
A Memetic Algorithm for Test Data Generation of Object-Oriented
Software

Andrea Arcuri and Xin Yao

Abstract— Generating test data for Object-Oriented (OO)
software is a hard task. Little work has been done on the
subject, and a lot of open problems still need to be investigated.
In this paper we focus on container classes. They are used in
almost every type of software, hence their reliability is of utmost
importance. We present novel techniques to generate test data
for container classes in an automatic way. A new representation
with novel search operators is described and tested. A way
to reduce the search space for OO software is presented.
This is achieved by dynamically eliminating the functions that
cannot give any further help from the search. Besides, the
problem of applying the branch distances of disjunctions and
conjunctions to OO software is solved. Finally, Hill Climbing,
Genetic Algorithms and Memetic Algorithms are used and
compared. Our empirical case study shows that our Memetic
Algorithm outperforms the other algorithms.

I. INTRODUCTION

In spite of years of research efforts in software engineer-
ing, software is still far from being perfect and still suffers
badly from various bugs. Finding and fixing bugs become
a very expensive and time consuming issue for the entire
software engineering industry. It is impossible to guarantee
a bug-free software unless it is trivially small. Various
techniques have been proposed to minimise the possibility
of bugs, e.g., trying to identify them as early as possible in
the software development cycle. One way to try to deal with
this issue is to use Unit Tests [1]. It consists of writing pieces
of code that test as many methods of the project as possible.
For example, a method that sums two integers can be called
with two particular values (1 and 2 for example), and then the
result will be checked against the expected value (3). If they
do not match, we can be sure that there is something wrong
with the code. Because testing all possible inputs of a method
is infeasible, a subset of tests needs to be chosen. How to
choose this test subset depends on the testing criterion, and
it is the problem that this paper addresses.

Writing unit tests requires time and resources, and usually
it is a tedious job. Thus, a way to automatically generate unit
tests is needed. However, if a formal specification of the sys-
tem is not given, testing the results against an Oracle cannot
be automated. I.e., choosing the best inputs can be automated,
but checking the result against the expected one (e.g., the
value 3 in the previous example) cannot be automated if the
system does not know the semantics of the function. Different
approaches have been studied to automatically generate unit
tests [2], but a system that can generate an optimal set of

Andrea Arcuri and Xin Yao are with the The Centre of Excellence for
Research in Computational Intelligence and Applications (CERCIA), School
of Computer Science, University of Birmingham, Edgbaston, Birmingham
B15 2TT, UK; email: {A.Arcuri,X.Yao}@cs.bham.ac.uk

unit tests for any generic program has not been developed
yet. Lots of research has been done on procedural software,
but very little on Object-Oriented (OO) software. In this
paper we focus on a particular class of OO software that is
Containers. They are data structures like arrays, lists, vectors,
trees, etc. They are classes designed to store any arbitrary
type of data. Usually, what distinguishes a container from the
others is the computational cost of operations like insertion,
deletion and finding of a data object.

Containers are used in almost every type of OO software,
so their reliability is important. This paper presents a frame-
work for automatically generating unit tests for container
classes. The test criterion is White Box Testing. We consider
only the branch coverage, but the techniques described in this
paper can be easily extended also to other coverage criteria.
The goal is to find a set of unit tests that, when executed,
covers as many branches of the tested class as possible. A
branch is covered when it is executed at least once. The
task is modelled as a search problem [3]. This paper extends
our previous work on this subject [4]. A Memetic Algorithm
(MA) is employed and compared to a Hill Climbing (HC)
and to a Genetic Algorithm (GA). Novel search operators are
presented. They exploit the information that in a container is
more important the relative order of the storing elements than
their actual values. An informal analysis of these operators is
given to support the empirical results. Furthermore, a novel
Dynamic Search Space Reduction (DSSR) is presented. It is
based on the idea that the read-only functions that are already
covered can be removed from the search. This technique can
be applied to any type of OO software. However, it has sense
only when the interest is that of covering all the branches
in a class with a single sequence of function calls. Novel
branch distances are described for handling disjunctions
and conjunctions of predicates. They are a problem in OO
software, because the ones used for procedural software can
throw exceptions during the monitoring of the execution flow.
The novel branch distances are useful in any type of OO
software, regardless of whether the branches are individually
targeted or not.

Although the used programming language is Java, the
techniques described in this paper can be applied to other
object oriented languages.

The paper is organised as follows: section II describes
the novel search operators. Section III explains the novel
search space reduction. The novel branch distances follow in
section IV. Section V describes the employed optimisation
algorithms. The empirical results are reported in section VI.
A brief description of the related work follows in section

VII. Finally, the conclusion of this paper is in section VIII.

II. REPRESENTATIONS AND SEARCH OPERATORS

The solutions for testing container classes are modelled as
sequences Si of function calls. A Function Call (FC) can be
seen as a triple:

< object reference, function name, input list >

It is straightforward to map a FC in a command statement.
For example:

ref.function(input[0],...,input[n]);

I.e., given an object reference called ref, the function
with name function name is called on it with the input
in input list. There will be only one Si for the Class under
Test (CuT), and not one for each of its branches (as usually
happens in literature). The aim is to find a single Si that
executes all the branches in the CuT. The order of the FCs
in Si is important, because a FC may change the internal
state of the objects on which it is called, and this might
influence the behaviour of the FCs that will be called later
on the same instance. Each FC has its own input parameters
(input list), with the number of parameters depending on
the function. The length of a sequence Si is defined by the
number of its FCs, and it is represented by len(Si). There
are no limits either to the number of parameters that a FC
can have or to length of a Si. For each Si, only one instance
of the CuT is created. All the FCs of Si are invoked on the
same instance.

Only two types of parameters are considered: integer
values that represent indices (locations in the container) and
object references for the elements that a container can store
or use as keys. In the test cluster (see section VI), only 11
public methods on a total of 105 require different types of
input parameters.

The elements can be ordered and enumerated according to
a Natural Order. Although the actual values of the elements
are usually not important (only the relative order does), we
enumerate the elements by giving them natural values. I.e.,
the element ei has position i in the natural order. Elements
can be references to any type of object (e.g., network sock-
ets), but it is easier to think of them like Integer references.
Besides, for testing purposes we need only a relative small
set of objects [4]. The value null is treated as a special
case. The functions under test used for the FCs are only the
ones with these types of input parameters, that are public
and that are implemented in the CuT (i.e., not overwritten
methods belonging to any superclass are ignored). However,
all branches of all the functions (private ones included) and
of all the internal classes in the CuT are tried to be covered.

There are no restrictions on the value that an index can
have. However, the lowest element in any Si should be e1.
Besides, there should be no “holes” in the enumeration of
the elements. I.e., given that em is the highest element in Si,
all the elements with index value in between 1 and m should
be present in the sequence. An element ej can be present in
a Si more than once. The following is a valid sequence:

container.insert(e3); // 1
container.insert(e2); // 2
container.get(2); // 3
container.remove(e3); // 4
container.insert(e1); // 5

The variables e1, e2, and e3 are references to objects,
with e1 < e2 < e3 and there are no holes between them.
For simplicity, we give significant names to variables that
represent their values. For example, the variable with name
e1 is a reference to the object e1.

Two novel search operators are defined for a sequence Si.
They are used to generate a new Sj that is “close” to the
original Si. They are special operators, because they may
modify the values of all the input parameters in every FC.

A. Removal of a Function Call

A single FC is removed from Si. There are len(Si)
neighbour solutions that can be generated with this operation.
If the FC has some input elements, its elimination may gen-
erate some holes among the elements. Consider the previous
example. If line 1 is eliminated, no holes are generated
because e3 is also present in line 4. On the other hand, if
line 2 is removed, a hole is generated. When such situation
arises, we need to fill the hole. Let ek be an element of the
removed FC that was present in the sequence only once. In
order to fill the hole, we can just replace each ei greater than
ek with ei−1. If more than one unique element is presented
in the removed FC, the holes should be filled from the one
that has highest position backward to the lowest.

B. Insertion of a New Function Call

A single FC is inserted in the sequence Si. Both the
position and the type of the function need to be chosen. Due
to the large search space, the input parameters (if any) are
chosen at random. There are len(Si)∗M neighbour solutions
that can be generated with this operation, with M being the
number of different methods under test.

Although the parameters are chosen at random, they are
taken from a restricted set. The indices can be chosen inside
the range of the stored elements plus a few outside of it [4].
Assuming that the tested functions can add only one element
at a time, the search space for the indices can be bound
by the length of Si. For the elements, a random decision is
made: either an element already present in Si is created with
probability ρ, or a new one is created with probability 1−ρ.
The first case is straightforward. In the latter case, given a
random et with e1 ≤ et ≤ em+1, before inserting it with
its FC in Si, all ek with ek ≥ et have to be replaced by
ek+1. Note that in this way the relative order between the
former elements remains unchanged. An example will help
to clarify the latter algorithm: consider the previous example
sequence, and let container.remove(e3) be inserted
between position 1 and 2; we will have:

container.insert(e4); // 1
container.remove(e3); // 2
container.insert(e2); // 3

Fig. 1. Heap states of a binary search tree. On the left is represented the
state after inserting < e1, e2, e3 >. On the right there is the insertion of
< e3, e1, e2 >.

container.get(2); // 4
container.remove(e4); // 5
container.insert(e1); // 6

C. Simple Representation

To evaluate the performance of the novel solution repre-
sentation and its operators, they need to be compared with
a simpler representation. The container elements will be the
same, but there can be holes in their order. Their values are
bounded by the length of the current sequence. The removal
search operator will not try to fill any hole. The insertion of
a FC will have the elements with random values between 1
and the length of the sequence. It will not alter any other FC
in the Si. This representation is the same as the one used in
[4].

D. Motivations

In this section, we describe why these novel representation
and operators have been developed. Among the most difficult
containers to test, there are the ones that behave differently
in respect of the order in which the elements are inserted
and removed. For example, if we insert < e1, e2, e3 > (i.e.,
firstly we insert e1, then e2 and finally e3) or < e3, e1, e2 >

in a list, its behaviour will be the same. However, if the
same sequences are inserted in a binary search tree, the two
sequences will generate different behaviour. Not only will the
shape of the container in the heap be different, but above all,
the executed branches of the source code of the container
will also be different. In the first case, < e1, e2, e3 >, it
does not happen that a new node is inserted on the left of
a previous one, because the values are inserted in ascending
order (i.e., each new inserted element has always the greatest
value). Therefore, the code related to the insertion of the left
side of a node is never executed. On the other hand, in the
case of < e3, e1, e2 >, both the code for an insertion on the
left and on the right are executed. Figure 1 shows the states
of the container in the heap.

In respect of different permutations of the same sequence
of the same type of operations, a container might behave
differently if in its source code it relies on the Natural
Order of the elements. In Java, for example, it is easy
to know it, because the natural order is defined by the

method compareTo. Therefore, it is important to exploit
this information if we want to improve the performance of
the optimisation algorithms. If we have a good sequence,
a local search algorithm should look at its neighbourhood
to find a better solution. However, without the novel search
operators, the neighbourhood would be influenced by the
actual values of the elements. For simplicity, just consider the
case of an insertion of a FC with in input only one parameter.
For example, consider the sequence Sx:

container.insert(e1); // 1
container.remove(e2); // 2
container.insert(e3); // 3

here we cannot insert a FC between line 1 and 2 such that
the new element ek satisfies e1 < ek < e2. On the other
hand, consider the following Sy:

container.insert(e2); // 1
container.remove(e4); // 2
container.insert(e6); // 3

in that case we can insert a FC with e3. The two sequences
may seem different because they have different values of the
elements, but actually they are exactly equivalent. In fact, the
relative order among the elements is the same, so also the
behaviour of container is the same. Hence, the local search
should consider the relative order of the elements and not
their actual values. If we focus on the relative order, we
can analyse the shape of the neighbourhood defined by an
insertion of a FC (for simplicity with exactly one element
in input) on Si. We want that every possible sequence that
holds the same relative order among the former elements of
Si can be reached with just one insertion. There can be up
to len(Si) different elements in Si. Just call this number D,
with D ∈ [0, len(Si)]. A new element can have the same
value of the elements in Si, or a new one that should be
able to be in any position in the natural order relatively to the
other elements. I.e., it can be the lowest, the highest or with
a value between any two consecutive elements. Therefore,
we have W = D + 1 + 1 + (D − 1) = 2 · D + 1 different
positions for the new element, with W ≤ 2 · len(Si) + 1. In
the above examples, we have D = 3 and W = 7, with the
neighbourhood of Sy that includes all the W = 7 elements
for the new FC. On the other hand, for Sx there are only
4 elements available: 3 with same values of the elements in
Sx and 1 with a higher value than them.

It can be argued that Sy is better just because it has a
wider neighbourhood. Although at a first look it can seem
true, it is important to remember that the element values
are generated at random. This happens because their search
space is too large to be explored in a single step of a local
search (remember that a FC can be inserted in len(Si) + 1
different positions and that there are several methods under
test). Therefore, the neighbourhood sizes of Sx and Sy are
exactly the same. The difference lies on the probabilistic
distribution of the neighbours that are reached. For simplicity,
consider that the new element enew can have a random value

between e1 and e7. For Sy , all the W = 7 positions are
possible, with each of them that has probability 1

7 . Although
for Sx the positions relative to the already stored elements
can be covered with the same probability, it has a probability
4
7 of getting the highest position and zero of getting the
others.

The difference between exploration and exploitation of
a search space has been widely studied in the literature
(e.g., [5]). However, here the situation is particular. In fact,
the neighbourhood defined by the novel search operators
causes the random choice of neighbours to occur in a wider
area, although the averaged distance of all these neighbours
does not change. We think this is the main point that
explains the reason why the novel system may give better
results. Therefore, we find that it is easier to explain this
concept by adapting this situation to a simpler problem like
OneMax. Consider the case in which there are two different
neighbourhoods: N1 that flips one bit, and N2 that flips two
bits. In a local search, only k neighbours will be evaluated
in these neighbourhoods, with k <

|N1|
2 ∧ k <

|N2|
2 . The

sizes of the neighbourhoods will be the same. It is the size
of the area from which they pick neighbours that is different.
The Euclidean Distance is employed. It is easy to understand
that the averaged distance of the neighbours in N2 is higher
than the one of N1. Hence, N2 gives more emphasis on
the exploration, instead N1 gives more emphasis on the
exploitation. Now consider a neighbourhood N3 in which,
like in N1, only one bit is flipped, but the k neighbours are
always chosen only in the first half of the bit string. It is
obvious that a local search that employs N3 will have poor
results. However, the averaged distance of the neighbours in
N3 is equal to the one of N1. In the search landscape, they
both look within the same distance, but N1 looks in more
directions. The basic search operators described in section
II-C are like N3, and the novel ones are like N1. However,
this does not prove that the novel search operators are better.
In fact, even if a search strategy looks in fewer directions,
the search landscape can have a particular form that permits
the optimisation algorithm to reach the same local optima.
Besides, it can happen that on average these fewer directions
are “better” (that depends of course on the landscape).

The novel search operators can deeply change the rep-
resentation of a solution in only one step. For example,
a removal of a FC with the lowest element may change
all the elements along the entire sequence. Anyway, the
neighbours that these operators define are “close” to the
considered solution. Hence, euclidean or Hamming distances
are not very significant for this problem, because the relative
order among the elements is more important than their actual
values. Besides, sub-sequences of consecutive read-only FCs
can be randomly sorted without changing at all the behaviour
of the sequence. Anyway, a formal definition of a distance
for the sequences Si is beyond the scope of this paper.

In some types of containers, although the relative order of
the elements is not important, the behaviour may depend on
the equality of a newly inserted element E with an already

stored one. In that case, with the new search operators, and in
particular by a wise choice of the parameter ρ, the search can
be guided to look in the most promising area of the search
space. On the other hand, with the simple representation,
the probability that E is equal to one of the stored in the
container depends on their current values. For example, if
E can have a value between 1 and 30, and in the container
there are 3 different elements, the probability that E is equal
to one of them is 1

10 .

III. DYNAMIC SEARCH SPACE REDUCTION

In some cases, it is convenient to avoid to insert a FC w

in Si that does not change the state of the container. In fact,
if all the branches of w and the ones of all of the functions
that are called through it (e.g., w calls f1, and f1 calls f2)
are already covered, there can be no improvement at all in
the quality of Si. The opposite behaviour will occur and the
sequence Si will get worse because it becomes longer.

For a global search algorithm, it may happen that the
insertion of w will later permit the removal of more than
one FC without decreasing the coverage. In such a case, the
sequence will be better because it would be shorter. However,
with local search, we know a priori that the insertion of
w will lead to a worse sequence that will be immediately
discarded. Therefore, functions like w should be ignored
in a local search. In containers like TreeMap, the number
of read-only functions can be high (14 on a total of 18 in
its implementation in the Java API 1.4). If we remove the
functions w from the search, the number of evaluations that
a local search does can decrease significantly without any
loss in the quality of the results. However, there are some
problems that need to be solved when we are considering a
function t:

• Determining if t is read-only is not straightforward.
It requires a syntactic analysis of the source code.
Besides, the polymorphism and the the use of the
external component, which code is unknown, makes the
task extremely difficult1. However, there are two cases
in which at run-time we can determine for sure if a
function is not read-only: if we remove a FC call and
the coverage increases or if we insert a FC and the
coverage decreases.
In the case of containers, we can also do an analysis
of the name of the function to determine if it is read-
only. A database for common function names (e.g.,
insert,add,push) can be used with string match-
ing algorithms. If such a comparison is not able to
classify a function, a normal syntactic analysis can still
be used.

• The function t can be the only one that calls a particular
private function t1. Therefore, before removing t from
the local search, not only all the branches in t need to
be covered, but also all the ones belonging to functions
called through t. Determining which those functions are

1in this paper we are not considering the idea of an analysis at the byte-
code level or the use of reverse engineering.

is not always trivial. Consider the example when t calls
a function s in the superclass, and s is the only one
that calls the private function u in the CuT. If the code
of the superclass is not available, a syntactic analysis of
the CuT cannot discover that u can be called only if t is
called. A dynamic analysis can show if a call to t leads
to the execution of u. However, if u is never called, a
dynamic analysis cannot prove that it does not depend
on t. For example, it can happen that u is called by s

only with a very low probability.
If t has some branches that are infeasible, they will
never be marked as covered. Therefore, t will not be
removed from the search even if all of its feasible
branches are covered, unless the infeasible ones can be
recognised. Unfortunately, determining if a branch is
infeasible is usually a hard problem.

• These analyses have a computational cost. It is impor-
tant to guarantee that such overhead is less than the
benefits gained by the local search algorithm.

Consider the following predicates:
R(t) the considered function t is read-only. I.e., it does

not change the state of the container, and all the
functions it calls are read-only as well.

C(t) all the branches in t and all the ones in the functions
called by t are covered.

The function t will be removed from the search if the
predicate E(t) is true, with:

E(t) = R(t) ∧ C(t)

As stated before, it is not always possible to get a precise
value for the predicates R(t) and C(t). Therefore, we need
to investigate when E(t) has a wrong value:

• we have a false negative if the predicate E(t) is esti-
mated as false when it should be true. The function t

will not be removed from the search. It happens if at
least one of the predicates R(t) or C(t) are wrong. The
optimisation will have no positive effects, and the only
degradation of the performance will be the overhead
caused by the calculation of E(t).

• we have a false positive if the predicate E(t) is esti-
mated as true when it should be false. The function t

will be removed from the search. It happens if R(t) or
C(t) are wrongly evaluated. If t does change the state
and it is not completely covered yet, both R(t) and
C(t) need to be misclassified to make E(t) wrong. If
the classifiers used for R(t) and C(t) are well designed,
the probability that both of them misclassify at the same
time will be relatively small. However, even if t is
removed from the search, it can be later reintroduced if
during the search a removal of a FC of t increases the
coverage, because that means for sure that t is not read-
only. The same can happen if the dynamic analysis of
the function calls graph (i.e., the graph of the functions
that can be called through t) let the discovering of a
new function linked to t (consider the previous example
regarding the calls to a superclass function). Anyway,

TABLE I

CLASSIC DISTANCE-FUNCTION FOR CONJUNCTIONS AND

DISJUNCTIONS

Element Distance
a ∨ b min(dist(a), dist(b))
a ∧ b dist(a) + dist(b)

a misclassification of E(t) could generate no problems
at all. In fact, there can be cases in which even if t can
change the state of the container, these changes could
have no influence on the covering of the branches of the
other functions. Besides, although it could happen that
some branches of the private functions called through t

are not covered, those functions could also be called by
other functions under test.

IV. BRANCH DISTANCE

The Branch Distance is used to guide the optimisation
algorithms. A way in which it can be defined can be found
in [6]. However, in OO software there can be problems when
conjunctions and disjunctions are handled (table I shows
their distance functions). Consider the example in which
we need to evaluate the branch distance of if(x!=null
&& x.foo()). If the first clause x!=null is false, the
evaluation of the second will throw an exception. Therefore,
we need to handle them in a special way. The problems
arise when in an expression like a op b the predicate b is
not computed. This happens when the expression can be
evaluated only by considering the first predicate a. In Java,
we have this in the case a&&b when a is false and when a

is true in a||b.
If the first clause is true, a disjunction is true (i.e., its

distance is 0) and we do not have to evaluate the distance
function of the second clause.

The case of the conjunction (e.g., a∧ b) is more complex.
The formula in table I will be used and, if an exception is
thrown, it will be caught and the following distance function
will be used instead for that branch for the rest of the search:

dist(a ∧ b) =







K · dist(b)
1+dist(b) if a is true ,

K + dist(a) otherwise ,

(1)

with K that can be any arbitrary constant value. In the case in
which a is false, b is not used to compute the branch distance.
However, to get the best results, all the available information
on the predicates should be exploited [7]. Therefore, when
a is false, the formula in table I is better because it gives
more information. This is why we still use that formula, and
only when b throws an exception we use eq.1. When a is
true, its contribution on the branch distance is 0. Note that,
regardless of b, this new branch distance gives always higher
values when a is false than when is true.

V. USED ALGORITHMS

In the experiments, three different optimisation algorithms
have been applied: Hill Climbing (HC) with random restarts,

a Genetic Algorithm (GA) [8] and a Memetic Algorithm
(MA) [9]. In the following, a very brief description of these
algorithms is given.

HC is a local search algorithm. It starts from a random
point in the search space and looks at the solutions that are
“close” to it. If one of its neighbours has a better fitness,
the search moves on that solution and starts to look in its
neighbourhood for a better one. The algorithms will always
move in that way on better solutions until there are no better
solutions in the current neighbourhood. In such a case, the
algorithm is said to be stuck in a local optimum.

GAs are a global search metaheuristic inspired by the
Darwinian Evolution theory. Different variants of this meta-
heuristic exist. However, they rely on three basic features:
population, crossover and mutation. More than one solution
is consider at the same time (population). At each generation
(i.e., at each step of the algorithm), the solutions in the
current population generate offspring using the crossover
operator. This operator combines parts of the chromosomes
(i.e., the solution representation) of the offspring’s parents.
These new offspring solutions will fill the population of the
next generation. The mutation operator is applied to make
little changes in the chromosomes of the offspring.

MAs are a metaheuristic that uses both global and local
search (e.g., a GA with a HC). It is inspired by the Cultural
Evolution. A meme is a unit of imitation in cultural trans-
mission. The idea is to mimic the process of the evolution
of these memes. From an optimisation point of view, we
can approximately describe a MA as a population based
metaheuristic in which, whenever an offspring is generated, a
local search is applied to it until it reaches a local optimum.

Although a HC and a GA have been already employed
in our previous work [4], this paper makes significant con-
tributions by introducing a novel representation and search
operators for these algorithms.

The quality of a test sequence Si is defined by:

f(Si) = coverage(Si) +
1

1 + length(Si)
. (2)

However, during the search, we need to exploit the informa-
tion given by the branch distances:

f(Si) =coverage(Si) + α(1 − B(Si))

+ (1 − α)
1

1 + length(Si)
, (3)

where B(Si) is the normalised distance of all the branches
[4], and α ∈ [0, 1]. Eq.3 is used only during the search.
For evaluating the result of a search algorithm, we need to
use eq.2, because at the end of the search only the actual
coverage and length are important.

The problem can be described as a Multi-Objective prob-
lem. There is one objective to maximise, the coverage, and
two to minimise: the branch distance and the length. How-
ever, their relations are particular. The coverage is always
more important than the length. The optimum for the branch
distance (i.e., B(Si) = 0) implies the optimum for the
coverage. Although an increment in the coverage always

implies a decrease in the branch distance, the opposite is
not always true. Besides, the branch distance objective has
no importance at the end of the search.

The fitness in eq.3 can be deceptive. The search can
be fooled by looking at sequences that get always longer
to try to reach a particular branch. That happens when
an increase in the length lets the branch distance decrease
without covering the branch. Furthermore, a particular small
improvement in a branch distance, that will lead to cover the
branch, may be discarded because the length increases. There
are different ways to address this problem. In the following
we describe a useful way that can be applied to a local search.
It consists of two phases. In the first, a new neighbour Sn

will be judged as better than the current solution Si if:

{

g(Sn) > g(Si) or
g(Sn) = g(Si) ∧ length(Sn) < length(Si) ,

(4)

where

g(Sj) = coverage(Sj) + (1 − B(Sj)) . (5)

When the local search is stuck in a local optimum, the
second phase of the search starts. The search will continue
from this local optimum using eq.2 as the fitness function
for the comparisons. The reason is that in the first phase an
improvement of the branch distance is accepted regardless
of the length. That can lead to longer sequences without
improving the coverage. The second phase is employed to
reduce the length of the sequence. Anyway, it is important
to notice that it cannot decrease the coverage.

For exploring the neighbourhood of a Si, the HC uses
the search operators defined in section II. The GA uses
the same operators for mutating a solution. However, the
crossover operator can generate “holes” in the order of the
stored elements in the container. These holes will need to be
filled by decreasing the values of the elements accordingly.
The MA combines the described GA with the HC. All
the algorithms use the search space reduction described in
section III, unless otherwise stated.

VI. CASE STUDY

The following containers have been used for the test-
ing: Stack, Vector, LinkedList, Hashtable and
TreeMap. They are all taken from the Java API 1.4. Only in
TreeMap the relative order of elements is important. Table
II summarises their characteristics.

The different algorithms described in this paper have
been tested on the given cluster of containers. When an
algorithm needs that some of its parameters should be set,
experiments on their different values had been done. Anyway,
these parameters are optimised on the entire cluster, and
they remain the same when they are used on the different
containers. Although different tests on these values have been
carried out, there is no guarantee that the chosen values are
the best.

Table III summarises the performances of the algorithms.
The best coverage is the highest coverage ever reached during

Container LOC FuT Achievable Coverage

Stack 118 5 10
Vector 1019 34 100
LinkedList 708 20 84
Hashtable 1060 18 106
TreeMap 1636 17 191

TABLE II

CHARACTERISTICS OF THE CONTAINERS IN THE TEST CLUSTER. THE

LINES OF CODE (LOC), THE NUMBER OF THE PUBLIC FUNCTIONS

UNDER TEST (FUT) AND THE ACHIEVABLE COVERAGES FOR EACH

CONTAINER ARE REPORTED.

the test. The best length is the shortest length for the highest
coverage. Note that it would have been better to report the
statistics for the length of each different reached coverage,
because it is common that for higher coverages you may
need longer sequences. Hence, if you have an algorithm that
gives shorter sequences, that does not mean that it optimises
the length objective in a better way: you also need to control
if the coverage is not worse. However, for space limitations
we show these statistics without considering the different
coverage values.

All of the algorithms use the fitness function defined in
eq.3, with α = 0.5. The parameter ρ of the novel search
operators is set to 0.8. The HC uses a random restart when it
reaches a local optimum. The GA uses single point crossover
with probability 0.2. Because the parents can have different
lengths, the new offspring’s length will be the average of the
parents’s length. A single point crossover takes the genes
from the first parent in the usual way, and the following
others from the tail of the second parent. The mutation
probability of an individual is 0.9. The population size is
64. Rank selection is used with a bias of 1.5. The elitism
rate is set to two individuals for generation. The MA uses a
single point crossover with probability 0.9. Population size
is 8. Rank selection is used with a bias of 1.5. Elitism rate
is set to one individual for generation. Each algorithm has
been stopped after evaluating up to 100, 000 sequences. From
table III, the MA results the best among the algorithms.
Mann Whitney U tests have been carried out with a 0.05
level of significance to support this affirmation. However,
the performances of MA on the Hashtable are quite poor.
That happens because the fitness in eq.3 is deceptive. The
results in table IV have been obtained using a MA with
eq.4. With such a configuration, the MA has no problems
in covering the branches of the Hashtable.

Table IV shows the performance of the novel search
operators on the MA. Although they do no give the best
results on every container, on average they increase the
performance of the algorithm.

Table V shows the benefits of using the novel dynamic
search space reduction (DSSR). The average number of steps
that HC needs to reach a local optimum are reported, both
with and without the DSSR. It is important to outline that the
quality of the local optima is not influenced by the DSSR.

Container Statistics Coverage Length
HC GA MA HC GA MA

Stack Mean 10.0000 10.0000 10.0000 6.0000 6.0000 6.0000
Variance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Median 10.0000 10.0000 10.0000 6.0000 6.0000 6.0000
Best 10 10 10 6 6 6

Vector Mean 100.0000 99.9530 100.0000 45.3634 47.1121 44.8398
Variance 0.0000 0.0449 0.0000 0.4400 2.3842 0.4553
Median 100.0000 100.0000 100.0000 45.0000 47.0000 45.0000
Best 100 100 100 44 44 44

LinkedList Mean 83.9240 83.8300 83.9950 35.0870 37.2940 33.3480
Variance 0.0703 0.2934 0.0050 1.6731 4.4440 0.6015
Median 84.0000 84.0000 84.0000 35.0000 37.0000 33.0000
Best 84 84 84 32 33 32

Hashtable Mean 100.3460 103.1120 98.7430 31.4020 33.7610 30.2380
Variance 1.6479 7.3488 9.2442 2.3527 5.0289 1.8712
Median 100.0000 105.0000 100.0000 31.0000 34.0000 30.0000
Best 106 106 106 36 36 36

TreeMap Mean 187.6560 184.9740 188.8330 45.0070 41.8820 46.3300
Variance 0.7084 3.5689 0.7098 5.9109 7.0191 5.8149
Median 188.0000 185.0000 189.0000 45.0000 42.0000 46.0000
Best 191 190 191 50 51 46

TABLE III

COMPARISON OF THE DIFFERENT OPTIMISATION ALGORITHMS ON THE

CONTAINER CLUSTER. EACH ALGORITHM HAS BEEN STOPPED AFTER

EVALUATING UP TO 100, 000 SOLUTIONS. THE REPORTED VALUES ARE

CALCULATED ON 1000 RUNS OF THE TEST.

Container Statistics Coverage Length
Base Novel Base Novel

Vector Mean 100.0000 100.0000 45.8859 45.1191
Variance 0.0000 0.0000 0.8908 0.5660
Median 100.0000 100.0000 46.0000 45.0000
Best 100 100 44 44

LinkedList Mean 84.0000 84.0000 34.6757 33.9259
Variance 0.0000 0.0000 1.3837 1.2831
Median 84.0000 84.0000 35.0000 34.0000
Best 84 84 32 32

Hashtable Mean 106.0000 106.0000 35.0000 36.0000
Variance 0.0000 0.0000 0.0000 0.0000
Median 106.0000 106.0000 35.0000 36.0000
Best 106 106 35 36

TreeMap Mean 189.1461 188.9800 49.7768 46.6947
Variance 0.4776 0.6148 7.2878 6.1522
Median 189.0000 189.0000 49.0000 46.0000
Best 191 191 48 44

TABLE IV

THE PERFORMANCES OF THE MA USING THE FORMULA 4 ARE

REPORTED. THE USE OF THE NOVEL NEIGHBOURHOOD IS COMPARED TO

THE BASE ONE.

Container DSSR Steps
Stack no 103.4179

yes 85.1809
Vector no 7319.2860

yes 4161.0169
LinkedList no 3718.3870

yes 2762.9300
Hashtable no 3143.8719

yes 1603.6309
TreeMap no 4946.2600

yes 3118.2929

TABLE V

THE PERFORMANCES OF THE DYNAMIC SEARCH SPACE REDUCTION

(DSSR) ARE EVALUATED USING THE AVERAGED NUMBERS OF STEPS

THAT A HC NEEDS TO ARRIVE TO A LOCAL OPTIMUM. THE DSSR DOES

NOT INFLUENCE THE QUALITY OF THE LOCAL OPTIMA. THE REPORTED

VALUES ARE CALCULATED ON 1000 RUNS OF THE TEST.

VII. RELATED WORK

This paper extends our previous work [4] on Test Data
Generation for container classes. No other work specifically
on containers that uses optimisation algorithms is known
to us. That paper explains how to employ four different
optimisation algorithms on the problem: Random Search,
Hill Climbing, Simulated Annealing and Genetic Algorithms.
Their performances are then compared. Besides, a search
space reduction that is specific to containers and a novel
testability transformation are presented.

Visser et al. [10] used exhaustive techniques with symbolic
execution. To avoid the generation of redundant sequences,
they used state matching. During the exhaustive exploration,
the abstract shapes of the CuT in the heap are stored. If an
abstract shape is encountered more than once, the exploration
of that sub-space is pruned.

A container class is an OO software. Therefore, any system
that claims to be able to generate test data for OO software
should work also on containers. Tonella [11] was the first to
develop a system that uses optimisation algorithms. It used
a GA with special operators to generate unit tests for Java
classes.

A comparison between HC, GAs and MAs was done by
Wang and Jeng [12], but they did it on procedural functions.
However, their results lead to the same conclusion obtained
in our experiments that MAs seem to perform better than HC
and GAs, with HC outperforming GAs.

VIII. CONCLUSION AND FUTURE WORK

This paper has proposed novel techniques for testing
container classes. Besides presenting novel search operators,
it presents a comparison of three different optimisation
algorithms: Hill Climbing (HC), Genetic Algorithms (GAs)
and Memetic Algorithms (MAs). Often, in literature, when a
new technique is designed, it is tested only against Random
Search (RS). Although RS can give good coverage, it is inap-
propriate in the context of OO software, because it miserably
fails to generate any good sequence with reasonable length.

Our empirical tests show that our MA outperforms the
other algorithms. Furthermore, the novel search operators
increase its performance. In the software engineering com-
munity there is a strong bias toward GAs. Local search
algorithms are often ignored, because the search landscape is
considered to be too complex and discontinuous. Although
in our previous work [4] we already showed that HC out-
performs GAs (at least the ones we employed) on testing
container classes, the fact that our MA gives the best results
leads us to study the landscape of this problem in the future.

A novel search space reduction has been described. It
decreases the number of steps that a local search needs to
reach a global optimum without altering its quality. However,
if the number of read-only functions under test is low, it may
be better not to employ this technique, because the over-head
can be too big in comparison with the gained benefits. In our
case study, this novel technique is arrived up to double the
speed of the local search.

A new branch distance has been presented that can be
applied to any type of OO software, i.e., it is not specific for
containers. It was compulsory to develop it, because in some
cases the common branch distance may throw exceptions
when it is employed for OO software. We wonder why
such a problem has not been addressed before. The only
answer we can give is that all the little previous work on
OO software was always tested on a very limited number of
classes. Hence, we suppose that the case in which exceptions
may be thrown was not present in any of those tested classes.
This shows one of the problems of the current state-of-art of
search based software testing (at least for OO software): the
test clusters are too small. This is due to the lack of a public
and complete instrumentator.

Our future work will focus on studying the landscapes of
different typologies of OO software. Exploiting local search
seems to give better results than those of traditional GAs.
Therefore, we need to analyse the landscape shapes with the
aim of developing better local search operators and MAs.
That will also help to understand why our MA performed
well on most of the test problems used in this paper.

IX. ACKNOWLEDGEMENTS

This work is supported by an EPSRC grant
(EP/D052785/1). The authors wish to thank Ramón
Sagarna and Per Kristian Lehre for the useful discussions.

REFERENCES

[1] IEEE-Standards-Board, “Ieee standard for software unit testing: An
american national standard, ansi/ieee std 1008-1987,” IEEE Standards:
Software Engineering, Volume Two: Process Standards, 1999.

[2] P. McMinn, “Search-based software test data generation: A survey,”
Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, June 2004.

[3] J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, M. Lumkin,
B. Mitchell, S. Mancoridis, K. Rees, M. Roper, and M. Shepperd,
“Reformulating software engineering as a search problem,” IEE Pro-
ceedings - Software, vol. 150, no. 3, pp. 161–175, 2003.

[4] A. Arcuri and X. Yao, “Search based testing of containers for object-
oriented software,” University of Birmingham, Tech. Rep. CSR-07-3,
2007.

[5] X. Yao, “Simulated annealing with extended neighbourhood,” Interna-
tional Journal of Computer Mathematics, vol. 40, pp. 169–189, 1991.

[6] N. Tracey, J. Clark, K. Mander, and J. A. McDermid, “An automated
framework for structural test-data generation,” in IEEE International
Conference on Automated Software Engineering (ASE), 1998, pp. 285–
288.

[7] A. Baresel, H. Sthamer, and M. Schmidt, “Fitness function design to
improve evolutionary structural testing,” in Genetic and Evolutionary
Computation Conference (GECCO), 2002, pp. 1329–1336.

[8] J. H. Holland, Adaptation in Natural and Artificial Systems, second
edition. Cambridge: MIT Press, 1992.

[9] P. Moscato, “On evolution, search, optimization, genetic algorithms
and martial arts: Towards memetic algorithms,” Caltech Concurrent
Computation Program, C3P Report 826, 1989.

[10] W. Visser, C. S. Pasareanu, and R. Pelànek, “Test input generation
for java containers using state matching,” in Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA),
2006, pp. 37–48.

[11] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA),
2004, pp. 119–128.

[12] H.-C. Wang and B. Jeng, “Structural testing using memetic algorithm,”
in Proceedings of the Second Taiwan Conference on Software Engi-
neering, 2006.

