Coevolving Programs and Unit Tests from their
Specification

Andrea Arcuri and Xin Yao
The Centre of Excellence for Research
in Computational Intelligence and Applications (CERCIA)
The School of Computer Science
The University of Birmingham
Edgbaston, Birmingham B15 2TT, UK

{A.Arcuri,X.Yao}@cs.bham.ac.uk

ABSTRACT

Writing a formal specification before implementing a pro-
gram helps to find problems with the system requirements.
The requirements might be for example incomplete and am-
biguous. Fixing these types of errors is very difficult and
expensive during the implementation phase of the software
development cycle. Although writing a formal specification
is usually easier than implementing the actual code, writ-
ing a specification requires time, and often it is preferred,
instead, to use this time on the implementation.

In this paper we introduce for the first time a framework
that might evolve any possible generic program from its
specification. We use the Genetic Programming to evolve
the programs, and at the same time we exploit the specifi-
cations to coevolve sets of unit tests. Programs are rewarded
on how many tests they do not fail, whereas the unit tests
are rewarded on how many programs they make fail. We
present and analyse four different problems on which this
novel technique is successfully applied.

Categories and Subject Descriptors

D.1.2 [Software Engineering]: Automatic Programming;
D.2.5 [Software Engineering]: Testing and Debugging;
1.2.8 [Artificial Intelligence|: Problem Solving, Control
Methods, and Search

General Terms

Algorithms, Experimentation

Keywords

Automatic Programming, Coevolution, Software Testing, Ge-
netic Programming, Formal Specification, Sorting

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

ASE’'07, November 5-9, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-882-4/07/00185.00.

397

1. INTRODUCTION

Since the 1950s the goal of generating programs in an
automatic way has been sought. A user would just define
what he expects from the program (i.e., the requirements),
and it should be automatically generated by the computer
without the help of any programmers. This goal has opened
a field of research that is called Automatic Programming.
Unfortunately, this task is much harder than expected [11].
Transformation methods are what are usually employed to
address this problem. The requirements need to be written
in a formal specification, and sequences of transformations
are used to transform these high-level constructs to low-level
implementations. Unfortunately, this process can rarely be
completely automated, because the gap between the high-
level specification and the target implementation language
might be too wide.

Software Testing is used to find the presence of bugs in
computer programs [9]. If no bugs are found, testing cannot
guarantee that the software is bug-free. However, testing
can be used to increase our confidence in the software reli-
ability. Unfortunately, testing is expensive, time consuming
and tedious. It is estimated that testing requires around
50% of the total cost of software development. Automat-
ing the testing phase is an important goal that is greedily
sought. Search based techniques have been applied to tackle
this task with promising results [8].

Genetic Programming (GP) [6] is a paradigm to evolve
programs. A genetic program can be often seen as a tree, in
which each node is a function whose inputs are the children
of that node. A population of programs is held at each gen-
eration, where individuals are chosen to fill the next pop-
ulation accordingly to a problem specific fitness function.
Crossover and mutation operators are than applied on the
programs to generate new offspring. GP has been princi-
pally applied to solve real-world learning problems.

In this paper we present a novel framework for automat-
ically generating programs from a formal specification. A
population of candidate programs coevolves with a popu-
lation of unit tests. GP is used to evolve the candidate
programs, whereas search based software testing techniques
are employed to evolve the unit tests. The fitness values
of the candidate programs depend on how many tests they
do not fail, whereas the unit tests are rewarded based on
how many programs they make fail. The programs are pres-
sured to evolve to fix the bugs that the current unit tests
find in them, while the unit tests are pressured to find new



bugs. A set of problems is used to validate the novel frame-
work. Although coevolutionary algorithms are not novel, in
this paper for the first time a formal specification is used
to automatically create the fitness functions. This makes it
possible to apply this framework to any problem that can
be defined with a formal specification.

The paper is organised as follows: section 2 describes the
characteristics of the problem. In section 3 there is explained
how the coevolution is applied. A case study for validating
the novel framework follows in section 4. A description of
the related work can be found in section 5. Finally, section
6 concludes the paper.

2. EVOLUTION OF THE PROGRAMS

Given a specification of a program P, the goal is to evolve
a program that satisfies it. To achieve this result, GP is
employed. At each step of the evolution of GP, the fitness
of each program is evaluated on a finite set T of unit tests
that depends on the specification. The more unit tests a
program is able to pass the higher the fitness value will be
rewarded. This set T' should be relatively small, otherwise
the computational cost of the fitness function would be too
high.

The set T is different from a normal training set. Let X
be the set of all the possible input variables for P, and Y be
the set of all the possible output. Given any input variable
z € X, we do not have the expected value y* = p*(x), with
p* being the optimal program that we want to evolve and
y* € Y being the expected result for the input z. Hence,
a unit test t € T instead of being seen as a pair < z,y" >
(as a typical element of a training set would be), is a pair
< z,c >, where ¢ is a function ¢(z,y) : X, Y — R. The
function ¢ gives in output a value of 0 if y is equal to y*,
otherwise a real positive value that expresses how different
the two results are. A higher value means a bigger difference
between the two results. Because the function c is the same
for each t € T', we can simplify the notation by considering
only the input x for a unit test. In other words, t € X
and T C X. A program g € G, where G is the set of
all the possible programs, is said to pass a test t € T iff
e(t, g(t)) = 0.

How to automatically derive the function ¢ will be ex-
plained later in this section. It is important to note that
the function c¢ is not required to be able to compute the ex-
pected result y* for an input z. Being able to state whether
a particular result k is correct for an input z (i.e., k = y*) is
enough. That can be done even without knowing the value
of y*. However, we introduce here an example to clarify
this concept. Assume that P is a sorting algorithm that
takes as input an array of integer and sorts it. Given as in-
put an arbitrary array * =< 4,3,2,1 >, if the output of g is
y =< 1,4,2,3 >, we will not need to know p*(x) to conclude
that g(z) # p*(x), because y is not sorted. We can conclude
that an array is not sorted by looking at the specification of
the sorting algorithm. In this particular case, we have a 4
before a 2, which is enough to conclude that the array is not
sorted. Although a specification can state whether an array
is sorted or not, it cannot say how to sort it.

At any rate, the scenario described in this paper is very
different from the normal applications of GP:

e the training set T can be automatically generated with
any cardinality. There is no need of any external entity

398

that, for a given set of x, says which are the relative

yr.

e usually, because there is available only a limited num-
ber of pairs < z,y* >, all of them are used for the
training. On the other hand, in our case we have the
problem of choosing a subset T', because using the en-
tire X is generally not feasible.

e the training set 7" does not contain any noise.

e we are not looking for a program that on average per-
forms well, but we want a program that always gives
the expected results. E.g., Vz € X o g(x) = p*(z).
Hence, a program does not need to worry about over-
fitting the training set, it has to over-fit it. In fact,
even if only one test in T is failed that means that the
specification is not satisfied.

2.1 Fitness Function for the Programs

At each step/generation 4 of the coevolution, the current
population of genetic programs G; is executed on the test
set T;. The fitness of each g € GG; is based on its ability to
pass the unit tests in 7;. It is a minimisation problem. If
a g passes all the tests, it will have f(g) = 0. Otherwise,
we will have a score that represents how badly the program
breaks the specification. In other words, if the predicate
of the specification is true, we will get zero, otherwise we
will get a score as higher as the predicate is far from being
evaluated as true. Formally:

f(9) (1)

S d(Pg(t)) -

teT;

The distance function d calculates how far the result R =
g(t) is from satisfying the post-condition P of the specifi-
cation. Such a distance is the same one employed in [12]
for Black Box Testing. The difference is only on what it is
applied to. In that work the pre-condition of the function is
conjuncted with the negated post-condition. The distance
is applied on that predicate. A distance value 0 means that
a fault that breaks the specification is present for the input
t. On the other hand, in this paper we use this distance di-
rectly on the post-condition. A distance value 0 means that
the post-condition is true, so the program is correct for that
particular input ¢. In other words, to calculate d(P,g(t))
the program g is executed with input ¢ and then the result
R is compared against the post-condition P to see whether
the result is correct or not.

A problem with GP is bloat, i.e., the increasing of the size
of the programs with redundant or not useful code. Par-
simony controls might be used to limit this problem (e.g.,
including in the fitness function a penalty term based on
the size of the program). However, in our particular case,
parsimony can be deceptive. In fact, although during the
evolution of the programs the optimum p* can be evolved,
even if elitism is used in the GP evolution, p* can be lost.
For example, if a g, is not optimal, smaller than p* and
able to pass all the tests in the current population of tests,
then g, will be preferred to p* although it is not optimal. It
is noteworthy that such a behaviour would not happen in a
usual coevolutionary algorithm, in which the fitness value of
an individual is solely based on interactions with the oppo-
site populations. The use of archives might help to handle
this problem.



3. COEVOLUTION

Choosing a good training set T is not easy. An ideal set
T* would be one that, if a program g € G passes all the
unit tests ¢ € T™, then it is guaranteed that it will pass
all the tests in X. That means that if g completely fits
the data in the training set, then it is guaranteed that g
is correct. A trivial set that satisfies such a constraint is
T = X. However, the set should be as small as possible,
otherwise the computational cost of the fitness function of
g would be too high.

The problem is that finding such an optimal T # X is
impossible, because in the set G of all possible programs
there is always at least one program that fits all the data in
this hypothetical T*, and can have, for example, a special
“if” statement based on the value of a ¢t € X \ T that
makes the program fail on that test t. Although the use of a
limited set of primitives (e.g., without “if”) might not yield
this problem, this is not true in the general case. At any
rate, even if an optimal T existed, there is no guarantee
that the GP will be able to evolve a program that fits all
the data in T*. However, a good strategy for choosing a
training set T is needed, because the performance of the
GP depends on it. In the following, we describe the use of
coevolution to find T.

Because the elements t of a training set can be automat-
ically generated, we can use a different training set 7; at
each different generation ¢ of the GP. To simplify the follow-
ing discussions, we assume that GP maintains a population
with only one program g; during generation . A unit test on
which g; fails gives more information to assist the evolution
of g; than a passed unit test. In fact, if a test ¢ is failed,
the program g is evolved until it passes it (or until the GP
has been stopped). In the case in which all the unit tests
are passed, g; is not able to evolve any further. If T' £ T,
the program is not necessarily correct and there is no more
guidance to its evolution. Hence, the idea is to let the test
set T; coevolve with the program g;, with the aim being to
give to g at each generation a set of tests that it is not able
to pass yet. Let N; be the set of all the possible unit tests at
generation ¢ for which g; passes, and F; be the set of tests for
which it fails. We have N; C X, F; C X and N; U F; = X.
A strategy S is used to choose the next T;+1 from T; and
gi. A reasonable strategy would be one that generates new
unit tests that the current g; will fail. Given:

V(i t) = { ’ (2)

we can formulate the choice of the strategy as an optimi-
sation problem, in which the fitness to maximise is:

ift e N;_1 s
ifte F;_4 s

18) =3 3w, 3)

i=0 teU;

where H is the number of the allowed generations for the
GP, and U; C T; is the largest subset of T; in which all
the elements are unique. For the sake of clarity, the car-
dinality of the training sets T; does not change during the
search, and there can be redundant unit tests in a 7T;. We
employ the coevolution of programs and their unit tests to
solve this optimisation problem. However, it is important
to remember that the goal is to evolve a program g¢*, not
to find the best sequence of T;. Finding this sequence is a

399

secondary task that is addressed because it will help to solve
the principal problem.

Even if the best strategy S™ is used, none of the T; will be
the optimal T (that usually does not exist). Furthermore,
not only using S™ does not imply that g* will be evolved
and not only it is true that ¢g* might be evolved with a sub-
optimal strategy, but it might even happen that S* forbids
such an evolution. An example will help to clarify this state-
ment: consider a boolean function that takes as input one
integer and says whether it is positive or not. The program
¢ returns always true, whereas g¢ returns always false. For
simplicity we consider a training set of size 2. If all elements
in T} are positive, the GP might evolve ¢* for g;, and that
completely fits the data. At the next generation, the set
Ti+1 in which all the elements are negative makes g; fails
all the tests, hence it optimises function (3). Then, the GP
might evolve g7 for gi11, and that, again, completely fits the
data. The system can go on in this way, switching the train-
ing set from all positive to all negative, with the GP that
always evolves either g or gf. This strategy is optimal re-
garding function (3), but it is obviously not a good strategy.
A strategy that at each generation would generate T; with
both positive and negative values would give much better
results. The choice of a strategy depends on the particu-
lar solution concept [2] that we want to optimise. However,
usually we do not know which are the underline objectives
of a problem. Moreover, although a g; can pass all the unit
tests in T}, usually there is no guarantee that any g; with
j > i will be able to do the same. Hence, function (3) cap-
tures some desired properties that we want from a strategy,
but it is not enough. For example, keeping in 7; some pre-
vious passed tests might help to prevent the devolution of
the programs g;.

In literature, this problem of continue changing of the fit-
ness landscape and memory loss is named the Red Queen
Effect [10]. Archive methods have been proposed to handle
it, with a lot of effort spent on designing algorithms that
guarantee a monotonic improvement of the results [5]. An-
other problem in coevolutionary algorithms is for example
the loss of gradient.

The simplest strategies are generating each 7; at random
or generating only one set at random and using it for all the
training. Although these two techniques might sound naive,
they are often employed in literature.

When a coevolution is employed, for each t € T; is cal-
culated a fitness value. A fitness function is used to reward
unit tests that the programs in the current population G;
have difficulties in passing. In contrast to function (1), this
is a maximisation problem. A value of 0 means that all the
programs in GG; pass the test . The fitness function is:

flty =Y d(Pg(t) .

geG;

(4)

It is important to outline that the distances d(P, g(t)) are
the same used for function (1). Hence, they are calculated
only once, and then they are used for both the fitness func-
tions.

Once the fitness function is calculated for each test in T;,
a Genetic Algorithm [4] is employed to evolve the next test
set Tit1.



Programs Random | Coevolution
Sorting 75 62
MaxValue 11 88
MaxOccurrence 61 52
AllEqual 54 74

Table 1: Number of evolved programs on a total of
100 that are correct.

4. CASE STUDY

To validate our approach, we considered four different
functions that take as input an array: the sorting of the
array (Sorting), the search of the highest value (MazValue),
the search of the highest occurrence (MazOccurrence) and
testing whether all the elements are identical (AllEqual).
Due to space limitations we are not able to provide here
their formal specifications.

For evolving the programs, the open source library ECJ
[7] has been employed. The population size of the programs
is 1024, whereas the population size of the test cases is 32.
The allowed generations are 100. Each 5 generations, the
test cases are separately evolved for 1024 generations using
only the current best program for the fitness function. In
this special case, no program evolves. For each problem,
100 experiments were carried out. Table 1 shows how many
time a correct program was found. Again, due to space
limitations we cannot provide full details of the experiments.

On Sorting and MaxOccurrence, coevolution gives worse
results than a random choice of the test cases. This is due
to the fact that we used only a simple coevolutionary algo-
rithm, which performance can be improved for example by
using archives and speciation. However, we get significant
improvements on both MaxValue and AllEqual.

5. RELATED WORK

To the best knowledge of the authors, no previous work
on coevolving programs with test cases using a formal spec-
ification exists. However, in literature there is some work
that somehow is related to the problem addressed in this
paper.

In 1990, Hillis investigated how to evolve a sorting net-
work [3]. It modelled the task as an optimisation problem,
in which the goal is to find a correct sorting network that
does as few comparisons of the elements as possible. It used
evolutionary techniques to search the space of the sorting
networks, where the fitness was based on a finite set of tests
(i.e., sequences of elements to sort): the more tests a net-
work was able to correctly pass, the higher fitness it got. For
the first time, Hillis investigated the idea of coevolving such
tests with the networks. His experiments showed that, when
the coevolution was used, shorter networks were found.

Evolving a sorting algorithm has been already attempted
in the past (e.g.,[1]). However, none of those attempts deal
with the issue of creating the best training set. Furthermore,
in those cases the sorting problem is used only as an example
in which different features and problematics of GP could be
studied. Their goal is not to build up a system able to
automatically generate different types of software.

400

6. CONCLUSION

Evolving programs from their specifications is a charm-
ing field that this paper addresses for the first time. This
goal is here achieved by a coevolution of genetic programs
and unit tests. Although the work presented in this paper
is in a preliminary state, it gives to the Natural Computa-
tion and Software Engineering communities the important
contribution of showing that this approach is feasible.

At any rate, a lot of research questions are still unan-
swered and need to be investigated in the future. The main
question is whether this approach might scale to real-world
software. Although our experiments on four non-trivial prob-
lems were successful, at the current state of our research
we are not able to state whether the fitness functions that
are automatically generated from the specifications can give
enough gradient for evolving real-world software.

7. ACKNOWLEDGEMENTS

This work is supported by an EPSRC grant (EP/D052785/-
1). The authors wish to thank Damien Jade Duff for the
useful discussions.

8. REFERENCES

[1] A. Agapitos and S. M. Lucas. Evolving modular
recursive sorting algorithms. In Proceedings of the
European Conference on Genetic Programming
(EuroGP), pages 301-310, 2007.

S. G. Ficici. Solution Concepts in Coevolutionary
Algorithms. PhD thesis, Brandeis University, 2004.
W. D. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Physica D,
42(1-3):228-234, 1990.

J. H. Holland. Adaptation in Natural and Artificial
Systems, second edition. MIT Press, Cambridge, 1992.
E. D. Jong and J. Pollack. Ideal evaluation from
coevolution. Evolutionary Computation,
12(2):159-192, 2004.

J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. The MIT Press, 1992.

S. Luke. Issues in Scaling Genetic Programming:
Breeding Strategies, Tree Generation, and Code Bloat.
PhD thesis, University of Maryland, 2000.

P. McMinn. Search-based software test data
generation: A survey. Software Testing, Verification
and Reliability, 14(2):105-156, June 2004.

G. Myers. The Art of Software Testing. Wiley, New
York, 1979.

J. Paredis. Coevolving cellular automata: Be aware of
the red queen. In T. Back, editor, Proceedings of the
Seventh International Conference on Genetic
Algorithms (ICGA97), San Francisco, CA, 1997.
Morgan Kaufmann.

C. Rich and R. C. Waters. Automatic programming:
myths and prospects. Computer, 21(8):40-51, 1988.
N. J. Tracey. A Search-Based Automated Test Data
Generation Framework for Safety-Critical Software.
PhD thesis, University of York, 2000.

(11]

(12]



