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Abstract

Automatic software testing tools are still far from ideal for real world Object-Oriented (OO)
Software. The use of nature inspired search algorithms for this problem has been investigated
recently. Testing complex data structures (e.g., containers) is very challenging since testing software
with simple states is already hard. Because containers are used in almost every type of software,
their reliability is of utmost importance. Hence, this paper focuses on the difficulties of testing
container classes with nature inspired search algorithms. We will first describe how input data
can be automatically generated for testing Java Containers. Input space reductions and a novel
testability transformation are presented to aid the search algorithms. Different search algorithms
are then considered and studied in order to understand when and why a search algorithm is effective
for a testing problem. In our experiments, these nature inspired search algorithms seem to give
better results than the traditional techniques described in literature. Besides, the problem of
minimising the length of the test sequences is also addressed. Finally, some open research questions
are given.

Keywords: Software Testing, Object-Oriented Software, Containers, Search Algorithms, Nature
Inspired Algorithms, Search Based Software Engineering, Testability Transformations, White Box
Testing.

1 Introduction

Software Testing is used to find the presence of bugs in computer programs [42]. Even though
no bugs are found, testing cannot guarantee that the software is bug-free. However, testing can
be used to increase our confidence in the software reliability. Unfortunately, testing is expensive,
time consuming and tedious. It is estimated that testing requires around 50% of the total cost of
software developing [7]. This cost is paid because Software Testing is very important. Releasing
bug-ridden and non-functional software is in fact an easy way to lose customers. Besides, bugs
should be discovered as soon as possible, because fixing them when the software is in a late stage
of development is much more expensive than at the beginning. For example, in the U.S.A it is
estimated that every year around $20 billion could be saved if better testing was done before
releasing new software [47].

One way to try to deal with this issue is to use Unit Tests [24, 18]. It consists of writing pieces
of code that test as many methods of the project as possible. For example, a method that sums
two integers can be called with two particular values (1 and 2 for example), and then the result
will be checked against the expected value (3). If they do not match, we can be sure that there
is something wrong with the code. Because testing all possible inputs of a method is infeasible, a
subset of tests needs to be chosen. How to choose this test subset depends on the type of testing,
and it is the problem that this paper addresses.

Writing unit tests requires time and resources, and usually it is a tedious job. Thus, a way
to automatically generate unit tests is needed. However, if a formal specification of the system
is not given, testing the results against an Oracle cannot be automated. I.e., choosing the best
inputs can be automated, but checking the result against the expected one (e.g., the value 3 in the
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previous example) cannot be automated if the system does not know the semantics of the function.
Different approaches have been studied to automatically generate unit tests [33], but a system that
can generate an optimal set of unit tests for any generic program has not been developed yet.
Lot of research has been done on procedural software, but comparatively little on Object-Oriented
(OO) software. The OO languages are based on the interactions of objects, which are composed of
an internal state and a set of operations (called methods) for modifying those states. Objects are
instances of a class. Two objects belonging to a same class share the same set of methods and type
of internal state. What might make those two objects different is the actual values of their internal
states.

In this paper we focus on a particular type of OO software that is Containers. They are data
structures like arrays, lists, vectors, trees, etc. They are classes designed to store any arbitrary type
of data. Usually, what distinguishes a container class from the others is the computational cost of
operations like insertion, deletion and finding of a data object. Containers are used in almost every
type of OO software, so their reliability is important.

We present a framework for automatically generating unit tests for container classes. The test
type is White Box Testing [42]. We analyse different search algorithms, and then we compare them
with more traditional techniques. We use a search space reduction that exploits the characteristics
of the containers. Without this reduction, the use of search algorithms would have required too
much computational time. This paper also presents a novel testability transformation [21] to aid
the search algorithms. Although the programming language used is Java, the techniques described
in this paper can be applied to other OO languages. Moreover, although we frame our system
specifically for containers, some of the techniques described in this paper might also be extended
for other types of OO software.

This work gives two important contributions to the current state of the practise of the Search
Based Software Engineering (SBSE) [13]:

1. we compare and describe how to apply five different search algorithms. They are well known
algorithms that have been employed to solve a wide range of different problems. This type of
comparisons are not common in the literature on SBSE, but they are very important [58]. In
fact, unexpected results might be found, as the ones we report in section 4.

2. although reducing the size of the test suites is very important [10], the problem of minimising
the length of the test sequences has been almost ignored in literature. We addressed it and
studied its implications on a set of five search algorithms.

The paper is organised as follows. In section 2 a particular type of software (containers)
with its properties is presented. Section 3 describes how to apply five different search algorithms
to automatically generate unit tests for containers. Experiments carried out on the proposed
algorithms follow in section 4. A short review of the related literature is given in section 5. The
conclusions of this work can be found in section 6.

2 Testing of Java Containers

In OO programs, containers hold an important role because they are widely use in almost any type
of software. Not only do we need to test novel types of containers and their new optimisations, but
also the current libraries need to be tested [32].

There are different types of containers, like arrays, vectors, lists, trees, etc. We usually expect
from a container methods like insert, remove and find. Although the interfaces of these methods
can be the same, how they are implemented and their computational cost can be very different.
Besides, the behaviour of such methods depends on the elements already stored inside the container.
The presence of an internal state is a problem for software testing [36, 38, 34], and this is particularly
true for the containers.

2.1 Properties of the problem

A solution to the problem is a sequence Si of Function Calls (FCs) on an instance of the Container
under Test (CuT).
A Function Call (FC) can be seen as a triple:

< object reference, function name, input list >

It is straightforward to map a FC in a command statement. E.g.:

ref.function(input[0],...,input[n]);
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I.e., given an object reference called ref, the function with name function name is called on
it with the input in input list. There will be only one Si for the CuT, and not one for each of its
branches (as usually happens in literature). Each FC is embedded in a different try/catch block.
Hence, the paths that throw exceptions do not forbid the execution of the following FCs in the
sequence.

Given a coverage criterion (e.g., “path coverage” [28]), we are looking for the shortest sequence
that gives the best coverage. For simplicity, we will consider only “branch coverage”. However, the
discussion can be easily extended to other coverage criteria.

Let S be the set of all possible solutions to the given problem. The function cov(Si) : S → N will
give the coverage value of the sequence Si. That function will be upper bounded by the constant
NB, that represents the number of branches in the CuT. It is important to remember that the best
coverage (global optimum) can be lower than NB, due to the fact that some paths in the execution
can be infeasible. The length of sequence is given by len(Si) : S → N . We prefer a solution Si to
Sj iff the next predicate is true:

{

cov(Si) > cov(Sj) or
cov(Si) = cov(Sj) ∧ len(Si) < len(Sj) .

(1)

The problem can be viewed as a Multi-Objective task [16]. A sequence with a higher coverage
will always be preferred regardless of the length. Only if the coverage is the same, we will look at
the length of the sequences. Thus, the coverage can be seen as a hard constraint, and the length
as a soft constraint. Although there are two different objectives, coverage and length, it is not a
good idea to use Pareto Dominance [16] in the search. This is because the length is always less
important than the coverage. Thus, the two objectives should be properly combined together in a
single fitness function, as for example:

f(Si) = cov(Si) +
1

1 + len(Si)
. (2)

Containers have some specific properties. Some of them depend on the the actual implementa-
tion of the container, thus they cannot be analytically solved without considering the source code.
However, our empirical tests show that these properties are true for any examined containers. Let
k be the position in Si of the last FC that improves the coverage of that sequence. The properties
are:

• any operations (like insertion, removal and modification of one FC) done on Si after the
position k cannot decrease the coverage of the sequence. This is always true for any software.

• given a random insertion of a FC in Si, the likelihood that the coverage decreases is low. It
will be always zero if the insertion is after k, or if the FC does not change the state of the
container.

• following from the previous property, given a random removal of a FC in Si, the likelihood of
the coverage increases is low.

• The behaviour of a FC depends only on the state of the tested container when the FC is
executed. Therefore, a FC cannot alter the behaviour of the already executed FCs.

• let Sr be a sequence, and St be generated by Sr adding any FC to the tail of Sr . Due to
the previous property, we have cov(St) ≥ cov(Sr). For the same reason, we have cov(Sr, i) ≥
cov(Sr, j) , where j ≤ i ≤ len(Sr) and cov(Sr, i) gives the coverage of Sr when only the
first i FCs are executed. Given two random sequences generated with the same distribution,
therefore, it is easy to understand that we should expect a better coverage from the longest
one.

• calculating the coverage for Si requires the call of len(Si) methods of the CuT. This can be
very expensive from a computational point of view. Thus, the performance in terms of a
search algorithm depends heavily on the length of the sequences that it evaluates.

2.2 Search Space Reduction

The solution space of the test sequences for a container is very huge. We have M different methods
to test, so there are ML possible sequences of length L. We do not know a priori which is the best
length. Although we can put an upper bound to the max length that we want to consider, it is still
an extremely large search space. Besides, each FC can take some parameters as input, and that
increases the search space even further.
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The parameters as input for the FCs make the testing very difficult. They can be references to
instances of objects in the heap. Not only the set of all possible objects is infinite, but a particular
instance may need to be put in a particular state by a sequence of FCs on it (they are different
from the ones of the container). In the same way, these latter FCs can require objects as input
which need sequences of their proper FCs on them.

Fortunately, for testing of Java Containers, we can limit the space of the possible inputs for the
FCs. In fact, usually (at least for the containers in the Java API) the methods of a container need
as input only the following types:

1. indices that refer to a position in the container. A typical method that uses them is get(int
i). The indices are always of int type. Due to the nature of the containers, we just need
to consider values inside the range of the number of elements stored in the CuT. Besides, we
also need some few indices outside this range. If we consider that a single FC can add no
more than one element to the container (it is generally true), the search space for the indices
can be bound by the length of Si.

2. elements are what are stored in a container. Usually they are references to objects. In the
source code, the branch statements that depend on the states of elements are only of three
types: the Natural Order between the elements, the equality of an element to null and the
belonging of it to a particular Java class. This latter type will be studied only in future work.
The natural order between the elements is defined by the methods equals and compareTo.
Given n elements in the CuT, we require that all the orders of these n elements are possible.
We can easily do it by defining a set Z, with |Z| = n, such that all elements in Z are different
between them according to the natural order (i.e., if we call equals to any two different
elements in Z we should get always false as a result). A search algorithm can be limited to
use only Z for the elements as input for the FCs without losing the possibility of reaching the
global optimum. Anyway, we should also handle the value null.

The number n of elements in the CuT due to Si is upper bounded by len(Si) (we are not
considering the possibility that a FC can add more than one element to the CuT). Because
the natural order does not depend on the container, we can create Z with |Z| ≥ len(Si) + 1
regardless of the CuT. We can as example use Integer objects with value between 0 and |Z|.
It is important to outline that Z is automatically generated: the user does not have to give
any information to the system.

Bounding the range of the variables is a technique that has been widely employed in software
testing. However, in this work we give the assumptions for which this reduction does not
compromise the results of the search algorithms.

3. keys are used in containers such as Hash Tables. The considerations about elements can be
also applied to the keys. The difference is that the method hashCode can be called on them.
Because how the hash code is used inside the source code of the CuT cannot be known a
priori, we cannot define for the keys a finite set such Z that guarantees us that the global
optimum can be reached. In our experiments, we used the same Z for both elements and keys
with good results. However, for the keys, there are no guaranties that Z is big enough.

4. some FCs may need as input a reference to one other container. Such type of FCs are not
considered at the moment, and they are excluded from the testing. Future work will be done
to cover also them. However, in our test cluster, only 11 methods on a total of 105 require
this type of input.

When a random input needs to be chosen, two constants N and P (e.g., −2 and 58) are used
to bound the values. An index i is uniformly chosen in N ≤ i ≤ P , and an element/key e is chosen
from Z with value in the the same range. However, with probability δ, the element e is used with
a null value. If after a search operator any sequence Si has len(Si) > P , the value P is updated
to Pt+1 = ⌈αPt⌉, where t is the time and α > 1. Hence, P is always bigger or equal than the value
of the length of any sequence in the search. In fact, any used search operator can only increase
a sequence at most by one. There is only one exception (i.e., the crossover operator described
in section 3.4 can increase a sequence by more than one FC), but that operator cannot make a
sequence longer than P in any case (see section 3.4). When a sequence is initialised at random, its
length is uniformly chosen in [0, P ].

All the search algorithms that will be analysed in this paper will use the space reductions
described above, unless otherwise stated.
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2.3 Branch Distance

If the only information that a search algorithm can have is about whether a branch is covered or
not, the algorithm will have no guidance on how to cover it. In other words, the search space will
have big plateaus. In such a case, we can say that the search is “blind”. Anyway, if the predicate
of that branch statement is not complex, the likelihood of cover both its branches by chance is not
so low. It is for that reason that a random search can achieve a quite good coverage. When the
predicate is complicated, a blind search is likely to fail. Let’s say that we want to cover a then
branch of an if statement (the else branch can be studied in the same way). One way to address
this problem is to use the Branch Distance (BD) of the branch [27]. That is a real value that tells
us how far the predicate is to be evaluated as true. If we include BD to the coverage value of the
sequence, the search space will become smoother. There can be different ways to define BD. A
widely used way can be found in [49].

The BD has an important role in Software Testing, and a lot of research has been done on how to
improve its effectiveness [5]. Common issues are: flags in the source code [20, 4], especially if they
are assigned in loops [3], dependences of the predicate to previous statements [19, 37] and nested
branch statements [35]. Anyway, those works are concerning the coverage of only one particular
branch at time. On the other hand, the test sequences for Java Containers analysed in this paper
try to cover all the branches at the same time. According to [56], it should be expected a better
performance if each predicate is target/tested separately. I.e., there will be a different test driver
for each predicate in the CuT. However, that work does not consider the necessity of a sequence
of function calls to put the program in a helpful state for testing. To our best knowledge, the use
of a single sequence of FCs to cover all the branches at the same time with the aid of the branch
distances has never been analysed before. Therefore, a comparison of the two different techniques
is required.
In detail, we need to use:

b(j) =















0 if the branch j is covered ,

k if the branch j is not covered and its
opposite branch is covered at least twice ,

1 otherwise ,

(3)

0 < k < 1 , (4)

B(Si) =

NB
∑

j=1

b(j)

NB
. (5)

Where k is the lowest normalised BD for the predicate j during the execution of Si. The function
b(j) defined in (3) describes how close the sequence is to cover that not covered branch j. If its
branch statement is never reached, it should be b(j) = 1 because we cannot compute the BD for
its predicate. Besides, it should also be equal to 1 if the branch statement is reached only once.
Otherwise, if j will be covered due to the use of b(j) during the search, necessarily the opposite of
j will not be covered any more (we need to reach the branch statement at least twice if we want to
cover both of its branches).

We can integrate the normalised BDs of all the branches (5) with the coverage of the sequence
Si in the following way:

cb(Si) = cov(Si) + (1 − B(Si)) . (6)

It is important to notice that such a function (6) guarantees that

cb(Si) ≥ cb(Sj) ⇒ cov(Si) ≥ cov(Sj) . (7)

Finally, to decide if Si is better than Sj , we can replace (1) with:

{

cb(Si) > cb(Sj) or
cb(Si) = cb(Sj) ∧ len(Si) < len(Sj) .

(8)

In such a way, the search landscape gets smoother. Although we can use (8) to aid the search, we
still need to use (1) to decide which is the best Si that should be given as the result. In fact, for
the final result, we are only interested in the achieved coverage and length. How close the final
sequence is to get a better coverage is not important.
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2.4 Testability Transformations

When BDs are used, a common way to improve the performance of a search algorithm is the use of
Testability Transformations [21]. They are source to source transformations applied to the code of
the CuT. Their only requirement is that the test data generated for the transformed program are
adequate for the original one. Usually, these transformations are used to handle the flags problem.
Here we propose a novel testability transformation that is specific for the Java Containers.

Some branch statements in a Java Container source code rely on the natural order of its stored
elements. The method equals gives no information on how much two elements are different,
because it returns only a boolean value (this is like the flag problem). Therefore, we propose to
transform all calls to the equals method:

obj.equals(other)

with:

(((Comparable)obj).compareTo(other) == 0)

We should notice that this transformation is useful only if the stored objects implement the
interface Comparable. If we use the set Z defined in sec 2.2, we can guarantee it. Although the
method compareTo says if two objects are different, it does not say how much they are differ-
ent. Therefore, we need that the objects in Z extend this semantics by sub-classing this method.
Because Z can be implemented regardless of the container that will be tested, besides the fact
that compareTo gives an integer as its output, we can easily do this extension of the semantics.
For example, compareTo can give as output the difference between the natural order values of the
two compared objects. Hence, the search landscape gets smoother, and this fact helps the search
algorithms.

It is arguable why we use compareTo instead of defining a new method. This choice was made
because in such a way we need no testability transformations on the compareTo calls. I.e., we need
to transform only the calls to equals and not the ones to compareTo. Otherwise, the compareTo

method with its original semantics generates plateaus in the search space. However, we cannot
know (or it is too difficult to be exactly determined) if all the calls to equals belong only to the
stored elements. Thus, to be sure of not having any exception raised during the search, we can use
this other transformation instead:

(((obj instanceof Comparable) ?

((Comparable)obj).compareTo(other) :

(obj.equals(other) ? 0 : 1))

== 0 )

However, this latter transformation introduces two new branches in the program for every call
to equals. This is a problem, because input test data (in our case a sequence of FCs) for branch
coverage for the transformed program is not adequate for the original one. Given a support library
ett (the name is not important), one possible solution is:

(ett.Utils.compare(obj,other)==0)

with the function compare implemented in this way:

public static int compare(Object obj,Object other)

{

if(obj instanceof Comparable)

return ((Comparable)obj).compareTo(other);

else

return obj.equals(other) ? 0 : 1;

}

It is important that the instrumentation tool (described in 2.5) should be informed to ignore
this function (i.e., that function should be considered as a side effect free external function of which
there is no access to its source code).

This testability transformation can be done automatically, without any help of the user.
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2.5 Instrumentation of the Source Code

To guide a search algorithm, the CuT needs to be executed to get the branch distances of the
predicates [27]. To analyse the execution flow, the source code of the CuT needs to be instrumented.
This means that extra statements will be added inside the original program. To trace the branch
distances, we need to add a statement (usually a function call) before every predicate. These
statements should not alter the behaviour of the CuT, i.e., they should not have any side effect
on the original program. They should only compute the branch distance and inform the testing
environment of it. If a constituent of a predicate has a side effect (like the ++ operator or a function
call that can change the state of the program), testability transformation should be used to remove
the side effects [22]. Otherwise, such side effect could be executed more than once, changing the
behaviour of the program.

In the environment that has been developed, it was chosen to use the program srcML[14]
for translating the source code of the CuT in an XML representation. All instrumentations and
testability transformations are done on the XML version. Afterwards, srcML is used to get the
modified Java source code from the XML representation. This new source code is used only for
testing purposes. It will be discarded after the testing phase is finished. The human tester should
not care about this transformed java source code.

3 Search Algorithms

There is not a search algorithm that outperforms all the other algorithms [57]. Therefore, when
a new problem needs to be addressed, different algorithms should be compared. This facilitates a
deeper understanding of the search problem, so that more appropriate search algorithms can be
developed as the next step. In this paper five search algorithms are used: Random Search (RS), Hill
Climbing (HC), Simulated Annealing (SA), Genetic Algorithms (GAs) and Memetic Algorithms
(MAs). They have been chosen because they represent a good range of different search algorithms.
RS is a natural baseline used to understand the effectiveness of the other search algorithms. SA
and GAs are very popular global search algorithms that have been applied to successfully solve
many tasks. On the other hand, HC is local search algorithm, and it is important because from its
performance compared to a global search algorithm we can get more information about the search
landscape. Finally, MAs are hybrid algorithms that combine together local and global searches. If
for the problem addressed in this paper a local search is not always better than a global search (or
vice-versa), combining them might lead to even better results.

Although there are different variants of these search algorithms, in this paper only some simple
forms are investigated. In fact, a single parameter of a search algorithm might heavily influence
its performance, and many tests need to be carry out to find a good combination of parameters.
Otherwise, it would not be fair to compare two search algorithms in which one has a poor choice of
its parameters. Therefore, because five different search algorithms are considered at the same time,
only limited tests on their variants were possible. Hence, their base forms were preferred because
they lead to more fair comparisons among the different search algorithms.

3.1 Using Random Search

Although Random Search is the easiest among the search algorithms, it may give good coverage.
The only problem is that we need to define the length of sequences that will be generated during
the search. If we do not put any constraint on the length (besides of course the highest value that
the variable that stores the length can have), there can be extremely long sequences. Not only the
computational time can be too expensive, but such long sequences will be also useless. Therefore,
it is better to put an upper bound L to the length. The sequences can still have a random length,
but it will be always lower than L. Random search can be implemented in the following way:

1. generate at random a sequence Si, with len(Si) < L.

2. compare Si with the best sequence seen so far. For comparison, use formula (1). If Si is
better, store it as the new best.

3. if the search is not finished (due to time limit or number of sequences evaluated), go to step
1.

4. return the best sequence seen so far.

Note that the only parameter that needs to be set is the upper bound L. Exploiting the branch
distances is useless in a random search.
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3.2 Using Hill Climbing

Hill Climbing (HC) is a local search algorithm. It needs that a neighbourhood N of the current
sequence Si is defined. The search will move to a new solution Sj ∈ N only if Sj is better. If there
are no better solutions in N , a local optimum has been reached. In such a case, a restart of the
algorithm from a new random solution can be done.

We need to define N . Its size has a big impact on the performance of the algorithm [61]. We
can think of three types of operations that we can do on Si for generating N . Others types of
operations will be investigated in future work.

Removal of a single FC from Si. There will be len(Si) different neighbour sequences due to this
operation.

Insertion of a new FC in Si. There are len(Si) + 1 different positions in which the insertion can
be done. For each position, there are M different methods that can be inserted. Due to the
too large search space, the input parameters for the FC will be generated at random.

Modification of the parameters of a FC. All FCs in Si will be considered, except for the FCs
with no parameters. If a parameter is an index i (see 2.2), we will have two operations that
modified i by ±1. Otherwise, if the parameter belongs to Z, we will consider two operations
which will replace the parameter with the two closest elements in Z according to their natural
order.

The branch distance should be used carefully. In fact, if (8) is used, the HC can be driven
to increase the length to try to cover a particular difficult branch. If it falls in a local optimum
without covering that branch, the result sequence could be unnecessarily too long. Because HC
finds a local optimum, it cannot decrease the length of the sequence. Hence, our HC starts the
search using (8) and then, when a local optimum is reached, it continues the search from that local
optimum using (1) instead.

3.3 Using Simulated Annealing

The Simulated Annealing (SA) [26, 52] is a search algorithm that is inspired by a physical property
of some materials used in metallurgy. Heating and then cooling the temperature in a controlled
way bring to a better atomic structure. In fact, at high temperature the atoms can move freely, and
a slow cooling rate makes them to be fixed in suitable positions. In a similar way, a temperature
is used in the SA to control the probability of moving to a worse solution in the search space. The
temperature is properly decreased during the search.

The use of SA has been investigated. A variant of SA that uses the Metropolis procedure [39]
has been employed. The neighbourhood of the current sequence N is defined in the same way as
in the Hill Climbing algorithm. It is not easy to define the energy of a sequence Si. According to
the Metropolis procedure, the energy is used to compute the probability that a worse sequence will
be accepted. Such probability is:

W = exp

(

−
E(Si+1) − E(Si)

T

)

. (9)

The problem is that we need to properly combine in a single number two different objectives as
the coverage and the length of a given sequence. We need that, if Si is better than Sj according to
(1), than E(Si) < E(Sj). In formulae:

E(Si) = f(cov(Si)) + g(len(Si)) , (10)

f(NB) = 0 , (11)

cov(Si) > cov(Sj) ⇒ f(cov(Si)) < f(cov(Sj)) ∀Si, Sj ∈ S , (12)

cov(Si) > cov(Sj) ⇒ E(Si) < E(Sj) ∀Si, Sj ∈ S , (13)

len(Si) > len(Sj) ⇒ g(len(Si)) > g(len(Sj)) ∀Si, Sj ∈ S . (14)

The function f is used to weigh the coverage, and it can easily be written as:

f(Si) = NB − cov(Si) . (15)

On the other hand, the function g weighs the length. Due to (13) and the fact that the coverage
is a positive natural value, we have:

0 ≤ g(len(Si)) < 1 ∀Si ∈ S . (16)
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It should be less than 1, otherwise it is possible that a sequence can have a lower energy
comparing to a longer sequence with higher coverage. One way to do it is :

g(len(Si)) = 1 −
1

1 + len(Si)
. (17)

Using (15) and (17), we can rewrite (10) as:

E(Si) = NB + 1 −

(

cov(Si) +
1

1 + len(Si)

)

. (18)

Although the latter formula defines the energy of a sequence in a proper way, it should not be
used in the Simulated Annealing algorithm with the neighbourhood described before. This energy
can deceive the search letting it looking at sequences always longer at every step. Consider the case
Q in which a potential new sequence K is generated by Si by adding a FC that does not change
the coverage, but that increases the length. Thus, cov(K) = cov(Si) and len(k) = len(Si)+1. The
new sequence K will be accepted as Si+1 by the probability (9). Therefore,

WQ,i = exp

(

−
1

L2 · T

)

, (19)

L2 = len(Si)
2 + 3 · len(Si) + 2 . (20)

If the temperature T decreases slowly (as it should be), it is possible that WQ,i+1 > WQ,i

because the length of sequence has increased. Although it should be mathematically proved, this
behaviour has a high likelihood to tend to increase the length of the sequence. Empirical tests
confirm it.

Instead of (17), we can think to use something like g(len(Si)) = len(Si)
M

. However, this is not
reasonable. In fact, we cannot set any finite M such that (13) is always true. Although we can
limit M to the maximum length that the actual machine can support/handle, we will have in such
a case that the weight of the length has little impact on the energy for any reasonable value of the
length. I.e., g(len(Si)) will be very close to zero for any Si encountered during the search.

For all these reasons, the Simulated Annealing algorithm used is slightly different from the
common version. Regardless of any energy, a new sequence K will be always accepted as Si+1 if
(1) is true. Otherwise, the Metropolis procedure will be used. The energy function will be:

E(Si) = NB − cov(Si) + α · len(Si) . (21)

The constant α has a very important role on the performance of the SA. Before studying what
is its best value, we need some assumptions:

• the likelihood that the sequence K will be generated using a removal operation on Si is the
same as having an insertion. I.e., P (rem) = P (ins).

• the operations used to generate K can increase or decrease the length only by one. I.e.,
len(K)− len(Si) ∈ {−1, 0, 1}.

• all assumptions in section 2.1 hold.

There is the problem that, due to (21), it is possible that there can be no change in the energy
(i.e., W = 1) even if the new state is worse according to (1). In such cases, some particular worse
sequences will always be accepted regardless of the temperature T . We will firstly analyse the
values of α for which that thing does not happen. Afterwards, we will study how the SA behaves
when α is not a chosen properly. There are different situations:

1. len(Si+1) − len(Si) = 0. According to (1), we have that cov(Si+1) ≤ cov(Si), otherwise the
new sequence would have already been accepted. Therefore, W = 1 iff cov(Si+1) = cov(Si).
That means that if there are no changes in both the coverage and length, the new sequence
Si+1 will always be accepted. This is not a problem for SA, but for other algorithms as Hill
Climbing this rule can generate an infinite loop in the search. In this scenario, the value of α

has no influence.

2. if cov(Si+1) = cov(Si), we still need to discuss when len(Si+1) − len(Si) = 1. Note that, due
to (1), it cannot be minus one. In that case, we have W = exp

(

− α
T

)

. So we need α > 0.

3. cov(Si+1) < cov(Si) and len(Si+1) − len(Si) = 1. In such a case, we can set α ≥ 0 to
guarantee that W < 1.
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4. the worst case is when cov(Si+1) < cov(Si) and len(Si+1) − len(Si) = −1. In fact, one
objective (the coverage) gets worse, but at the same time the other objective (the length) gets
better. For having W < 1, we need that E(Si+1) − E(Si) = cov(Si) − cov(Si+1) − α > 0.
Therefore, given

M = min(cov(Si) − cov(Si+1)) ,

∀Si ∈ S ∀Si+1 ∈ {Sj|Sj ∈ NSi
, cov(Sj) < cov(Si)} ,

(22)

we should have:
α < M . (23)

In our case, we have M = 1 because the coverage is always a natural value. Thus, α < 1.

The range of value for α such that all the previous conditions are true at the same time is :

0 < α < M , (24)

with M = 1. However, it is important to notice that, for the energy defined in (21), we cannot use
the branch distance. Otherwise, the only lower bound for M will be zero. In such a case, we will
have 0 < α < 0 that has no solution. However, there are no problems to use (8) instead of (1) for
deciding if a new sequence is better or not.

If α is chosen not in the range defined in (24), the SA algorithm will be deceived.

α ≥ 1 , any neighbour Sj of Si with worse coverage, shorter length and cov(Sj)+α ≥ cov(Si), will
always be accepted as Si+1 regardless of the temperature T . Because it is common that any
global optimum for a generic container has at least one FC that contributes to the coverage
only by one, the SA with α ≥ 1 cannot be guaranteed to converge. Besides, from empirical
tests, the performances of the SA are so poor that even a Random Search performs better
than it.

α ≤ 0 , any neighbour Sj that does not reduce the coverage will always be accepted, even if the
length increases. Although it does not seem a problem because a Sj with same coverage but
shorter length is always accepted due to (1), the SA will tend to move its search to sequences
always longer and longer. That can be explained if we consider the probabilities that Si+1

has been generated by Si with an insertion or by removing a FC. Given an operation (op),
the probability that applying it to Si the new sequence will be accepted (acc) is:

P (acc|op)i =

{

1 if cov(Si+1) ≥ cov(Si) ,

Wi otherwise .
(25)

Due to the assumption in section (2.1), the probability of an accepted insertion (ins) is:

P (acc|ins) ≈ 1 . (26)

On the other hand, the probability that a removal (rem) is accepted is:

P (acc|rem) ≈ P (cov(Si+1) = cov(Si)|rem)+
Wi · P (cov(Si+1) < cov(Si)|rem) .

(27)

Let Ri be the number of redundant FCs in Si, i.e. if we remove any of this FCs the coverage
does not change. We will have:

P (cov(Si+1) = cov(Si)|rem) =
Ri

len(Si)
, (28)

P (cov(Si+1) < cov(Si)|rem) =
len(Si) − Ri

len(Si)
. (29)

Therefore, using (28) and (29), we can write (27) as:

P (acc|rem) ≈ Wi + (1 − Wi) ·
Ri

len(Si)
. (30)

Unless we want to change how the neighbourhood is defined, i.e. P (rem) = P (ins), it is more
likely that Si+1 has been generated from an insertion operation because Ri < len(Si). I.e. ,

P (ins|acc) > P (rem|acc) . (31)
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This is particularly true when Si is close to a local optimum for the length objective (i.e.,
when Ri is close to zero). Only for an infinite length the two probabilities are the same, due
to:

lim
len(Si)→∞

Ri

len(Si)
= 1 . (32)

Therefore, the SA tends to look at sequences that are likely to be always longer than the
previous at any step. Besides, such SA diverges from any global optimum, because they are
sequences of finite length.

Not only does α need to verify (24), but it should also be chosen carefully. In fact, the lower
α is, the higher the average of the length of the sequences Si will be. This happens because the
weight of the length on the energy (21) decreases. Thus, the probability (9) of accepting a new
longer sequence gets higher. The higher this average is, the more likely it is that the coverage will
be greater. But at the same time the computational cost will increase as well.

In the former description, the SA has been studied with a fixed neighbourhood. However, it has
been shown that the SA performs better if the neighbourhood size changes dynamically according
to the temperature [61, 62]. The idea is to have a large size at the beginning of the search to boost
the exploration of the search space. Then, the size should decrease to allow the exploitation of the
current search region. It can be easily done if we consider, for getting the neighbourhoods of Si,
Ki operations on Si. I.e., the new Si+1 will be generated using Ki operations on Si instead of only
one. Let K0 be the initial size and N the total number of iterations of the search. We can write
the size Ki at the iteration i as:

Ki = 1 + (k0 − 1) ·
N − i

N
. (33)

In that way, the neighbourhood size starts with a value of K0, and decreases uniformly until it
arrives at 1.

3.4 Using Genetic Algorithms

Among the most used metaheuristics in software testing there are the Genetic Algorithms (GAs) [23,
40]. GAs are a global search metaheuristic inspired by the Darwinian Evolution theory. Different
variants of this metaheuristic exist. However, they rely on three basic features: population, crossover
and mutation. More than one solution is considered at the same time (population). At each
generation (i.e., at each step of the algorithm), the solutions in the current population generate
offspring using the crossover operator. This operator combines parts of the chromosomes (i.e.,
the solution representation) of the offspring’s parents. These new offspring solutions will fill the
population of the next generation. The mutation operator is applied to make little changes in the
chromosomes of the offspring.

To apply a GA for testing containers, we need to discuss:

Encoding, a chromosome can be viewed as sequences of FCs. Each single gene is a FC with its
input parameters. The number of parameters depends on the particular method.

Crossover, it is used to generate new offspring combining between them the chromosomes of the
parents. The offspring generated by a crossover are always well formatted test sequences.
Therefore, no post processing is needed to adjust a sequence. The only particular thing to
note is that the parents can have different lengths. In such cases, the new offspring’s length
will be the average of the parents’s length. A single point crossover takes the first K genes
from the first parent, and the following others from the tail of the second parent.

Mutations, they change an individual by a little. They are the same operations on a test sequence
as described in sec. 3.2.

Fitness, the easiest way to define a fitness for the problem is Eq.(2). Anyway, we need to introduce
the branch distance (5) in the fitness, otherwise the search will be blind:

f(Si) = cov(Si) + α(1 − B(Si)) + (1 − α)
1

1 + len(Si)
, (34)

where α is in [0, 1] (a reasonable value could be 0.5). Note that, for both the fitness, the
following predicate is always true:

cov(Si) > cov(Sj) ⇒ f(Si) > f(Sj) ∀Si, Sj ∈ S . (35)
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Although the latter fitness gives good results, it can deceive the search in the same way as it
happens in the Simulated Annealing. I.e., the use of the branch distance can lead to longer
sequences without increasing the coverage in the end. To address this problem we can use
a rank selection, but in a stochastic way [44]. I.e., for the selection phase, we can rank the
individuals in the population using randomly either the fitness (2) or (34).

Fitness sharing, it is used to maintain a degree of diversity inside the population. Individuals
that have a chromosome close to others in the population will see their fitness decreasing.
Common ways to define the distance between two individuals are the Euclidean and Hamming
distances. When they are not suitable for a particular problem, a specific new distance
measurement can be defined. Although the use of fitness sharing usually gives better results,
it is not easy to define a right distance for this problem. In fact, the order of the FCs in
the sequence is very important, and a single difference at the beginning of the sequence can
completely change its behaviour. Besides, there can be a lot of read-only or redundant FCs
that can be modified without altering the behaviour of the sequence. Therefore, in this work
we did not used any sort of fitness sharing.

At any rate, distance functions based on the execution traces instead of being based on
the chromosomes might be considered. However, choosing which information of an execution
should be collected and used is not straightforward. Moreover, keeping track of those execution
traces might have a significant overhead cost.

3.5 Using Memetic Algorithms

The Memetic Algorithms (MAs)[41] are a metaheuristic that uses both global and local search
(e.g., a GA with a HC). It is inspired by the Cultural Evolution. A meme is a unit of imitation
in cultural transmission. The idea is to mimic the process of the evolution of these memes. From
an optimisation point of view, we can approximately describe a MA as a population based meta-
heuristic in which, whenever an offspring is generated, a local search is applied to it until it reaches
a local optimum.

The MA we used in this paper is fairly simple. It is built on our GA, and the only difference
is that at each generation on each individual an Hill Climbing is applied until a local optimum is
reached. The cost of applying those local searches is high, hence the population size and the total
number of generations is lower than in the GA.

4 Case Study

To validate the techniques described in this paper, the following containers have been used for
testing: Vector, Stack, LinkedList, Hashtable and TreeMap from the Java API 1.4, package
java.util. On the other hand, BinTree and BinomialHeap have been taken from the examples in
JPF [51]. Table 2 summarises their characteristics. The coverage values are referred to the branch
coverage, but they also include the calls to the functions. The achievable coverage is based on the
highest coverages ever reached during around a year of several experiments with our framework.
Human inspections of the source codes confirmed that all the other non-covered branches seem
either unfeasible or not reachable by any test sequence that is framed as we do in this paper.
Although these two arguments give strong support on the fact that those coverage values cannot
be exceeded by any search algorithm that uses a search space as the one described in this paper,
they do not constitute a proof.

4.1 Comparing the Search Algorithms

The different algorithms described in this paper have been tested on the cluster of seven containers
previously described. When an algorithm needs that some of its parameters should be set, exper-
iments on their different values had been done. Anyway, these parameters are optimised on the
entire cluster, and they remain the same when they are used on the different containers. Although
different tests on these values have been carried out, there is no guarantee that the chosen values are
the best. Regarding the parameters defined in section 2.2, we used N = −2, P = 58, δ = 0.1 and
α = 1.3. Random Search looks to sequences up to length 60. The cool rating in SA is set to 0.999,
with geometric temperature reduction and one iteration for temperature. The initial neighbour-
hood size is 3. The value of α in (21) is 0.5. The GA uses a single point crossover with probability
0.2. Mutation probability of an individual is 0.9. Population size is 64. Rank selection is used with
a bias of 1.5. At each generation, the two individuals with highest fitness values are directly copied
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to the next population without any modification (i.e., the elitism rate is set to two individuals for
generation). The MA uses a single point crossover with probability 0.9. Population size is 8. Rank
selection is used with a bias of 1.5. Elitism rate is set to one individual for generation.

Each algorithm has been stopped after evaluating 100, 000 sequences. The machine used for the
tests was a Pentium with 3.0 GHz and 1024 M of ram running Linux. The tests have been run under
a normal usage of the CPU. Table 3 reports the performances of these algorithms on 100 trials.
Using the same data, a Mann Whitney U test [30] has been used to compare the performances of the
different algorithms. The performance of a search algorithm is calculated using function (2). The
level of significance is set to 0.05. HC and SA are statistically equivalent on Hashtable. HC and
GA are equivalent on Stack, LinkedList and BinomialHeap. Finally, HC and MA are equivalent
on Stack, Vector, BinomialHeap and BinTree. If we compare table 3 with the highest achievable
coverages (reported in table 2), we will see that only TreeMap is difficult to test. Besides, from
that table and from the statistical tests the MA seems the best algorithm. A part from Vector,
it gives the best results on LinkedList, Hashtable, TreeMap and it is among the best algorithms
on the other containers. Moreover, the HC seems to have better performance than the GA. This
is a very interesting result, because usually local search algorithms are suggested of not being used
for generating test data [56]. Although the search spaces for software testing are usually “complex,
discontinuous, and non-linear” (J. Wegener et al. [56], 2001), the evidences of our experiments lead
us to say that it does not seem true for container classes. However, more tests on a bigger cluster
of containers and the use of different search algorithms are required.

Table 4 compares the performance of the MA when it is stopped after 10, 000 and 100, 000
fitness evaluations. A part from TreeMap, MA is able to get high quality results in a very short
amount of time.

The performances of the RS deserve some comments. In fact, they are sensibly worse than the
performances of the other algorithms. Although a reasonable coverage can be achieved, RS poorly
fails to obtain it without a long sequence of FCs. That can be explained by the fact that not only
the search landscape of the input parameters is large and complex, with only a small subset of it
that gives optimal results, but also the search space of the methods has similar characteristics. E.g.,
some methods need to be called few times (e.g., isEmpty) whereas others need to be called many
times (e.g., insert) to cover a particular branch. In a random search the probabilities of their
occurrences in the test sequence are the same, so we will have redundant presences of functions
that need to be called only few times. Moreover, the function calls require to be put in a precise
order, and obtaining a random sub-sequence with that order might be difficult if the total length
is too short.

4.2 Known limits

The system described in this paper is not able to generate input data for covering all the branch
statements in the source code of the CuT. This is due to different reasons:

• The system also tries to cover the branches in the private methods. Anyway, the generated
test sequences do not access directly to the private methods of the container. They can be
executed only if at least one public method can generate a chain of function calls to them.
Although using the Java reflection a driver can directly call private methods of the CuT,
besides the fact that a driver can be located inside the CuT, it has been preferred to test
directly only the public methods. It is possible to do assumptions on the semantics of the
public methods of a container (see section 2.2), but nothing can be said about the private
ones. Thus, the proposed space reduction techniques cannot be applied to them.

• the very few public methods with odd input parameters (11 on a total of 105 in our test
cluster) cannot be directly called. If they are not called by other methods, they will not be
tested.

• some methods can return objects which class is implemented inside the same file of the CuT
or even in the same method. For example, the method keySet in TreeMap returns a Set

which class is implemented inside keySet. Because the system does not call any method on
the returned objects of the tested methods, such internal classes cannot be tested.

• for a given test sequence, only one constructor is called. One option to solve this problem
might be to use multiple sequences, each one that uses a different constructor.

• some branches can be infeasible. This is a general problem that is not related to the used
testing system.
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4.3 Effects of the Novel Testability Transformation

The use of the testability transformation described in section 2.3 has been investigated. Besides
transforming the calls to equals, the semantics of compareTo is changed too. Table 1 shows
the number of such method calls in the cluster of the container that take advantage from the
transformation. Note that the used implementations of the BinTree and the BinomialTree do not
handle objects but integer values. This is why the above methods do not appear in them. For
TreeMap, it has also been considered the calls to the private method compare, because it includes
and replaces the calls to compareTo.

Tests on the different containers have been carried out. However, no particular improvements
on the performance of the algorithms have been found. That can be explained by considering
that the transformation is applied only to very few branches. Besides, these branches are “easy”.
I.e., they are covered without any problem even if no guidance has been given to the search algo-
rithms. However, that testability transformation gives no overhead to the computational cost of
the search. Therefore, it should always be applied, because there might be containers that have
difficult branches that depend on the equals and compareTo methods.

5 Related work

The previous work on Test Data Generation for container classes can be divided in two main groups:
one that includes traditional techniques based for example on symbolic execution, and a second
group that uses metaheuristic algorithms like the Genetic Algorithms.

Anyway, doing comparisons with systems developed by other authors is not easy in Software
Testing. In fact, there is no common benchmark cluster on which different authors can test and
compare their techniques [2]. Although the same classes (e.g., taken from the Java API) can be
considered for testing, instrumentations can be done in many different ways. Hence, if there is no
access to the instrumented files, no reasonable comparisons can be done, because how the coverage
is defined and which parts of the code are actually instrumented might be very different. Even
though some systems might have freely available source codes, a lot of effort might be required for
adapting a testing environment to handle different types of instrumentations. All these problems
make it difficult to evaluate the performance of a novel technique against existing ones.

5.1 Traditional Techniques

There have been different works focused on testing containers. Early works that use testgraph
analysis can be found in [32], but they require a lot of effort from the tester. In the same way,
techniques that exhaustively search a container up to size N [43] cannot be applied to a new
container without the help of the tester. In fact, the tester would be responsible for providing both
the generator and the test driver.

However, a Java container is a an Object-Oriented (OO) program. Therefore, any tool that
claims to automatically generate input data for an OO software should also work for a container.
Different experimental tools have been developed to automatically test OO software. The early
ASTOOT [17] generates tests from algebraic specifications of the functions. Korat [8] and TestEra
[31] use isomorphic generation of data structures, but need predicates that represent constraints
on these data structures. Rostra [59] uses bounded exhaustive exploration with concrete values.
On the other hand, tools that exploit the symbolic execution [25] include for example Symstra[60],
Symclat [15], the work of Buy et al. [9] and the model-checker Java PathFinder used for test data
generation [50]. Although promising results have been reported, these techniques are unlikely to
scale well. Besides, as clearly stated in [15], at the moment they have difficulties in handling non-
linear predicates, non-primitive data types, loops, arrays, etc. Although [50] can consider objects
as input, it needs to exploit the specification of the functions (in particular the precondition)
to initialise such objects. It is important to outline that our system does not need neither any
specification or any help from the user at all. It only needs to know that the CuT is a container.
Hence, any container from the Java API (for example) can be automatically tested without any
particular help from the user.

A work that is specific on container is [51]. Its source codes are freely available. That system is
built on Java PathFinder, and uses exhaustive techniques with symbolic execution. To avoid the
generation of redundant sequences, it uses state matching. During the exhaustive exploration, the
abstract shapes of the CuT in the heap are stored. If an abstract shape is encountered more than
once, the exploration of that sub-space is pruned. That system has the same problems that we
described in section 4.2. Besides, it does not handle object references. E.g., the authors of [51] use
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the Java API TreeMap implementation for some of their empirical tests, but they had to change all
of its code to replace the object “elements” with int values. They state that their system could
handle objects, but in that case they would have serious scalability issues. A comparison with
such system is not trivial, because three important rules for a fair comparison are not satisfied:
“competing algorithms would be coded by the same expert programmer and run on the same test
problems on the same computer configuration” (Barr et al. [6], 1995). E.g., when comparisons based
on time are done, the programming skills of the authors have an important role on the performance
of the implemented algorithms. Doing a completely fair comparison between our system and [51]
on the testing of the TreeMap (for example) was not possible for the following reasons:

• developing a testing environment requires a lot of time, and redeveloping [51] was unreason-
able.

• the problem under test is not exactly the same: we use the TreeMap version of Java without
any modification, and [51] does not. Besides, we consider the branch coverage when they
consider basic block and predicate coverage.

• the computer configurations used for the tests are different (although we could have run their
experiments again on our machine because their code is freely available).

However, we can highlight that our testing problem is more complex and our techniques obtains
competitive results in much less time. For example, in [51] only 2 public methods are tested for the
TreeMap, whereas we consider 17 public methods. Furthermore, their best predicate coverage is
obtained with a length of 20 and required more than four minutes to be obtained. In our problem,
we found our best coverage with sequences of length around 50. These sequences do not have any
redundant/useless FC inside, because a local search always converges to a local optimum. Because
the MA can be run for any arbitrary amount of generation, from table 4 we can see that it already
gets reasonable results after few seconds, and competitive results in around half a minute. Due
to the exhaustive nature of the techniques in [51] (although some heuristics to prune the search
space are employed), we are sceptical of the fact that they might handle problems so complex as
the one we address in this paper in a reasonable amount of time. Although the machine we used
for the empirical tests is slightly faster than the one used in [51], we are enough confident to claim
that meta-heuristic based techniques seem better than the techniques described in this section,
because more complex problems are solved in significantly less time. However, more experiments
are required to support this claim. Besides, hybrid approaches that take the best of the two worlds
might lead to even better results. Another point that we did not discuss is the use of testability
transformations. We only employed the one that we presented in section 5.1, but many others
could also have been applied, increasing the performances of the metaheuristics even further.

5.2 Metaheuristic Techniques

The use of search based techniques (e.g., GAs) for testing OO programs has started to be investi-
gated in the last few years.

Tonella [48] used GAs for generating unit tests of Java programs. Solutions are modelled as
sequences of function calls with their inputs and caller (an object instance or a class if the method
is static). Special crossover and mutation operators are proposed to enforce the feasibility of
the generated solutions. Similar work with GAs has been done by Wappler and Lammermann
[53], but they used standard evolutionary operators. This can cause the generation of infeasible
individuals, which will be penalised by the fitness function. Besides, they investigated the idea of
separately optimising the parameters, the function calls and the target instanced objects. Strongly
Typed Genetic Programming (STGP) has been used by Wappler and Wegener [55] for testing Java
programs. They extended their approach by considering the problem of the raised exceptions during
the evaluation of a sequence [54]. If an exception is thrown, the fitness will consider how distant
the method in which it is thrown is from the target method in the test sequence. In his master’s
thesis [46], Seesing investigated the use of STGP as well. Liu et al. [29] used a hybrid approach,
in which Ant Colony Optimisation is exploited to optimise the sequence of function calls. Multi-
agent Genetic Algorithm is used then to optimise the input parameters of those function calls.
Also Cheon et al. [12] proposed an evolutionary tool, but they implemented and tested only a
random search. They proposed to exploit the specification of the functions that return boolean
values to improve the fitness function [11]. It is important to highlight that, even if a testing tool
is designed for handling a generic program, container classes are often used as benchmarks. Our
system considers only containers and has some specific limitations that the systems described in
this section do not have (e.g., there is only one object instance on which the functions can be called
on). These limitations were introduced to do fairer comparisons with the traditional techniques
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described in section 5.1. Hence, comparing our system with the one described in this section would
not be very significant.

In our previous work [1], we proposed a novel representation with novel search operators and a
dynamic search space reduction for testing OO containers. The use of Estimation of Distribution
Algorithms on this problem has been investigated with a collaboration with Sagarna [45].

6 Conclusions

We presented search based test data generation techniques for containers. Search algorithms like
Random Search (RS), Hill Climbing (HC), Simulated Annealing (SA), Genetic Algorithms (GAs)
and Memetic Algorithms (MAs) have been applied. The objective of minimising the length of the
test sequences has been addressed as well. Because that minimisation can be misleading, discussion
on how and why a search algorithm can be deceived has been presented, besides how to avoid it.
Search space reductions and a novel testability transformation have also been presented. Although
different settings of the algorithm parameters can lead to different results, it has been empirically
shown that our MA usually performs better than the other algorithms. Moreover, the HC resulted
better than the GA. That can seem strange, because local search algorithms are suggested of not
being used for generating test data [56]. Although the MA performs well on all the tested classes,
the results on TreeMap are not completely satisfactory. That leads us to investigate new algorithms
and new ways to improve their performance in the future.

Besides presenting a working system, we emphasise the need of comparing different search
algorithms for a given software engineer problem. Too often, in the literature, there is a bias
toward GAs. Although GAs have been applied successfully to a wide range of different problems,
that does not necessarily mean that they will work well on a new problem [57]. The Search Based
Software Engineering field is still too young for deciding what is the best search algorithm that
should be applied to it. Regarding testing OO software, nature inspired algorithms seem to be
better than the techniques based on symbolic execution and state matching, because they seem
able to solve more complex test problems in less time.

The approach of trying to cover every branch at the same time with a single sequence is novel
for the search based testing. Therefore, its performance needs to be compared to the traditional
approach of testing each branch separately. Future work will try to shed light on which technique
is better and why.

The discussed techniques have been applied to testing containers. If they are still valid and how
to use them for testing generic OO software is a matter that needs to be investigated.
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Container Transformations

Stack 0
Vector 2
LinkedList 3
Hashtable 5
TreeMap 5
BinTree 0
BinomialHeap 0

Table 1: For each container in the tested cluster, the number of times that the novel transformation
can be successfully applied is reported.

Container LOC FuT Achievable Coverage

Stack 118 5 10
Vector 1019 34 100
LinkedList 708 20 84
Hashtable 1060 18 106
TreeMap 1636 17 191
BinomialHeap 355 3 79
BinTree 154 3 37

Table 2: Characteristics of the containers in the test cluster. The lines of code (LOC), the number of
the public functions under test (FuT) and the achievable coverages for each container are reported.

Container Search Algorithms Coverage Length

Mean Variance Median Mean Variance Median

Stack Random 10.00 0.00 10.00 6.64 0.41 7.00

Hill Climbing 10.00 0.00 10.00 6.00 0.00 6.00

Simulated Annealing 10.00 0.00 10.00 6.06 0.06 6.00

Genetic Algorithm 10.00 0.00 10.00 6.00 0.00 6.00

Memetic Algorithm 10.00 0.00 10.00 6.00 0.00 6.00

Vector Random 85.21 1.52 85.00 56.99 7.73 58.00

Hill Climbing 100.00 0.00 100.00 47.67 1.05 48.00

Simulated Annealing 99.99 0.01 100.00 45.76 1.11 46.00

Genetic Algorithm 99.99 0.01 100.00 46.87 1.63 47.00

Memetic Algorithm 100.00 0.00 100.00 47.89 2.64 48.00

LinkedList Random 69.96 1.82 70.00 55.27 14.00 56.00

Hill Climbing 84.00 0.00 84.00 38.48 10.27 38.00

Simulated Annealing 82.47 2.25 82.50 33.60 5.29 33.50

Genetic Algorithm 83.83 0.26 84.00 36.66 3.64 36.00

Memetic Algorithm 84.00 0.00 84.00 36.43 3.58 36.00

Hashtable Random 92.92 1.17 93.00 54.45 25.97 56.00

Hill Climbing 106.00 0.00 106.00 35.25 0.19 35.00

Simulated Annealing 105.84 0.74 106.00 34.98 0.77 35.00

Genetic Algorithm 101.14 6.50 100.00 31.10 6.31 30.00

Memetic Algorithm 106.00 0.00 106.00 35.01 0.01 35.00

TreeMap Random 151.94 5.85 152.00 54.11 26.87 55.00

Hill Climbing 188.76 0.71 189.00 51.23 10.08 51.00

Simulated Annealing 184.19 5.75 185.00 40.68 5.88 41.00

Genetic Algorithm 185.03 3.46 185.00 42.14 8.44 42.00

Memetic Algorithm 188.86 0.65 189.00 50.55 10.31 50.00

BinomialHeap Random 77.52 0.29 77.50 47.08 100.24 47.50

Hill Climbing 77.96 0.48 78.00 24.05 34.86 25.00

Simulated Annealing 76.41 0.24 76.00 16.02 41.84 14.00

Genetic Algorithm 77.70 0.92 77.00 19.08 24.54 16.00

Memetic Algorithm 77.66 0.87 77.00 18.65 24.61 15.00

BinTree Random 37.00 0.00 37.00 26.86 15.39 27.00

Hill Climbing 37.00 0.00 37.00 9.02 0.02 9.00

Simulated Annealing 36.98 0.02 37.00 9.38 0.40 9.00

Genetic Algorithm 37.00 0.00 37.00 9.21 0.21 9.00

Memetic Algorithm 37.00 0.00 37.00 9.00 0.00 9.00

Table 3: Comparison of the different search algorithms on the container cluster. Each algorithm has
been stopped after evaluating up to 100, 000 solutions. The reported values are calculated on 100 runs
of the test. Mann Whitney U tests show that the MA has the best performance on all the containers
but Vector.
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Container Fitness Average Average Time
Evaluations Coverage Length (seconds)

Stack 10k 10.00 6.00 0.29
100k 10.00 6.00 2.80

Vector 10k 99.50 73.70 8.89
100k 100.00 47.89 78.58

LinkedList 10k 83.60 50.60 2.22
100k 84.00 36.43 17.41

Hashtable 10k 105.90 36.10 1.31
100k 106.00 35.01 11.75

TreeMap 10k 184.90 47.40 3.00
100k 188.86 50.55 28.83

BinomialHeap 10k 77.30 19.10 1.87
100k 77.66 18.65 16.22

BinTree 10k 37.00 9.30 0.18
100k 37.00 9.00 1.49

Table 4: Performance of the Memetic Algorithm on the test cluster.
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