−− Post and pre unary increment/decrement.
Boolean &&, || , ! , > ,≥ , == , ! = ,< ,≤ Typical operators to handle boolean predicates.
Constant true , false , null , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 Boolean constants, null object and ten integer constants.
Statement for , while , break , continue , if , switch ,

case , empty case , skip , empty expression
, conditional expression , = , | = , cast

Typical statements. skip is the empty statement.

Sequence statement sequence , case sequence ,
expression sequence , update sequence

Used to concatenate statements, cases in switch commands, etc.

Variable read variable, int tmp , array tmp Primitive to read variables. Two support variables are used, one of integer
type and the other is an array of integers. Based on the program to improve,
there are also primitives representing the inputs and the local variables.

Array read array , new array , length Primitives to handle arrays.
Primitive Type int , boolean , char , type wrapper Used for casting variables and for defining the type of new generated arrays.
Class new , string Primitives to use objects. Based on the program to improve, there also prim-

itives for all the types of used objects to handle them (e.g., for calling their
methods).

6.3 Supported Language

Our current prototype JAFF does not support yet the entire Java programming language. At any
rate, the supported subset is large enough to carry out experiments on realistic software.

Before applying search operations for modifying code, the Java programs are translated in a
syntax tree. These trees are composed of nodes. Each node is either a leaf (i.e., no children), or a
function (i.e., at least one child node). Note that there is a difference between a function in the tree
and a method in the Java language. For example, in 1 + 3 the operator + is considered in the trees
as a node function that takes two sub-trees as input. We used 72 different nodes for representing a
large subset of the Java programming language (see Table 1). For each different program, we also
added nodes regarding the local variables and method calls. Depending on the program, different
types of return statements are used.

The constraint system consists of 12 basic node types and 5 polymorphic types. For the func-
tions and the leaves, there are 44 different types of constraints. For each program, we added as
well the constraints regarding local variables and method calls. Although the constraint system
is quite accurate, it does not completely represent yet all the possible constraints in the employed
subset of the Java language (i.e., a program that satisfies these constraints would not be necessarily
compilable in Java).

7 Case Study

7.1 Faulty Programs

To validate our novel prototype JAFF, we applied it to a case study. Ideally, validation should be
done on real-world faults. They can be obtained from open source software repositories [21], in
which all the versions of the software are stored. Hence, in many cases, it is possible to see which
faults are in a particular version, and then checking how they have been fixed in the following
versions.

Using real-world software was not possible because our current prototype does not support the
entire Java language specification yet. Furthermore, research on software repair is still at an early
stage, and in this paper we want to give directions on how to apply search algorithms to tackle it.
We are aware of the many difficulties of this task and that more research is still required.

Nevertheless, faults in software in open repositories show only one side of the problem. In
general, that type of faults are discovered only after the software has been used for a while. In many
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cases, these faults are related to special circumstances that were not considered by the original
programmer. But what about the faults that are fixed before submitting a new version of the
software? It is not uncommon that a developer write a code, test it, it does not work, and then (s)he
spends minutes/hours to fix it, and finally (s)he submits the code only when all the test cases are
passed.

This latter type of faults does not usually appear in open source repositories, and it includes
for example simple errors (e.g., a + instead of a −) that make the program fail on each input.
Depending on the complexity of the software, these faults are not necessarily easy to fix.

Given a set of programs written in a subset of Java that our prototype can handle, we had the
problem of how to seed faults in them. Doing that by hand would likely end up in a biased case
study. We chose to seed the programs with a Mutation Testing [22] tool called muJava [47]. We did
it because this type of mutants are actually representative of a range of real errors that developers
can occasionally do [6]. Mutation testing has been shown to be very effective to evaluate the
quality of test cases. In evaluating test cases, the mutants are more close to real-world faults than
faults generated by hand [6]. Furthermore, applying more mutations on the same program gives
us a case study with different degrees of difficulty (we can reasonably assume that programs that
are mutated more are likely more difficult to fix).

To make our case study as little biased as possible, we chose a set of search operators that is not
specialised in fixing faults generated by mutation testing tools. In particular, we just chose all the
possible mutation operators in ECJ [2] (we described them in Section 4.1), and we gave the same
probability to all of them without any particular bias to any of them. Therefore, our framework
can be used to any code level type of faults, although our case study is limited to mutation testing
faults.

It might be argued that limiting the case study to faults generated by mutation testing tools is
too restrictive. However, repairing software in an automatic way is a very complex task, and a lot
of research is still required for having stronger results. Nevertheless, showing its feasibility on a
sub-set of realistic types of faults is important to support the first steps in this research field. For
example, it has been estimated that 10% of all faults can be fixed with only one line modification
[53, 21]).

We test the framework on 7 different Java programs. Among them, 2 are classically used in
the literature of software testing of procedural programs: Triangle Classification [50, 8] and Re-
mainder [62, 57]. TreeMap and Vector are common in literature of testing object-oriented software
[34, 12]. Sorting algorithms as for example Bubble Sort [20] are commonly used in literature of
GP (e.g., [4]). Finally, Phase of Moon is adapted from Apache Ant [1].

Table 2 summarises their properties. Apart from TreeMap and Vector, all the other programs
are static functions. Regarding TreeMap, we carried out experiments only on its method put. For
Vector, we consider the methods insertElementAt and removeElementAt.

It can be argued that the size of these functions is small, i.e. the longest has only 41 lines of
code. However, in this first application of search algorithms on the software repairing task we limit
our self to the single method assumption, which in some empirical studies it has been estimated to
be valid for half of real-world faults (see Section 3.3).

Note that for TreeMap and Vector there are many private methods that are used inside the
analysed three methods, but they are assumed to be correct during the search. Because a priori we
would not know which of these methods is faulty, we should do a search in each of these methods
in parallel (see Section 3.3). If we ignore the case that a modification in a correct method does fix
the fault generated by the faulty method that calls it, we do not need to run these parallel searches
in our experiments. Given t steps needed to fix a fault in one of these faulty methods, to estimated
the required computational effort we can just multiply this t by the number of involved methods
(under the assumption we are not focusing the search in any of them). Note that parallel searches
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Table 2: For each program in the case study, it is shown its number of lines of code (LOC), the
number of nodes in its syntax tree representation, and finally the type of its inputs.

Name LOC GP Nodes Input
Phase of Moon 8 50 int,int
Vector.insertElementAt 9 53 Object,int
Bubble Sort 10 56 int[]
Vector.removeElementAt 16 62 int
Triangle Classification 25 101 int,int,int
TreeMap.put 36 134 Object,Object
Remainder 41 160 int,int

Table 3: Number of passed assertions in the faulty versions of the programs.
Program V1 V2 V3 V4 V5
Phase of Moon 0 0 0 0 11
Vector.insertElementAt 262 8 8 8 8
Bubble Sort 32 32 34 32 44
Vector.removeElementAt 180 251 233 250 250
Triangle Classification 86 60 46 44 27
TreeMap.put 86 24 24 24 38
Remainder 83 76 63 55 55

can be done even on a single CPU machine (the parallelism would be simply simulated).
For each program, we generated a set of 100 test cases. Each test case consists of one assert

statement, but for TreeMap and Vector there is an assert statement for each insertion operation in
the test sequence, and a final assertion on the container size (i.e., around four/five assertions for
test case). We call valid all the evolved programs that are able to pass all of their 100 test cases.
For more validation, we also generated for each program a separated and independent set of 1000
test cases, which are not used during the search. An evolved program that is able to pass all these
1000 test cases is called robust. Note that a robust program is not necessarily correct.

All the test cases have been automatically generated based on the fulfilment of the branch
coverage criterion. For simplicity, in our experiments we used test generators specialised for our
case study. To apply our framework to a new testing problem, the user has to provide the test cases.

For each program, we generated 5 faulty versions. The first is done by a single mutation with
muJava, the second by applying a new mutation on the first faulty version (i.e., 2 mutations in
total), and so on until the 5th that has been generated by applying a new mutation on the 4th
version (i.e., 5 mutations in total). The mutations were chosen at random, although we replaced
the ones that generated equivalent mutants. We used all the method level mutations in muJava
(more details about them can be found in [47]).

Table 3 summaries the number of assertions that are passed in each faulty version. Note that
a higher number of mutations does not necessarily correspond to fewer passed test cases (see for
example the Phase of Moon program). This is a clear example of possible local optima.

7.2 Setting of the Framework

For the employed search algorithms, we used the default values in ECJ [2], unless otherwise
specified in the paper. The maximum tree depth is 25. The maximum number of allowed fitness
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evaluations is 50,000. The computation is stopped in the case that a program that passes all the
test cases is found.

For the GP algorithm, population size is 1000 (hence the maximum number of generations
is 50). A tournament selection with size 7 is employed. The elitism rate is set to 1 individual
for generation. The main search operator is mutation, that is done with probability 0.9. We still
use crossover, but with a very low probability of 0.08. A tree is left unmodified with probability
0.01, whereas with probability 0.01 it is replaced with the original faulty program (this is done for
forcing the presence of its genetic material at each generation).

Note that we have not tuned these values. The reason is explained in Section 7.4 after the
experiments.

7.3 Experiments

We carried out three different sets of experiments:

1. For each faulty program, we tuned the parameter M (max number of mutations) for RS.
Values considered are in range from 1 to 10. Each run has been repeated 100 times with
different random seeds. The total number of runs is hence 5 ∗ 7 ∗ 10 ∗ 100 = 35,000.

2. For each faulty program, we tuned the parameter M (max number of mutations) for HC.
Values considered are in range from 1 to 10. Each run has been repeated 100 times with
different random seeds. The total number of runs is hence 5 ∗ 7 ∗ 10 ∗ 100 = 35,000.

3. For each faulty program, we run the GP algorithm. We tested the novel search operator with
values of the node bias ranging from 1 to 10. Each run has been repeated 100 times with
different random seeds. The total number of runs is hence 5 ∗ 7 ∗ 10 ∗ 100 = 35,000.

The total number of runs of the framework used for collecting data is 105,000. This is a large
number of experiments that can take up a long time to run. A larger case study would necessarily
reduce the number of types of experiments and the number of repetitions (with different random
seeds) for each experiment.

For these experiments, the number of robust programs that are obtained are shown in Figure
2, Figure 3 and Figure 4. The best value for the parameter M for RS is 4 (first set of experiments,
Figure 2), whereas for HC it is 7 (second set of experiments, Figure 3). Tables from 4 to Table
10 compare the tuned RS against the tuned HC and a non-tuned GP. Tables from 11 to Table 17
compare GP when the novel operator is used with tournament size (i.e., node bias) 2.

The event of sampling a valid and/or a robust program can be modelled as a binomial process.
Therefore, Fisher’s Exact tests can be used to see whether there is any statistical difference between
the success rate of two different algorithms or configurations.

7.4 Discussion

The experiments we carried out show that each of the 35 faulty programs can be automatically
corrected with our tool JAFF. Of course, depending on the complexity of the software and the
faults, these results are achieved with different computational effort.

Not surprisingly, when only few faults are considered (i.e., V 1 and V 2), the performance of RS
and GP are very similar. But for more complex types of faults (i.e., V 4 and V 5) GP clearly stands
out from the other considered algorithms (Fisher’s exact tests confirm it in many cases). This is
one reason why we did not need to tune the parameters of GP. Already with some arbitrarily setting
it performs better then tuned RS and HC.

What came as a surprise is the performance of HC, which is very poor. One explanation would
be that there can be many small modifications that can improve the fitness, but that then drive the
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Table 4: Comparison for Phase of Moon
Version Algorithm Valid Robust Steps Size

min mean median max var min mean median max var

V1 RS 100 95 60 2137.13 1230.0 12482 5740488.0 46 50.63 50.0 57 2.336465
HC 0 0 50000 50000.0 50000.0 50000 0.0 41 52.28 53.0 61 30.56727
GP 92 71 1981 7874.73 1993.0 50000 1.80482595E8 40 51.33 50.0 114 49.07182

V2 RS 100 94 16 1203.29 844.0 6708 1657107.0 47 50.97 51.0 56 1.605152
HC 1 0 1364 49515.62 50000.0 50000 2.365655E7 41 53.19 53.0 61 34.23626
GP 98 80 1973 4078.29 1993.0 50000 5.5358582E7 46 51.92 51.0 79 12.33697

V3 RS 83 10 406 22460.47 18012.0 50000 3.0671632E8 45 50.4 51.0 66 7.878788
HC 0 0 50000 50000.0 50000.0 50000 0.0 41 52.72 53.0 61 33.05212
GP 98 8 2962 6551.3 4959.0 50000 4.7339725E7 41 50.71 51.0 62 11.94535

V4 RS 19 2 2544 45313.18 50000.0 50000 1.28933411E8 45 52.15 52.0 61 5.926768
HC 2 0 531 49046.58 50000.0 50000 4.5238729E7 42 53.95 55.0 62 34.59343
GP 88 7 3959 11863.57 5942.0 50000 2.18956904E8 41 52.6 52.0 107 48.78788

V5 RS 0 0 50000 50000.0 50000.0 50000 0.0 47 51.78 51.0 57 3.203636
HC 0 0 50000 50000.0 50000.0 50000 0.0 44 56.15 57.0 63 34.33081
GP 8 0 4972 48350.73 50000.0 50000 6.7942853E7 44 60.72 59.0 176 257.3349

Table 5: Comparison for Remainder

Version Algorithm Valid Robust Steps Size
min mean median max var min mean median max var

V1 RS 100 99 12 4240.81 2655.0 21122 1.9694475E7 156 160.18 160.0 165 1.724848
HC 19 18 4 42022.78 50000.0 50000 2.96175183E8 152 163.07 161.0 170 24.5102
GP 100 99 1977 3742.28 2980.0 11886 5275823.0 151 163.69 160.0 189 65.16556

V2 RS 0 0 50000 50000.0 50000.0 50000 0.0 150 158.91 160.0 168 12.16354
HC 17 17 661 43124.64 50000.0 50000 2.56260183E8 151 163.72 164.5 170 37.39556
GP 88 87 3971 16349.27 10886.0 50000 2.03742456E8 149 195.33 166.5 311 2888.425

V3 RS 0 0 50000 50000.0 50000.0 50000 0.0 149 158.29 158.5 166 11.15747
HC 9 9 1382 46693.64 50000.0 50000 1.36677492E8 150 160.9479 160.0 171 30.78673
GP 91 90 6942 19308.98 14863.0 50000 1.44971481E8 151 183.11 163.5 312 2108.867

V4 RS 0 0 50000 50000.0 50000.0 50000 0.0 149 159.12 160.0 167 9.379394
HC 0 0 50000 50000.0 50000.0 50000 0.0 150 160.63 160.0 170 29.06374
GP 42 42 11907 39718.67 50000.0 50000 2.03653224E8 150 172.79 161.0 430 1796.875

V5 RS 0 0 50000 50000.0 50000.0 50000 0.0 147 160.1 161.0 169 10.87879
HC 1 0 26127 49763.25 50000.0 50000 5700156.0 152 162.78 163.0 171 23.48646
GP 24 24 12862 43855.15 50000.0 50000 1.52540938E8 145 164.12 161.0 306 467.9248

current solution away from the global optima. Once HC is driven to such a suboptimal region,
the use of large jumps (i.e., the number of mutations applied to generate the neighbour solutions)
seems to be not enough to escape from them. However, more sophisticated variants of HC could
be designed.

Figure 4 clearly shows that the novel search operator is useful in many cases, but for higher
values of the node bias n the performance starts to decrease (this is in accordance with Equation 4).
When n = 2, a closer look at tables from 11 to 17 shows that for simple types of faults (i.e., V 1 and
V 2), there is not much difference in the performance (whether it is an improvement or a decrease
of performance). For more complex faults (i.e., V 4 and V 5) it seems that the novel operator gives
significantly better results (Fisher’s exact tests confirm it for Remainder and TreeMap).

It is interesting to see whether in this particular type of application of GP we would get bloat
or no. Unfortunately, bloat does occur. For example, the largest program we obtained is for
Remainder (see Table 12). A final size of 430 nodes was obtained from a starting program with
size 160.

Most of the time, a valid solution was also robust. That is a very important result, because
it means that in general the patches generated by the JAFF are fixing the actual faults (at least
in our case study). Given a set of test cases, there is an infinite number of semantically different
programs that fit them. However, their distribution in the search space is in general not known, and
they might be very far from each other. Fortunately, the experiments show that “near” a correct
solution there are only few programs that are valid but not robust.
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Figure 2: Results of tuning the value of maximum number of mutations for RS. Proportion of
obtained robust programs are shown. Data were collected from 100 runs of the framework with
different random seeds. There are 7 plots, one for each program in the case study. Each plot
contains the results for each of the 5 faulty versions of that program.
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Figure 3: Results of tuning the value of maximum number of mutations (i.e., the neighbourhood
size) for HC. Proportion of obtained robust programs are shown. Data were collected from 100
runs of the framework with different random seeds. There are 7 plots, one for each program in the
case study. Each plot contains the results for each of the 5 faulty versions of that program.
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Figure 4: Results of GP using the novel search operator with different values n for the node bias.
Proportion of obtained robust programs are shown. Data were collected from 100 runs of the
framework with different random seeds. There are 7 plots, one for each program in the case study.
Each plot contains the results for each of the 5 faulty versions of that program.
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Table 6: Comparison for Bubble Sort
Version Algorithm Valid Robust Steps Size

min mean median max var min mean median max var

V1 RS 100 100 11 765.78 561.5 5277 577521.9 56 56.3 56.0 61 0.7171717
HC 15 15 4 43418.5 50000.0 50000 2.56884057E8 48 57.84 56.0 66 15.73172
GP 100 100 1983 2120.11 1991.0 10888 842416.3 56 56.14 56.0 63 0.7276768

V2 RS 95 95 8 12522.17 7891.0 50000 1.60618102E8 46 57.44 58.0 62 3.25899
HC 7 7 12 46904.21 50000.0 50000 1.41018839E8 49 59.21 58.0 68 23.29889
GP 100 100 2966 4314.74 3968.0 12882 3325363.0 56 58.2 58.0 72 6.141414

V3 RS 10 10 14682 47896.13 50000.0 50000 4.9980018E7 54 58.2 58.0 66 3.313131
HC 4 3 209 48120.73 50000.0 50000 8.606186E7 49 62.74 63.0 69 26.82061
GP 61 61 9901 34550.55 32167.0 50000 2.07041549E8 51 67.26 65.0 159 189.7095

V4 RS 0 0 50000 50000.0 50000.0 50000 0.0 50 58.33 59.0 67 5.132424
HC 1 1 2754 49529.52 50000.0 50000 2.2323735E7 50 61.81 60.0 69 27.26657
GP 40 40 11873 39988.8 50000.0 50000 1.88839409E8 51 65.73 66.0 145 92.54253

V5 RS 0 0 50000 50000.0 50000.0 50000 0.0 51 59.29 61.0 65 12.28879
HC 0 0 50000 50000.0 50000.0 50000 0.0 61 61.0 61.0 61 0.0
GP 4 4 13819 49419.68 50000.0 50000 2.7698504E7 51 64.67 65.0 96 33.94051

Table 7: Comparison for TreeMap.put

Version Algorithm Valid Robust Steps Size
min mean median max var min mean median max var

V1 RS 100 100 7 290.47 215.5 1455 83048.72 124 133.55 134.0 138 6.04798
HC 33 31 9 33974.3 50000.0 50000 5.34342344E8 109 128.81 129.0 142 38.09485
GP 100 100 1977 2000.55 1991.0 2986 9930.129 134 134.1 134.0 135 0.0909091

V2 RS 98 93 70 12949.75 7569.0 50000 1.6773158E8 121 134.15 134.0 138 5.421717
HC 10 6 130 46557.72 50000.0 50000 1.32885341E8 116 130.6 130.0 141 24.10101
GP 98 93 1991 7233.5 6924.0 50000 4.5553323E7 89 129.78 133.0 223 270.1733

V3 RS 98 88 87 13037.58 9616.0 50000 1.29265796E8 125 134.98 135.0 141 8.807677
HC 11 9 76 46057.19 50000.0 50000 1.49424541E8 125 131.96 131.0 145 21.45293
GP 98 96 1993 7074.34 5952.0 50000 4.8643077E7 108 131.67 133.5 223 135.8799

V4 RS 100 100 69 4047.41 2787.0 22842 1.5242408E7 119 130.78 129.0 142 28.51677
HC 26 26 33 40880.0 50000.0 50000 3.32099098E8 126 133.6471 135.5 140 15.20499
GP 100 100 2962 3622.98 3959.0 4974 482048.5 125 132.73 131.0 171 47.61323

V5 RS 23 22 1152 43768.76 50000.0 50000 1.76661972E8 126 134.3553 136.0 145 31.91211
HC 16 16 724 44681.98 50000.0 50000 1.88406817E8 126 133.2143 134.5 142 18.95296
GP 77 72 4950 23305.71 13344.0 50000 3.24309559E8 107 135.2 134.0 203 184.0404

Table 8: Comparison for Triangle Classification

Version Algorithm Valid Robust Steps Size
min mean median max var min mean median max var

V1 RS 100 100 9 726.9 451.5 3184 465492.1 79 98.31 101.0 106 24.84232
HC 78 76 6 12933.87 148.0 50000 4.40213802E8 82 97.42 99.0 110 30.00364
GP 100 100 1977 2296.69 1993.0 3959 230680.4 89 100.17 101.0 106 7.879899

V2 RS 90 81 1049 11327.27 5309.0 50000 2.19276055E8 93 100.9091 102.0 106 12.09091
HC 52 47 7 33179.78 49224.0 50000 4.4634373E8 92 100.6957 102.0 111 20.31225
GP 100 99 2964 4048.86 3971.0 7927 826978.2 89 103.23 101.0 174 215.8961

V3 RS 45 45 1049 38412.36 50000.0 50000 2.69787927E8 90 97.81818 99.0 103 18.76364
HC 28 21 38 36302.93 50000.0 50000 5.08828403E8 86 97.0 97.0 105 22.30769
GP 100 99 3957 5067.24 4962.0 6946 570266.1 82 100.54 97.0 193 289.2812

V4 RS 26 24 318 43461.23 50000.0 50000 1.86471282E8 87 98.45205 101.0 107 21.5567
HC 13 13 88 44285.41 50000.0 50000 2.16766584E8 92 99.93103 101.0 109 18.99507
GP 100 92 2986 4986.76 4956.0 6956 602590.7 81 102.2 98.0 204 407.596

V5 RS 0 0 50000 50000.0 50000.0 50000 0.0 97 100.4776 101.0 104 4.919946
HC 7 7 10290 46947.23 50000.0 50000 1.21310996E8 94 100.2308 99.0 108 21.35897
GP 100 94 4944 7142.54 6935.5 21755 3617325.0 80 106.9 101.0 203 641.9091
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Table 9: Comparison for Vector.insertElementAt

Version Algorithm Valid Robust Steps Size
min mean median max var min mean median max var

V1 RS 100 60 9 415.63 283.5 1834 145470.7 44 53.52 53.0 59 3.969293
HC 86 80 5 13274.09 1794.5 50000 3.48679583E8 44 52.04 51.0 64 14.38222
GP 100 49 1977 2001.29 1991.0 2992 10032.29 51 53.72 53.0 57 1.153131

V2 RS 38 27 1409 39237.6 50000.0 50000 2.66236149E8 32 52.07 53.0 60 12.38899
HC 47 44 97 34150.1 50000.0 50000 3.92340786E8 43 51.81 51.0 64 27.26657
GP 100 80 2973 7576.95 6935.0 19784 1.2007509E7 36 53.19 53.0 86 34.80192

V3 RS 0 0 50000 50000.0 50000.0 50000 0.0 33 47.61 49.0 61 48.1797
HC 22 21 104 41622.72 50000.0 50000 3.00193727E8 43 51.05 50.5 63 26.55303
GP 95 91 7906 16463.11 13885.0 50000 8.5745263E7 31 57.76 55.0 119 235.0125

V4 RS 0 0 50000 50000.0 50000.0 50000 0.0 27 44.06 44.0 60 77.93576
HC 12 12 23892 47807.71 50000.0 50000 3.9387227E7 34 51.51613 54.0 57 26.65806
GP 85 81 8817 20418.05 15520.0 50000 1.75634471E8 40 54.53 50.5 104 140.5546

V5 RS 0 0 50000 50000.0 50000.0 50000 0.0 32 52.22 53.5 63 30.13293
HC 0 0 50000 50000.0 50000.0 50000 0.0 50 54.83 54.0 62 2.506162
GP 60 57 11893 35015.14 30688.5 50000 2.01166805E8 36 55.37 53.5 114 138.4779

Table 10: Comparison for Vector.removeElementAt
Version Algorithm Valid Robust Steps Size

min mean median max var min mean median max var

V1 RS 100 100 21 1852.94 1446.0 11719 3236402.0 49 61.62 62.0 67 6.94505
HC 9 9 538 46370.06 50000.0 50000 1.54333325E8 52 60.89 61.0 72 20.09889
GP 94 93 1981 8528.23 2978.0 50000 1.51724089E8 45 61.87 62.0 70 11.42737

V2 RS 97 95 186 14866.05 11146.0 50000 1.54956132E8 47 60.68 62.0 66 8.866263
HC 7 6 1174 47277.12 50000.0 50000 1.15798437E8 47 61.28 62.0 71 18.8097
GP 95 67 2980 11907.98 8927.0 50000 9.5283106E7 42 60.27 60.5 89 48.50212

V3 RS 21 21 7518 44952.85 50000.0 50000 1.33729877E8 46 59.68 60.0 67 16.03798
HC 4 4 2125 48873.3 50000.0 50000 4.5676465E7 50 60.99 61.0 71 17.94939
GP 96 93 3963 11335.36 8896.0 50000 8.3188229E7 35 59.59 59.0 108 68.48677

V4 RS 5 5 3153 48750.37 50000.0 50000 4.113287E7 51 59.35 60.0 68 11.05808
HC 3 3 3670 48854.61 50000.0 50000 4.6501996E7 52 62.56 62.0 71 5.945859
GP 94 93 3967 16241.65 13856.0 50000 1.10595009E8 37 57.61 57.0 77 39.95747

V5 RS 0 0 50000 50000.0 50000.0 50000 0.0 40 58.56 59.5 69 22.18828
HC 0 0 50000 50000.0 50000.0 50000 0.0 62 62.0 62.0 62 0.0
GP 41 41 8926 38049.46 50000.0 50000 2.5916941E8 43 60.77 61.0 72 37.65364

Table 11: Node bias for Phase of Moon
Version Node Bias Valid Robust Steps Size

min mean median max var min mean median max var

V1 1 92 71 1981 7874.73 1993.0 50000 1.80482595E8 40 51.33 50.0 114 49.07182
2 93 61 1981 7608.9 1995.0 50000 1.59994246E8 45 52.81 50.0 111 94.33727

V2 1 98 80 1973 4078.29 1993.0 50000 5.5358582E7 46 51.92 51.0 79 12.33697
2 97 86 1981 4918.8 1993.0 50000 9.7081664E7 49 52.55 51.0 104 46.08838

V3 1 98 8 2962 6551.3 4959.0 50000 4.7339725E7 41 50.71 51.0 62 11.94535
2 97 14 2970 6718.12 4956.0 50000 6.7456329E7 45 52.24 51.0 111 85.7398

V4 1 88 7 3959 11863.57 5942.0 50000 2.18956904E8 41 52.6 52.0 107 48.78788
2 96 9 2977 8152.61 5947.0 50000 8.6429858E7 43 51.74 52.0 82 24.03273

V5 1 8 0 4972 48350.73 50000.0 50000 6.7942853E7 44 60.72 59.0 176 257.3349
2 14 1 6918 45919.05 50000.0 50000 1.43511683E8 43 57.78 58.0 94 61.95111

Table 12: Node bias for Remainder
Version Node Bias Valid Robust Steps Size

min mean median max var min mean median max var

V1 1 100 99 1977 3742.28 2980.0 11886 5275823.0 151 163.69 160.0 189 65.16556
2 100 100 1981 3386.31 1997.0 8926 4389840.0 152 162.36 160.0 183 39.9499

V2 1 88 87 3971 16349.27 10886.0 50000 2.03742456E8 149 195.33 166.5 311 2888.425
2 94 93 2964 11415.94 8922.0 50000 1.08120192E8 150 189.09 166.0 340 2414.083

V3 1 91 90 6942 19308.98 14863.0 50000 1.44971481E8 151 183.11 163.5 312 2108.867
2 92 92 4968 15168.0 11876.0 50000 1.33802121E8 149 191.82 162.5 414 3574.129

V4 1 42 42 11907 39718.67 50000.0 50000 2.03653224E8 150 172.79 161.0 430 1796.875
2 56 55 5949 33459.62 27194.5 50000 2.60867209E8 147 172.44 161.0 383 1573.825

V5 1 24 24 12862 43855.15 50000.0 50000 1.52540938E8 145 164.12 161.0 306 467.9248
2 55 52 12882 36685.23 41038.5 50000 1.98223693E8 146 177.08 163.0 395 1787.953

24



Table 13: Node bias for Bubble Sort
Version Node Bias Valid Robust Steps Size

min mean median max var min mean median max var

V1 1 100 100 1983 2120.11 1991.0 10888 842416.3 56 56.14 56.0 63 0.7276768
2 100 100 1977 3068.04 1993.0 19797 8760304.0 56 56.47 56.0 64 2.332424

V2 1 100 100 2966 4314.74 3968.0 12882 3325363.0 56 58.2 58.0 72 6.141414
2 99 99 2971 5511.96 3978.0 50000 2.9593816E7 56 58.92 58.0 85 24.51879

V3 1 61 61 9901 34550.55 32167.0 50000 2.07041549E8 51 67.26 65.0 159 189.7095
2 58 57 9881 37723.4 40544.0 50000 1.70364011E8 54 69.21 67.0 133 182.6726

V4 1 40 40 11873 39988.8 50000.0 50000 1.88839409E8 51 65.73 66.0 145 92.54253
2 32 32 12868 43375.54 50000.0 50000 1.40733504E8 54 67.9 66.0 128 143.8687

V5 1 4 4 13819 49419.68 50000.0 50000 2.7698504E7 51 64.67 65.0 96 33.94051
2 11 11 14850 48615.09 50000.0 50000 3.8011468E7 53 66.61 67.0 117 50.86657

Table 14: Node bias for TreeMap.put

Version Node Bias Valid Robust Steps Size
min mean median max var min mean median max var

V1 1 100 100 1977 2000.55 1991.0 2986 9930.129 134 134.1 134.0 135 0.0909091
2 100 100 1975 1990.78 1991.0 2001 26.57737 134 134.11 134.0 135 0.09888889

V2 1 98 93 1991 7233.5 6924.0 50000 4.5553323E7 89 129.78 133.0 223 270.1733
2 100 99 1991 4820.31 3974.5 9881 3988607.0 103 130.63 134.0 182 79.42737

V3 1 98 96 1993 7074.34 5952.0 50000 4.8643077E7 108 131.67 133.5 223 135.8799
2 100 96 1993 4533.07 3963.0 7937 3361239.0 116 132.93 135.0 157 40.69202

V4 1 100 100 2962 3622.98 3959.0 4974 482048.5 125 132.73 131.0 171 47.61323
2 100 100 1987 3157.16 2982.0 3981 185676.7 126 132.78 130.5 231 121.6279

V5 1 77 72 4950 23305.71 13344.0 50000 3.24309559E8 107 135.2 134.0 203 184.0404
2 91 90 1983 16015.66 8919.0 50000 2.29592935E8 116 136.72 136.0 201 114.8299

Table 15: Node bias for Triangle Classification
Version Node Bias Valid Robust Steps Size

min mean median max var min mean median max var

V1 1 100 100 1977 2296.69 1993.0 3959 230680.4 89 100.17 101.0 106 7.879899
2 100 100 1980 2077.368 1991.0 2994 80329.13 91 100.6842 101.0 105 3.398496

V2 1 100 99 2964 4048.86 3971.0 7927 826978.2 89 103.23 101.0 174 215.8961
2 100 100 2964 3731.582 3963.0 4972 508542.2 88 105.0759 101.0 192 380.9172

V3 1 100 99 3957 5067.24 4962.0 6946 570266.1 82 100.54 97.0 193 289.2812
2 100 100 3949 4581.29 4940.0 5955 448987.5 84 100.68 97.0 201 389.9976

V4 1 100 92 2986 4986.76 4956.0 6956 602590.7 81 102.2 98.0 204 407.596
2 100 90 3943 4581.65 4948.0 5957 373174.3 88 101.07 97.5 202 354.0254

V5 1 100 94 4944 7142.54 6935.5 21755 3617325.0 80 106.9 101.0 203 641.9091
2 100 90 3954 6273.2 5954.0 9899 1144242.0 81 106.96 97.5 202 787.7964

Table 16: Node bias for Vector.insertElementAt
Version Node Bias Valid Robust Steps Size

min mean median max var min mean median max var

V1 1 100 49 1977 2001.29 1991.0 2992 10032.29 51 53.72 53.0 57 1.153131
2 100 63 1977 2020.66 1991.0 2986 28935.6 49 53.59 53.0 57 1.436263

V2 1 100 80 2973 7576.95 6935.0 19784 1.2007509E7 36 53.19 53.0 86 34.80192
2 100 84 2974 7332.65 5957.5 20767 1.4407158E7 38 53.46 53.0 112 74.67515

V3 1 95 91 7906 16463.11 13885.0 50000 8.5745263E7 31 57.76 55.0 119 235.0125
2 96 89 5947 15653.79 14822.0 50000 6.6893394E7 25 56.76 53.0 109 213.1539

V4 1 85 81 8817 20418.05 15520.0 50000 1.75634471E8 40 54.53 50.5 104 140.5546
2 86 79 6923 21071.49 15826.5 50000 1.81154133E8 25 54.37 53.0 102 141.3062

V5 1 60 57 11893 35015.14 30688.5 50000 2.01166805E8 36 55.37 53.5 114 138.4779
2 68 67 11889 33733.53 29624.0 50000 1.89767898E8 28 56.45 55.0 181 254.0682

Table 17: Node bias for Vector.removeElementAt
Version Node Bias Valid Robust Steps Size

min mean median max var min mean median max var

V1 1 94 93 1981 8528.23 2978.0 50000 1.51724089E8 45 61.87 62.0 70 11.42737
2 89 88 1981 10108.82 1993.0 50000 2.71177338E8 46 62.15 62.0 74 11.42172

V2 1 95 67 2980 11907.98 8927.0 50000 9.5283106E7 42 60.27 60.5 89 48.50212
2 94 65 3965 13215.6 9901.0 50000 1.15128681E8 47 61.06 61.0 124 82.11758

V3 1 96 93 3963 11335.36 8896.0 50000 8.3188229E7 35 59.59 59.0 108 68.48677
2 96 92 3971 11534.18 8422.5 50000 8.8814779E7 46 58.15 57.0 80 42.2904

V4 1 94 93 3967 16241.65 13856.0 50000 1.10595009E8 37 57.61 57.0 77 39.95747
2 97 96 4966 13323.57 10903.5 50000 6.5809471E7 38 56.57 57.0 94 51.29808

V5 1 41 41 8926 38049.46 50000.0 50000 2.5916941E8 43 60.77 61.0 72 37.65364
2 32 32 9901 40655.23 50000.0 50000 2.17841782E8 48 60.82 61.0 73 34.69455
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8 Limitations

The task of repairing software is very challenging. Regardless of the employed technique, there
are serious problems that limit the automation of this task:

• Testing cannot prove that a program is faultless [50]. Therefore, the task of fixing faults
cannot be completely automated, regardless of the technique that we use. Although the
modified program that we obtain might pass all the given test cases, the introduced modifi-
cations might fix the program only for these inputs and they might introduce unwanted side
effects. Figure 5 shows a simple example of a program that is able to pass all of its test cases
although it is not correct. Hence, it is necessary that the developers check the modifications
(i.e., the patch) done by the repairing algorithm, and this task cannot be automated (unless
a formal way to prove its correctness is given, and that can be done only in trivial cases).

Even if a patch does not actually fix the fault, it gives useful information to the developers.
In fact, that information can be used as a way to locate the area of the code that is related to
the manifestation of the fault. If the developer thinks that the proposed patch is not correct,
he can provide more test cases for which the program fails and then rerun the framework
again.

• A patch can reduce the efficiency of the code, e.g. it can make the software slower. However,
the optimisation of non-functional criteria can be included in the search [9].

• When we evaluate a modified program to check if it is correct, the modifications we apply
can make the program to enter in an infinite loop. The Halting Problem [20] is undecidable.
We have to put time limits for the evaluation of modified programs on the test cases. The
threshold could be estimated with heuristics based on the run of the faulty program on the
test cases. A wrong estimation could severally harm the search.

• The modifications done to a program can be difficult to read. This is a common problem for
example in GP. The readability of the code can be included in the objective to optimise. A
simple heuristic would be to prefer, between two correct modified programs, the one that is
more similar to the faulty input program.

• To check if a modified program is correct, we validate it against a set of test cases. Even
with an efficient repairing algorithm, still many programs would likely be required to be
evaluated during the search. If the execution of the test cases is computationally very ex-
pensive (this depends on the type of software), the computational cost of the repairing task
would proportionally increase and likely it would become unpractical.

• Unless a formal specification is provided, the efficacy of repairing algorithms depends on
the quality of the provided test cases. Quality of a set of test cases can be for example
measured with coverage criteria [50]. More and better test cases would result in improved
performance of the repairing algorithm. Even with an ideal repairing algorithm, we cannot
expect good results if the test cases are too few and of low quality. This is similar to the
problem of the choice of test cases for fault localization techniques [75].

9 Future Work

Automatic software repair is a difficult task that this paper addresses with search algorithms. There
is still much more research that is required to do before software repair tools can be used in real-
world scenarios:
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<(5,-2,3), 0> // 0 represents ’not triangle’
<(4,3,6) , 1> // 1 represents ’scalene’
<(9,9,16), 2> // 2 represents ’isosceles’
<(3,3,3) , 3> // 3 represents ’equilateral’

function classifyTriangle(a, b, c)
return a + b - c;

Figure 5: An example of a test cases for the Triangle Classification problem [50] and an incorrect
simple program that actually is able to pass all of these test cases.

• First step will be to extend JAFF to handle a larger subset of the Java programming language.
This would allow us to use our prototype to more different types of case studies. We do
not expect that all types of fault can be fixed in an automatic way. An extension of our
framework will help us to better analyse which are the limits of automatic software repair.

• The search operators play a major role in the success of our technique. This operators should
be optimised to handle faults that are common in real-world software. A deep analysis of
which types of faults actually appear in real-world software is necessary to design proper
search operators. One way to obtain this type of knowledge could be to use data mining
techniques to software repositories (e.g., [71]).

• If a formal specification (e.g., written in either Z [60] or JML [44]) of the software is pro-
vided, we can automatically test all the new changes that we are introducing in the faulty
program. Programs would evolve to pass the test cases while the test cases would evolve
at the same time to find new faults in the evolving programs. This leads to a co-evolution
between programs and test cases [32, 10]. This could significantly improve the performance
of the framework. We investigated this idea on a toy example [11], and we are planning to
extend our prototype JAFF to handle JML.

Co-evolution could be used even in the case no formal specification is provided. Given a
large set of test cases, co-evolution could be used to choose at each generation a subset to
employ. This could be useful when there are so many test cases that it would be not efficient
to run them all at each fitness evaluation. However, having so many test cases does not
happen often.

• The fitness function of the programs is based on how well they pass their test cases. In our
framework, we support test cases written as unit tests in JUnit [3]. The classes containing the
unit tests need to be automatically instrumented for handling exceptions and for reporting to
the framework whether the test cases are passed or not. The assert statements can be easily
subclassed for giving more gradient to the search (i.e., they should give a degree of how
much an assertion is failed). This is conceptually the same idea of branch distance in search
based software testing [48]. Therefore, the same type of testability transformations [29] can
be used to the instrumented unit test classes. We will investigate the improvement of the
results that this technique could bring.

• Hybrid systems that include model checking based tools (see Section 2.2) with search algo-
rithms should be investigated as well.
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10 Conclusion

In this paper we have presented JAFF, the first prototype for the novel approach of repairing soft-
ware in an automatic way with search algorithms. In contrast to the literature on the subject, in our
system there is no particular restriction on the type of source code fault that can be fixed. However,
exploiting the properties of real-world faults is helpful to reduce the search space.

Automatically repairing software is the natural next step after the automation of software test-
ing and fault localization. It is a very complex task, and this paper gives the contribution of
showing a feasible way to address this problem with evolutionary algorithms. Moreover, we anal-
ysed in detail the properties of this task, with the aim of finding its critical parts that need to be
studied further for improving the performance.

We also presented a novel search operators. We theoretically studied the conditions for which
it gives better results. This search operator improved the performance of our framework in our
case study. This search operator could be extended to other applications where programs with
branches (in the control flow) are tried to be evolved.
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A Formal Proofs

Lemma 1. Let t be the number of nodes (in the syntax tree) that are related to faults. Let s be the
number of nodes that are given the same rank as these t nodes, whereas l is the number of nodes
that have lower rank and h is the number of nodes that have higher rank. The probability δ(n) of
choosing one of the t faulty nodes using a tournament of size n is given by Equation 4.

Proof. Given a tournament of n nodes, let ζ be the number of faulty nodes (that are t in total) in
n. Let γ be the number of non-faulty nodes in n that have higher rank than ζ (they are h in total)
and let ψ the number of nodes with the same rank as ζ.

We need to pick up at least one of the t nodes and none of the h nodes (i.e., P (γ = 0)P (ζ ≥
1 | γ = 0)). Then, among these n nodes, the probability of choosing a faulty node depends on how
many of the s nodes are in these n (i.e., P = ζ/(ζ + ψ)). The probability of γ = 0 is equal to not
picking up any of the h nodes for n times:

P (γ = 0) =
(
1− h

l + s+ t+ h

)n
.

The probability of ζ ≥ 1 is equal to 1 minus the probability of having ζ = 0. We are assuming
γ = 0, hence:

P (ζ ≥ 1 | γ = 0) = 1−
(
1− t

l + s+ t

)n

For any possible values of ζ and ψ, P (ζ = i ∧ ψ = j | ζ ≥ 1 ∧ γ = 0) is the probability
they assume the values i and j respectively. Therefore, we pick up one of the ζ nodes with the
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following probability:

K(n) =
n∑

i=1

n−i∑
j=0

(( i

i+ j

)
P (ζ = i ∧ ψ = j | ζ ≥ 1 ∧ γ = 0)

)
.

Calculating this probability P (ζ = i ∧ ψ = j | ζ ≥ 1 ∧ γ = 0) requires some more passages.
Let’s consider:

T =
t

l + s+ t
,

S =
s

l + s+ t
,

L =
l

l + s+ t
.

Without considering their permutations, we have that the probability of having a set of size n
with ζ = i ∧ ψ = j ∧ γ = 0 is:

Z(i,j) = T iSjLn−i−j .

Using Bayes’ theorem, we obtain:

Z(i,j | i ≥ 1) =
(
Z(i,j)− Z(i,j | i = 0)(L+ S)n

)
/(1− (L+ S)n) .

Because we use Z to calculate K(n), and because in K(n) the value i is always different from
0, we have:

Z(i,j | i = 0)(L+ S)n = 0 ,

and therefore:

Z(i,j | i ≥ 1) =
Z(i,j)

(1− (L+ S)n)
=

T iSjLn−i−j

(1− (L+ S)n)
=

ln−i−jsjti

(l + s+ t)n − (l + s)n
.

We still need to calculate the possible permutations of the n nodes, and these are
(
n
i

)(
n−i

j

)
.

Therefore:

P (ζ = i ∧ ψ = j | ζ ≥ 1 ∧ γ = 0) =
(
n

i

)(
n− i

j

)
ln−i−jsjti

(l + s+ t)n − (l + s)n
.

Finally:

δ(n) = P (γ = 0)P (ζ ≥ 1 | γ = 0)
∑n

i=1

∑n−i
j=0

((
i

i+j

)
P (ζ = i ∧ ψ = j | ζ ≥ 1 ∧ γ = 0)

)

=
(
1−

(
1− t

l+s+t

)n)(
1− h

l+s+t+h

)n∑n
i=1

∑n−i
j=0

((
i

i+j

)(
n
i

)(
n−i

j

)(
ln−i−jsjti

(l+s+t)n−(l+s)n

))
.
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