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Abstract

Nowadays, Object-Oriented (OO) languages are widely
used in the development of many different kinds of appli-
cations. However, testing those applications is still very
expensive and time-consuming for the software community.
The automation of this task would therefore be highly de-
sirable. Although automatic testing of procedural software
has been studied in depth for many years, comparatively lit-
tle work has been done about OO software. Different tech-
niques exist. However, the most promising one is probably
to model the task as a Search Problem.

This paper explains why automatic testing of OO soft-
ware is more difficult than procedural software. These dif-
ficulties provide strong challenges to the Natural Computa-
tion and Software Engineering communities. A brief review
of the literature of the subject follows. The issues of the cur-
rent State-of-Art of the field are then outlined. Finally, some
open research problems are discussed.

1 Introduction

Software Testing is used to find the presence of bugs in
computer programs [23]. If no bugs are found, testing can-
not guarantee that the software is bug-free. However, testing
can be used to increase our confidence in the software reli-
ability. Unfortunately, testing is expensive, time consum-
ing and tedious. It is estimated that testing requires around
50% of the total cost of software developing [4]. This cost
is paid because Software Testing is very important. Releas-
ing bug-ridden, non-functional software is an easy way to
lose customers. Besides, bugs should be discovered as soon
as possible, because fixing them when the software is in a
late stage of development is much more expensive than at
the beginning. For example, in the U.S.A it is estimated that
every year around $20 billion could be saved if better testing
was done before releasing new software [27]. Therefore, a

system that can automatically generate tests could save bil-
lions for the software industry.

Among the adequacy criteria, White Box Testing is one
of the most widely known. It depends only on the source
code. A formal specification of the software is not needed.
Given a coverage criterion (e.g., statements coverage), the
problem of Test Data Generation consists in finding a suit-
able set of data that results in the highest possible coverage
when given as input to the functions under test. This data is
used to create drivers that call the functions under test with
them as input, and the results are then compared against an
Oracle.

Different techniques have been developed to automate
this task (e.g., Symbolic Execution [16]). For a broad sur-
vey see [19, 13]. However, the one that seems to be the most
promising is to model the task as a Search Problem [14, 10].
In such a case, well known metaheuristics like Genetic Al-
gorithms (GAs) [15] can be employed to solve the problem.
GAs have been widely used with promising results. How-
ever, in the Search Based Software Engineering community
there seems to be a strong bias in favour of the GAs. This
bias may not be warranted, considering that no search al-
gorithm is better than any other over all search problems
[38]. Hence, because Search Based Software Engineer-
ing is a new area of research, several search algorithms
should be analysed and compared, rather than just using the
most popular one. In the recent years, in fact, other meta-
heuristics like Memetic Algorithms (MAs) [21] and Esti-
mation of Distribution Algorithms (EDAs) [22] have been
reported to achieve better results in some empirical experi-
ments [33, 2, 24]. However, the Search Based Software En-
gineering field is still too young (i.e., not enough research
has been done yet) to decide which is the best search algo-
rithm that should be applied to it.

Although much research has been done on the automa-
tion (not only the search based one) of Test Data Genera-
tion of procedural software, little is known about the testing
of Object-Oriented (OO) software with search based tech-



niques. This is a problem, because “academic research in
software testing can and does have relevance to industrial
applications” (M. Boshernitsan et al. [5], 2006). At the mo-
ment, a system that can generate an optimal set of tests for
any generic OO program in an automatic way has not been
developed yet. Many issues still need to be addressed and
solved. Therefore, more research in this field is needed.

Section 2 describes the difficulties of automating the test-
ing of Object-Oriented Software. A brief survey on the cur-
rent state of the art of this field follows in Section 3. Section
4 shows the open problems that still need to be solved and
future research directions. Finally, the conclusion of the pa-
per can be found in Section 5.

2 Testing OO Software

Testing Object-Oriented Software (OOS) requires more
efforts than testing Procedural Software (PS) [3]. This hap-
pens because special features of the OO paradigm like en-
capsulation, inheritance and polymorphism, make the test-
ing phase harder. A typical example is when a new subclass
is introduced: all the inherited methods of the superclass
need to be retested again in the new context. In this paper
we focus on Test Data Generation (TDG), i.e., our aim is to
find a test suite that gives the best coverage. Without loss of
generality, we consider Java as an example of OO language
and C as an example of procedural language.

The State Problem in PS testing [20] is hard to han-
dle. Functions can have an internal state (e.g., static vari-
ables in the C programming language) that might need to
be put in a particular configuration if we want to cover a
precise branch. If the system does not have a direct access
to this state, a sequence of function calls is needed to put
the internal state in the wanted configuration. How to find
this sequence is a difficult task that complicates the testing.
In OOS there is the same problem, but usually the states
are more complex (e.g., Red-Black Trees). Hence, simple
techniques that might reasonably work for PS will not be
enough for handling OOS. More sophisticated techniques
need to be developed. However, it is important to outline
that it is possible to have very complicated states in PS. Fur-
thermore, we can use OO languages like Java for creating
PS style programs (e.g., all static functions with no internal
state and no objects at all). At any rate, usually this does
not happen. A statistical analysis of a very large amount of
software would help to support this claim, but it is beyond
the scope of this paper.

Information Hiding, besides complicating the state prob-
lem, also makes the choice of the input parameters for the
tested function more difficult. In fact, these parameters can
be object references that might need to be put in a particular
state. If the state is hidden, we need to call some functions
on these parameters to put them in the desired state. This

is an issue that does not arise in PS. In PS, a function’s in-
put might be a very complex data structure, but its state is
open and easier to manipulate [31]. Besides, it might hap-
pen that an object cannot be directly instantiated (e.g., if the
singleton design patter is used) or it is necessary that such
an object instance has to be returned by a function call (e.g.,
that function belongs to another class which uses its hidden
internal state and/or internal private classes to initialise the
new object instance). Again, this does not happen in PS.
Also covering branches in private methods is not easy. In
fact, several public methods may lead to the execution of
the same private function, and a search through these meth-
ods and their input parameters needs to be done, because
maybe only one of these methods calls the private one with
the right parameters.

Polymorphism is widely used in OO software. Unfor-
tunately, this makes the exploitation of static source code
analyses difficult (if not impossible). Besides, it enlarges
the search space of the input parameters of the functions.
E.g., if a Java function takes in input a reference to the ab-
stract class “Object”, all the classes in the system and in all
the support libraries are possible candidates.

The presence of external libraries, the source code of
which is not available, is a problem for testing in any type
of software. Statistically showing that this situation arises
more often in OOS is beyond the scope of this paper. How-
ever, it is not rare that the class under test extends an ex-
ternal class. This may make the automation of the testing
phase very hard.

Other features of the OO paradigm (e.g., templates and
exceptions) may complicate the testing even further.

3 The State of Art

Different experimental tools have been developed to au-
tomatically test OO software. The early ASTOOT [12]
generates tests from algebraic specifications of the func-
tions. Korat [6] and TestEra [18] use isomorphic generation
of data structures, but need predicates that represent con-
straints on these data structures. Rostra [39] uses bounded
exhaustive exploration with concrete values. On the other
hand, tools that exploit the symbolic execution [16] include
for example Symstra [40], Symclat [11], the work of Buy et
al. [7] and the model-checker Java PathFinder used for test
data generation [29]. Although promising results have been
reported, these techniques are unlikely to scale well when
handling complex data structures is required [30]. Besides,
as clearly stated in [11], at the moment they have difficulties
in handling non-linear predicates, non-primitive data types,
loops, arrays, etc.

Due to all these limitations, the use of search based opti-
misation techniques for testing OO programs has started to
be investigated in the last few years. Tonella [28] used Ge-



netic Algorithms for generating unit tests of Java programs.
Solutions are modelled as sequences of function calls with
their inputs and caller (an object instance or a class if the
method is static). Special crossover and mutation operators
are proposed to enforce the feasibility of generated solu-
tions. Empirical tests were carried out on six classes taken
from the Java API.

Similar work with GAs has been done by Wappler and
Lammermann [34], but they used standard evolutionary op-
erators. This can cause the generation of infeasible individ-
uals, which will be penalised by the fitness function. Be-
sides, they investigated the idea of separately optimising
the parameters, the function calls and the target instanced
objects. Coverage tests were done on a class comprising 27

lines of code. Three classes from the Java API were used
to test their criteria for evaluating the inconvertible individ-
uals. However, they did not provide any coverage measure-
ment.

Strongly Typed Genetic Programming (STGP) has been
used by Wappler and Wegener [36] for testing Java pro-
grams. Tests were carried out on four different container
classes. They extended their approach by considering the
problem of the raised exceptions during the evaluation of
a sequence [35]. If an exception is thrown, the fitness will
consider how distant the method in which it is thrown is
from the target method in the test sequence. Their test clus-
ter had less than 50 lines of code.

In his master’s thesis [26], Seesing investigated the use
of STGP as well. Experiments were carried out on five dif-
ferent classes.

Liu et al. [17] used a hybrid approach, in which Ant
Colony Optimisation is exploited to optimise the sequence
of function calls. A Multi-agent Genetic Algorithm is used
then to optimise the input parameters of those function
calls. Empirical tests were carried out on two data struc-
ture classes.

Also Cheon et al. [9] proposed an evolutionary tool, but
they implemented and tested only a random search. No em-
pirical tests were reported. They proposed to exploit the
specification of the functions that return boolean values to
improve the fitness function [8]. Again, no details of the
empirical tests were reported.

Our work [1, 2, 25] has focused on the testing of Con-
tainer Classes (e.g., Vector, Stack and Red-Black Tree).
Besides analysing how to apply different search algorithms
(Random Search, Hill Climbing, Simulated Annealing, Ge-
netic Algorithms, Memetic Algorithms and Estimation of
Distribution Algorithms) to the problem and exploiting the
characteristics of this type of software to help the search,
we introduced more general techniques that can be applied
to any OO software. E.g., we proposed an improved branch
distance that solves an issue regarding the evaluation of con-
junctions of predicates [2]. Our test cluster was composed

of up to seven container classes, for a total of over 5000

lines of code.
There are several issues in the current State of Art of Test

Data Generation for Object-Oriented Software:

• Only little work has been done using optimisation al-
gorithms.

• Empirical tests have always been done on very small
clusters of classes. This reduces the reliability of the
results.

• There is no common benchmark cluster on which dif-
ferent authors can test and compare their techniques.
This makes it difficult to evaluate the performance of a
novel technique against existing ones.

• Apart from Random Search, usually there are no com-
parisons between different optimisation algorithms on
the testing of the same classes.

• There is no theoretical work on test data generation for
OO software. All articles are of empirical nature.

A commercial tool that automatically generates unit tests
for Java programs is Agitator [5]. At the moment of writ-
ing this paper, it does not use any optimisation algorithm.
It would be interesting to know with which degree it is suc-
cessfully used by its customers. However, some big com-
panies might have developed their own in-house automatic
testing tool (e.g., Daimler-Chrysler). As it is true that in-
dustrial products are influenced by academic research [5],
it is true as well that the academics can take advantages
from these industrial experiences. In fact, academics need
to know what are the real world problems and their difficul-
ties to understand what are the important issues that need to
be solved.

4 Future work

Test Data Generation is a vast subject that has not been
sufficiently explored. This is particularly true in the case
of Object-Oriented (OO) software. Although many open
research questions are still in need of an answer, we found
three points of particular interest that we want to investigate
at the moment:

• In procedural software, the use of local search algo-
rithms (e.g., Hill Climbing) has often been ignored be-
cause the search landscape has always been considered
too “complex, discontinuous, and non-linear” (J. We-
gener et al. [37], 2001). Although the test clusters
were relatively small, recent research shows that ex-
ploiting local search gives good results [33, 1, 2]. This
leads us to investigate different types of local search



and how to integrate them in global search algorithms
such as Memetic Algorithms.

• Although they were considered as one of the main
points to be addressed [14], analyses of fitness land-
scapes have not received much attention in the Search-
Based Software Engineering community (we are aware
only of one example [32]). We think that such analyses
are important to obtain a deeper understanding of the
problem. This will help us to design and tune novel,
more efficient search algorithms for the Test Data Gen-
eration task. A comparison between the search land-
scapes of procedural and OO software will help us un-
derstand if the techniques that have been studied and
applied for many years on the former will be still valid
for the latter. A priori, we know that OO software is
more difficult to test, but we do not know how much
more difficult it is. Numerical analyses of the search
landscapes may help to answer this question. Be-
sides, it is interesting to investigate whether different
typologies of OO software (e.g., data structure, math
and GUI applications) manifest significant diversities
in their relative search landscapes.

• Scalability is a factor that has not been sufficiently con-
sidered. At this stage, we simply do not know whether
any of the algorithms described in the literature will be
able to scale up to industrial-size software. This might
be a problem for unit testing, and furthermore for inte-
gration and system testing.

We claim that these research questions are of the utmost
importance. Answering them would significantly help the
Software Testing community to better understand the char-
acteristics of the problem of Test Data Generation. This
would be a first step that would take us closer to the goal of
completely automating the testing of software.

5 Conclusion

In this paper, we have shown the difficulties of testing
Object-Oriented software. Because it is more difficult than
procedural software, plenty of open problems still need to
be addressed and solved. Although this seems to offer ideal
conditions for doing research, only little work that uses
search based optimisation algorithms is known on Test Data
Generation for Object-Oriented Software. We believe that
this situation will drastically change in the next few years,
because we think that other techniques such as symbolic
execution are not very suitable for OO software. How-
ever, hybrid systems that combine optimisation algorithms
with more traditional techniques may result in better perfor-
mances.

In the research community there is a lack of organisation
on how to evaluate and compare the results of novel propos-
als against existing ones. This is damaging, because when
a new technique is proposed, it is often difficult to under-
stand if it is really better than previous techniques. Hence,
deciding to follow up and try to improve a novel technique
can result in a waste of resources if it was not as good as it
was described. For example, search based techniques seem
better than symbolic execution, but no work that compare
these techniques is known to us. Furthermore, Genetic Al-
gorithms are rarely compared to other metaheuristics. Al-
though it is reasonable that, at the moment, the Software
Engineering problems are too difficult to be solved from a
theoretical point of view, there is no excuse for the lack of
any sort of empirical verification among the different sys-
tems.

Among the several open problems that need to be ad-
dressed, we described three of them that we found particu-
larly interesting. We believe that they are challenging issues
that, if solved, could help the Software Testing community
and the Software Industry.
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