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Abstract

Search algorithms have been used to tackle software engineering problems with promising results.
Although the field has attracted a lot of attention recently, it still lacks a theoretical foundation. It
has been empirically shown that search algorithms are successful in some software engineering tasks,
but we need to understand why and when they are successful. The long term goal is to get insight
of how search algorithms work on software engineering problems, so we can exploit this knowledge
to design more efficient algorithms. Runtime Analysis is a type of theoretical investigation that aims
to determine, via rigorous mathematical proofs, the time a search algorithm needs to find an optimal
solution. Runtime analysis has previously been carried out on traditional combinatorial problems. In
this paper, we advocate that runtime analysis would be helpful in search based software engineering
as well. We give the first runtime analysis of search heuristics in the software testing domain.

Keyword: Runtime Analysis, Search Algorithms, Search Based Software Engineering, Software
Testing.

1 Introduction

Many tasks in software engineering are extremely expensive. For example, it is very common that
software testing can take up to half the resources of the development of a new software [5]. This is
why a large part of the literature is devoted to automating as many of these tasks as possible.

Several different techniques have been developed and applied to real world software engineering
problems. Among them, there is the use of search algorithms (e.g., Genetic Algorithms [24]). They have
been very successful in many engineering domains, and their promising use in software engineering has
led to what is now called Search Based Software Engineering (SBSE) [21, 20].

Although there has been a lot of research on SBSE in recent years (e.g, in software testing [35]), there
exist few theoretical results. The only exceptions we are aware of are on computing unique input/output
sequences for finite state machines [32, 31], the application of the Royal Road theory to evolutionary
testing [22], and the first versions of our work [2, 1].

To get a deeper understanding of the potential and limitations of the application of search algorithms
in software engineering, it is essential to complement the existing experimental research with theoretical
investigations. Runtime Analysis is an important part of this theoretical investigation, and brings the
evaluation of search algorithms closer to how algorithms are classically evaluated.

The goal of analysing the runtime of a search algorithm on a problem is to determine, via rigorous
mathematical proofs, the time the algorithm needs to find an optimal solution. In general, the runtime
depends on characteristics of the problem instance, in particular the problem instance size. Hence, the
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outcome of runtime analysis is usually expressions showing how the runtime depends on the instance
size. This will be made more precise in the next sections.

The field of runtime analysis has now advanced to a point where the runtime of relatively complex
search algorithms can be analysed on classical combinatorial optimisation problems [44]. We advocate
that this type of analysis in SBSE will be helpful to get insight on how search algorithms behave in the
software engineering domain. The final aim in the long term is to exploit the gained knowledge to design
more efficient algorithms.

In this paper we review runtime analysis and we explain how it can be applied to SBSE. We start our
analysis on software testing because this is the most studied sub-field of SBSE. In particular, we focus
on branch coverage in White Box Testing [39].

There can be at least two main directions of research:

• Runtime can be studied on different types of predicates, relations among the input variables, dif-
ferent structures of the control flow graph, etc. The resulting theorems would hence be used as
basic building blocks to calculate the runtime of the classes of software that can be built with these
blocks. The applicability of the results would be very wide, because we would have precise run-
time for an infinite number of software. This type of analysis would help to understand which are
the properties of software that make hard the search for test data. Unfortunately, proving that a
software has some particular properties (for which we could have precise runtimes) would be hard
in general.

• Runtime can be theoretically calculated on specific software that are commonly used in literature,
like for example the Space program [9, 36] and Java containers [53, 3]. Because they are widely
used, it would be helpful to get stronger theoretical results about them. A better understanding of
how search algorithms behave on these problems would help to make more precise and rigorous
comparisons in empirical validations of novel techniques against common search algorithms. The-
orems on specific software would not be applicable to other case studies. However, there is similar
issue of generalisation in empirical studies, because behaviour of search algorithms is strongly de-
pendent on the tackled instances of the problem. Empirical studies are more easy to carry out than
theoretical analysis, hence larger case studies would lead to more generalisable results. But once a
precise theoretical analysis is given for a testing problem, that would be a rigorous and exact result
that can be reused each time that testing problem is used in an empirical study.

In this paper we focus on the second direction of research. In fact, we believe that for the first step it
is more appropriate to get theoretically results on well known testing problems.

We study the runtime of five different search algorithms on test data generation for branch coverage
of the Triangle Classification (TC) problem [39]. We chose TC because it is the most famous problem
in software testing and it is amenable to rigorous mathematical treatment without being distracted by too
many details. The search algorithms considered for the analyses are: Random Search (RS), Hill Climbing
(HC), Alternating Variable Method (AVM), (1+1) Evolutionary Algorithm (EA), and (µ+1) Steady State
Genetic Algorithm (SSGA).

In search based white box testing, in the case of branch coverage, it is common to tackle each different
branch separately. In other words, there will be a separate search for each branch. However, analyses
on the dependency graph can be used to choose only a sub-set of branches. In fact, the execution of a
particular branch might imply the execution of others. In such a case, a successful search for covering that
branch necessarily implies the coverage of others, hence they do not need separated searches. In some
frameworks, the solutions found so far are exploited (e.g., smart seeding strategies) to guide the search
of the remaining uncovered branches. However, for the sake of simplicity, we consider each branch as
an independent search problem. Because there is a constant number of branches, the asymptotic runtime
of a search algorithm is determined only by the most expensive branch.
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We start our analysis with an empirical study on each branch of TC. We then carry out a theoretical
study for RS on each of the 12 branches. On the branch that seems the most difficult to cover (branch
ID8, see Figure 1 in Section 3), we make a theoretical runtime analysis of HC, AVM and (1+1) EA. The
analysis shows that AVM has the lowest runtime on this branch.

Any empirical analysis on randomised algorithms is subject to stochastic variations. Furthermore,
the branches that are easy for RS may not be necessarily easy for other search algorithms. Therefore,
we make a theoretical study of AVM also on all the other 11 branches to confirm that it is actually the
fastest. In fact, the runtime of AVM on the branch for which it has maximal runtime, is lower than the
maximal runtime of any of the other analysed search algorithms.

For HC and (1+1) EA, we also theoretically analyse their runtime on a simple branch (i.e., branch
ID0). For each considered search algorithm, for branch ID8 we theoretically study different fitness
functions, and what is the expected number of steps that these algorithms make at most.

The main contributions of this paper are:

• As far as we know, this is the first extensive work on runtime analyses of search algorithms applied
to search based software testing. Although the presented theorems are specific to a particular case
study, the methodology to obtain these results can be used in general to other SBSE problems.

• TC is the most famous and used case study in the literature of software testing. We provide a
rigorous theoretical analysis of this testing problem. The obtained results can be used in any future
empirical study in which this case study is employed. For example, if a newly designed algorithm
empirically seems faster than AVM on TC, then there is no need to compare it against RS, HC and
(1+1) EA on TC.

• Often the TC problem is used as an example to show the limitations of RS and hence to validate
the study of more complex search algorithms. However, we have proved that RS is not the worst
on at least one of the branches of TC.

• We prove that there exists at least one search algorithm (i.e., AVM) that has a runtime complexity
that is strictly better than that of RS on at least one testing problem (i.e, TC).

• We prove that some search algorithms have a high probability of finding an optimal solution in
reasonable time (a more precise description is given in the following sections).

• Algorithms that seem to perform poorly, in comparison with others, might perform much better
when the size of the problem increases (i.e., they might scale up better). We prove that this is in
fact the case for a non-trivial case in the software testing domain.

The paper is organised as follows. Section 2 gives background about runtime analysis. Section
3 describes in detail the TC problem, whereas Section 4 describes the five different search algorithms
applied to find test data for TC. Empirical studies follow in Section 5, whereas theoretical analyses are
presented in Section 6. The obtained results and their implications are discussed in Section 7. Finally,
Section 8 concludes the paper.

2 Runtime Analysis

Evolutionary algorithms and other randomised search heuristics are attractive due to their versatility.
However, in contrast to many problem specific algorithms, it can be notoriously difficult to establish
exactly how these algorithms work, and why they sometimes fail. Empirical investigations can be costly
and do not always yield the desired level of information needed to make the right choice of heuristic and
corresponding parameter setting at hand.
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To put the application of search heuristics in software engineering and other domains on a firmer
ground, it is desirable to construct a theory which can explain the basic principles of the heuristics and
possibly provide guidelines for developing new and improved algorithms. Such a theory should prefer-
ably be valid without making simplifying assumptions about the algorithms or problems, e.g. assuming
that the EA has infinite population size, or ignoring the stochastic nature of these algorithms.

When studying a particular search heuristic, it is important that one makes clear what class of prob-
lems one has in mind. One can say very little about the advantages and disadvantages of a heuristic
without making any assumption about the problem [60].

For a given heuristic and problem class, an initial theoretical question to ask, is whether the heuristic
will ever find a solution, if it is allowed unlimited time. This type of questions falls within the realms
of convergence analysis, which is a well-developed area [49]. There exist simple conditions on the
underlying Markov chain of a search heuristic that guarantee convergence in finite time. These conditions
often hold for the popular heuristics [49]. Note that convergence itself gives very little information about
whether an algorithm is practically useful, because no limits are put on the amount of resources the
algorithm uses.

In this paper, we are concerned with the harder question of determining how long the heuristic needs
to find the solution. In line with the analysis of classical algorithms [6], we will seek to find a relationship
between the size of a problem and the number of basic steps needed to find the solution.

To make the notion of runtime precise, it is necessary to define time and size. We defer the discussion
on how to define problem instance size for software testing to Section 3, and define time first.

Time can be measured as the number of basic operations in the search heuristic. Usually, the most
time-consuming operation in an iteration of a search algorithm is the evaluation of the cost function.
We therefore adopt the black-box scenario [13], in which time is measured as the number of times the
algorithm evaluates the cost function.

Definition 1 (Runtime [12, 23]). Given a class F of cost functions fi : Si → R, the runtime TA,F (n) of
a search algorithm A is defined as

TA,F (n) := max {TA,f | f ∈ F with `(f) = n} ,

where `(f) is the problem instance size, and TA,f is the number of times algorithm A evaluates the cost
function f until the optimal value of f is evaluated for the first time.

A typical search algorithm A is randomised. Hence, the corresponding runtime TA,F (n) will be a
random variable. The runtime analysis will therefore seek to estimate properties of the distribution of
random variable TA,F (n), in particular the expected runtime E [TA,F (n)] and the success probability
Pr [TA,F (n) ≤ t(n)] for a given time bound t(n).

The last decades of research in the area show that it is important to apply appropriate mathematical
techniques to get good results [55]. Initial studies of exact Markov chain models of search heuristics
were not fruitful, except for the the simplest cases.

A more successful and particularly versatile technique has been so-called drift analysis [23, 45],
where one introduces a potential function which measures the distance from any search point to the global
optimum. By estimating the expected one-step drift towards the optimum with respect to the potential
function, one can deduce expected runtime and success probability. Finding the right potential function
can sometimes be a challenge, and, as in the case of Definition 9 in Section 6.6, can be considerably
different from the objective function.

In addition to drift analysis, the wide range of techniques used in the study of randomised algorithms
[38], in particular Chernoff bounds, have proved useful also for evolutionary algorithms.

Initial studies of runtime were concerned with simple EAs like the (1+1) EA on artificial pseudo-
boolean functions [11, 12, 56]. These studies established fundamental facts about the (1+1) EA, e.g.
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that it can optimise any linear function in O(n log n) expected time [12], that quadratic functions with
negative weights are hard [56], that the hardest functions require Θ(nn) iterations [12] and, in contrast
to commonly held belief, that not all unimodal functions are easy [11].

The understanding of the runtime of search heuristics were expanded in several directions, by analysing
more complex algorithms, by considering a wider range of problems, and by considering different prob-
lem settings, e.g. multi-objective optimisation [15, 40], co-evolutionary optimisation and optimisation in
continuous domains [25].

Runtime analysis on artificial functions has provided a better understanding of fundamental aspects
of EAs, e.g. under which conditions algorithmic parameters play a particularly important role, e.g. the
crossover operator [27, 51], populations in single [59] and multi-objective optimisation [16], and diversity
mechanisms [14]. Furthermore, the analysis of a wide range of search heuristics, including ant colony
optimisation [42] and particle swarm optimisation [52] has been initiated on pseudo-boolean functions.

The analysis of search heuristics expanded to classical combinatorial optimisation problems, and
many of these results are covered in the survey [44]. Initially, combinatorial optimisation problems in P
were analysed [17, 50, 41, 10]. Giel et al showed that although the runtime of (1+1) EA is in general
exponential, the EA is a polynomial-time randomised approximation scheme (PRAS) for the problem
[17]. Other problems analysed include sorting [50], minimum spanning tree [41] and Eulerian cycle
[10].

It is unrealistic to hope that the expected runtime of any search heuristics on the worst case instances
ofNP-hard problems is anything less than exponential. Instead, one can focus on analysing the runtime
on interesting sub-classes of the problem, e.g. the vertex cover problem [43], on the average case runtime
over the set of instances, or the approximation quality that can be obtained by the algorithm in polynomial
time. There exists relatively few results in this area, however it is worth noting the average case analysis
by Witt of (1+1) EA on the partition problem [58].

Runtime analysis is practically unexplored within search based software engineering. This might
be due to the fact that many of these problems have been outside the reach of the analysis techniques
available, partly because many software engineering problems are NP-hard [20].

Lehre and Yao considered conformance testing of finite state machines, and analysed the runtime
of (1+1) EA on the problem of computing unique input output sequences [32]. Theoretical runtime
results confirmed existing experimental results [19],[8] that EAs can outperform random search on the
UIO problem, showing that the expected running time of (1+1) EA on a counting FSM instance class is
O(n log n), while random search needs exponential time [32]. The UIO problem is NP-hard [29], so
one can expect that there exist EA-hard instance classes. It has been proved that a combination lock FSM
is hard for the (1+1) EA [32]. To reliably apply EAs to the UIO problem, it is necessary to distinguish
easy from hard instances. Theoretical results indicate that there is no sharp boundary between these
categories in terms of runtime. For any polynomial nk, there exist UIO instance classes where the (1+1)
EA has running time Θ(nk) [33].

Recent work has investigated the impact on runtime of the acceptance criterion in (1+1) EA and
the crossover operator in (µ+1) SSGA when computing UIOs from FSMs [31]. The results show some
instance classes where the right choice of acceptance criterion is essential. Furthermore, the results point
out cases where crossover and a large population are essential for (µ+1) SSGA to compute the UIO in
polynomial time [31].

3 Triangle Classification Problem

TC is the most famous problem in software testing. It opens the classic 1979 book of Myers [39], and has
been used and studied since early 70s (e.g., [18, 48, 7]). However, the true origin of TC is not completely
clear [61]. At any rate, TC is still widely used in many publications (e.g., [34, 57, 35, 30, 37, 62]).
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We use the implementation for the TC problem that was published in the survey by McMinn [35]
(see Figure 1). Some slight modifications to the program have been introduced for clarity.

A solution to the testing problem is represented as a vector I = (x, y, z) of three integer variables.
We call (a, b, c) the permutation in ascending order of I . For example, if I = (3, 5, 1), then (a, b, c) =
(1, 3, 5).

There is the problem to define what is the size of an instance for TC. In fact, the goal of runtime
analysis is not about calculating the exact number of steps required for finding a solution. On the other
hand, the runtime complexity of an algorithm gives us insight of scalability of the search algorithm. The
problem is that TC takes as input a fixed number of variables, and the structure of its source code does
not change. Hence, what is the size in TC? We chose to consider the range for the input variables for the
size of TC. In fact, it is a common practise in software testing to put constraints on the values of the input
variables to reduce the search effort. For example, if a function takes as input 32 bit integers, instead
of doing a search through over four billion values, a range like {0, . . . , 1000} might be considered for
speeding up the search.

Although limits on the input variables are common in software testing, there is usually no guarantee
that there exists a global optimum within those limits. However, the increase in runtime for a given
increase in variable range, gives useful information. For example, what are the consequences of choosing
a too wide range?

Limits on the input variables are always present in the form of bit representation size. For example,
the same piece of code might be either run on machine that has 8 bit integers or on another that uses
32 bits. What will happen if we want to do a search for test data on the same code that runs on a 64
bit machine? Therefore, using the range of the input variables as the size of the problem seems an
appropriate choice.

In our analyses, the size n of the problem defines the range R = {−n/2 + 1, . . . , n/2} in which
the variables in I can be chosen (i.e., x, y, z ∈ R). Hence, the search space S is defined as S =
{(x, y, z)|x, y, z ∈ R}, and it is composed of n3 elements. Without loss of generality n is even and
multiple of 4. To obtain full coverage, it is necessary that n ≥ 8, otherwise the branch regarding the
classification as scalene will never be covered. Note that one can consider different types of R (e.g.,
R′ = {0, . . . , n}), and each type may lead to different behaviours of the search algorithms. We based
our choice on what is commonly used in literature. For simplicity and without loss of generality, search
algorithms are allowed to generate solutions outside S. In fact, R is mainly used when random solutions
need to be initialised.

The search space is composed of n3 elements. However, instead of considering n, we could use q
with 2q−1 < n ≤ 2q, where q represents the max number of bits allowed for the input variables. In that
case, the search space would be large 23q. In our analyses, we prefer to consider n instead of q because
we think it is clearer.

The employed fitness function f is the commonly used approach level A plus the branch distance δ
[35]. For a target branch z, we have that the fitness function fz is:

fz(I) = Az(I) + ω(δw(I)) .

Note that the branch distance δ is calculated on the node of diversion, i.e. the last node in which
a critical decision (not taking the branch w) is made that makes the execution of z not possible. For
example, branch z could be nested to a node N (in the control flow graph) in which branch w represents
the then branch. If the execution flow reaches N but then the else branch is taken, then N is the node of
diversion for z. The search hence gets guided by δw to enter in the nested branches.

Let {N0, . . . , Nk} be the sequence of diversion nodes for the target z, with Ni nested to all Nj>i.
Let Di be the set of inputs for which the computation diverges at node Ni and none of the nested nodes
Nj<i is executed. Then, it is important that Az(Ii) < Az(Ij) ∀Ii ∈ Di, Ij ∈ Dj , i < j. A simple way
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1: int tri_type(int x, int y, int z) {
2: int type;
3: int a=x, b=y, c=z;
4: if (x > y) { /* ID_0 */
5: int t = a; a = b; b = t;
6: } else { /* ID_1 */}
7: if (a > z) { /* ID_2 */
8: int t = a; a = c; c = t;
9: } else { /* ID_3 */}

10: if (b > c) { /* ID_4 */
11: int t = b; b = c; c = t;
12: } else { /* ID_5 */}
13: if (a + b <= c) { /* ID_6 */
14: type = NOT_A_TRIANGLE;
15: } else { /* ID_7 */
16: type = SCALENE;
17: if (a == b && b == c) {
18: /* ID_8 */
19: type = EQUILATERAL;
20: } else /* ID_9 */
21: if (a == b || b == c) {
22: /* ID_10 */
23: type = ISOSCELES;
24: } else {/* ID_11 */}
25: }
26: return type;
27: }

Figure 1: Triangle Classification (TC) program, adapted from [35]. Each branch is tagged with a unique
ID.

to guarantee it is to have Az(Ii+1) = Az(Ii) + ζ, where ζ can be any positive constant (e.g., ζ = 1) and
Az(I0) = 0.

Because an input that makes the execution closer to z should be rewarded, then it is important that
fz(Ii) < fz(Ii+1) ∀Ii ∈ Di, Ii+1 ∈ Di+1. To guarantee that, we need to scale the branch distance δ
with a scaling function ω such that 0 ≤ ω(δj) < ζ for any predicate j. Note that δ is never negative.
We need to guarantee that the order of the values does not change once mapped with ω, for example
h0 > h1 should imply ω(h0) > ω(h1). We can use for example either ω(h) = (ζh)/(h + 1) or
ω(h) = ζ/(1 + e−h), where h ≥ 0.

If a search algorithm uses the fitness values only for direct comparisons (as is the case for all the
search algorithms described in this paper), the choice of the normalising function ω does not have any
effect besides its computational cost. An example, for which this would not apply, is the use of “Fitness
Proportional Selection” in GAs.

Having ζ > 0 and γ > 0, the fitness functions for the 12 branches (i.e., fi is the fitness function
for branch IDi) are shown in Figure 2. Note that the branch distance depends on the status of the
computation (e.g., the values of the local variables) when the predicates are evaluated. For simplicity, in
an equivalent way we show the fitness functions based only on the inputs I .

7



f0(I) =


0 if x > y ,
ω(|y − x| + γ) otherwise .

f1(I) =


0 if x ≤ y ,
ω(|x− y| + γ) otherwise .

f2(I) =


0 if min(x, y) > z ,
ω(|z −min(x, y)| + γ) otherwise .

f3(I) =


0 if min(x, y) ≤ z ,
ω(|min(x, y)− z| + γ) otherwise .

f4(I) =


0 if max(x, y) > max(z, (min(x, y))) ,
ω(|max(z, (min(x, y)))−max(x, y)| + γ) otherwise .

f5(I) =


0 if max(x, y) ≤ max(z, (min(x, y))) ,
ω(|max(x, y)−max(z, (min(x, y)))| + γ) otherwise .

f6(I) =


0 if a + b ≤ c ,
ω(|(a + b)− c| + γ) otherwise .

f7(I) =


0 if a + b > c ,
ω(|c− (a + b)| + γ) otherwise .

f8(I) =

8<: ζ + f7(I) if a + b ≤ c ,
0 if a == b ∧ b == c ∧ a + b > c ,
ω(|a− b| + |b− c| + 2γ) otherwise .

f9(I) =

8<: ζ + f7(I) if a + b ≤ c ,
0 if (a 6= b ∨ b 6= c) ∧ a + b > c ,
ω(2γ) otherwise .

f10(I) =

8>><>>:
2ζ + f7(I) if a + b ≤ c ,
ζ + f9(I) if a == b ∧ b == c ∧ a + b > c ,
0 if (a 6= b ∨ b 6= c) ∧ a + b > c ∧ (a == b ∨ b == c) ,
ω(min(|a− b| + γ, |b− c| + γ)) otherwise .

f11(I) =

8>><>>:
2ζ + f7(I) if a + b ≤ c ,
ζ + f9(I) if a == b ∧ b == c ∧ a + b > c ,
0 if a 6= b ∧ b 6= c ∧ a + b > c ,
ω(γ) otherwise .

Figure 2: Fitness functions fi for all the branches IDi of TC. The constants ζ and γ are both positive,
and 0 ≤ ω(h) < ζ for any h.

4 Search Algorithms

There are many search algorithms, and for each algorithm there are several different variants.
To simplify the writing of the search algorithm implementations, and for making them more readable,

they are not presented in their general form. Instead, they are specialised in working on vector solutions
of length three. The general versions, that consider this length as a problem parameter, would have the
same computational behaviour in terms of evaluated solutions.

The runtime of the algorithm is defined as the number of iterations until the optimum has been found
for the first time. Therefore the termination criterion is left unspecified to simplify the description of the
algorithms.

The fitness function depends on the target branch. We used the common function used in search
based software testing [35], i.e. the sum of the approach level with the branch distance. We also carried
out analyses with only the approach level without the branch distance.

4.1 Random Search

RS is the simplest search algorithm. It samples search points at random, and stops when a global optimum
is found (i.e., when the target branch is covered). RS does not exploit any information about previously
visited points when choosing the next point to sample. Often, RS is used as a baseline for evaluating the
performance of other more sophisticated meta-heuristics.

It is important not to confuse RS in white box testing with Random Testing. In random testing, in
fact, random points (i.e., test cases) are sampled, and those will compose the final test suite. On the
other hand, in our case we use RS to find and choose test cases for getting the highest possible branch
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coverage.
Because RS does not exploit any gradient in the objective function, there is no difference in using the

branch distance or not in the fitness function.

Definition 2 (Random Search (RS)).

while termination criterion not met
Choose I uniformly from S.

4.2 Hill Climbing

HC is a search algorithm that belongs to the class of local search algorithms. That means that given
a starting point I0, it looks at neighbour solutions N(I0) that are “near” to I0. If a better solution
I ′ ∈ N(I0) exists, then the next point I1 will be I ′. The same procedure of looking at the neighbour
solutions is then repeated on I1, until a final point Ii is reached, where ∀I ′ ∈ N(Ii) : f(I ′) ≥ f(Ii),
assuming we want to minimise function f . This means that no neighbour solution is better, and the
algorithm is said to be stuck in either a local or global optimum. If Ii is not a global optimum, then HC
can restart from a new different point I0.

HC is not a single specific algorithm, but a family of algorithms. In fact, we need to define how the
neighbourhood N is generated, the strategy ψ for visiting N , and finally how to do the restarts.

Given that the solution is a vector of integers (of length three in our particular case), an appropriate
neighbourhood for solution Ii is the set of solutions:

Nd(Ii) := {Ii + d | d ∈ D and Ii + d ∈ S} ,

where D := {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.
A random restart is a common choice, and we use it for the HC that we analyse. Regarding the

strategy ψ, we do not need to define one. In fact, the following theoretical analyses of HC are valid for
all strategies satisfying the following constraint: unless a new better solution is found, each neighbour
solution will be visited in at most a constant number of iterations (assuming that the neighbourhood size
is constant). The implication is very straightforward: if the current point Ii is neither a local or global
optimum, then a better solution will be found in at most a constant number of iterations. Note that this
constraint is very common, and most of the HC variants satisfy it. For the empirical study, we chose a
simple strategy ψ that moves each time to the first better solution it finds.

Definition 3 (Hill Climbing (HC)).

while termination criterion not met
Choose I uniformly at random from S.
while I not a local optimum in N(I),

Choose I ′ from N(I) according to strategy ψ
if f(I ′) < f(I), then

I := I ′.

4.3 Alternating Variable Method

AVM is similar to a HC, and was employed in the early work of Korel [28]. The algorithm starts on
a random search point I , and then it considers modifications of the input variables, one at a time. The
algorithm applies an exploratory search to the chosen variable, in which the variable is slightly modified
(in our case, by±1). If one of the neighbours has a better fitness, then the exploratory search is considered
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successful. Similarly to HC, the better neighbour will be selected as the new current solution. Moreover,
a pattern search will take place. On the other hand, if none of the neighbours has better fitness, then
AVM continues to do exploratory searches on the other variables, until either a better neighbour has been
found or all the variables have been unsuccessfully explored. In this latter case, a restart from a new
random point is done if a global optimum was not found.

A pattern search consists of applying increasingly larger changes to the chosen variable as long as a
better solution is found. The type of change depends on the exploratory search, which gives a direction
of growth. For example, if a better solution is found by decreasing the input variable by 1, then the
following pattern search will focus on decreasing the value of that input variable.

A pattern search ends when it does not find a better solution. In this case, AVM will start a new
exploratory search on the same input variable. In fact, the algorithm moves to consider one other variable
only in the case that an exploratory search is unsuccessful.

Definition 4 (Alternating Variable Method (AVM)).

while termination criterion not met
Choose I uniformly in S.
while I improved in last 3 loops

i := current loop index.
Choose Ti ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} such that

Ti 6= Ti−1 ∧ Ti 6= Ti−2.
found := true.
while found

for d := 1 and d := −1
found := exploratory search(Ti, d, I).
if found, then

pattern search(Ti, d, I)

Definition 5 (exploratory search(Ti, d, I)).

I ′ := I + dTi.
if f(I ′) ≥ f(I), then

return false.
else

I := I ′.
return true.

Definition 6 (pattern search(Ti, d, I)).

k := 2.
I ′ := I + kdTi.
while f(I ′) < f(I)

I := I ′.
k := 2k.
I ′ := I + kdTi.

10



4.4 (1+1) Evolutionary Algorithm

Runtime analysis of evolutionary algorithms is difficult and only recently have rigorous results become
available. When initiating the analysis in a new problem domain, it is an important first step to analyse a
simple algorithm like the (1+1) EA. Without understanding the behaviour of such a simple algorithm in
the new domain, it is difficult to understand the behaviour of more complex EAs, e.g. those EAs that use
a population and crossover. Although the (1+1) EA is relatively simple compared to other evolutionary
algorithms, recent research has shown that this algorithm is surprisingly efficient on a wide range of
useful problems [44], including sorting [50], minimum spanning tree [41] and Eulerian cycle [10].

Definition 7 ((1+1) EA).

Choose x uniformly from {0, 1}n.
Repeat

x′ := x.
Flip each bit of x′ with probability 1/n.
If f(x′) ≥ f(x),

then x := x′.

4.5 Genetic Algorithms

The most used search algorithms in the literature of SBSE are the Genetic Algorithms (GAs) [24].
GAs are a global search meta heuristic inspired by the Darwinian Evolution theory. Different variants

of this meta heuristic exist. However, they rely on four basic features: population, selection, crossover
and mutation. More than one solution is considered at the same time (population). At each generation
(i.e., at each step of the algorithm), some good solutions in the current population chosen by the selection
mechanism generate offspring using the crossover operator. This operator combines parts of the chro-
mosomes (i.e., the solution representation) of the offsprings parents. These new offspring solutions will
fill the population of the next generation. The mutation operator is applied to make small changes in the
chromosomes of the offspring.

In our analyses, we used a simple steady state implementation (SSGA).

Definition 8 ((µ+1) Steady State Genetic Algorithm (SSGA)).

Sample a population P of µ points u.a.r. from S.
repeat

with probability pc(n),
Sample x and y u.a.r. from P .
(x′, y′) := one point crossover(x, y).
if max{f(x′), f(y′)} ≥ max{f(x), f(y)}

then x := x′ and y := y′.
otherwise

Sample x u.a.r. from P .
Flip each bit of x′ with probability 1/`(x′).
if f(x′) ≥ f(x)

then x := x′.

5 Empirical Study

Comparing theoretical analyses against empirical ones is useful to see which different types of informa-
tion they can give.
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Table 1: Models used for the non-linear regression. The constant ρ is the model parameter that is esti-
mated with the regression.

Runtime models
ρ · 1
ρ · log(n)
ρ · log(n)2

ρ · n
ρ · n log(n)
ρ · n log(n)2

ρ · n2

ρ · n2 log(n)
ρ · n2 log(n)2

ρ · n3

We ran each search algorithm on each branch of TC for the following values of n: {16, 32, 64, 128, 256,
512, 1024}. For each size of n, we ran 30 trials (with different random seeds) and recorded the number
of fitness evaluations done before reaching a global optimum. We used the fitness functions in Figure 2.
We also ran experiments with only the approach level, i.e. without using the branch distance.

Following [26], for each setting of algorithm and problem instance size, we fitted different models
to the observed runtimes using non-linear regression with the Gauss-Newton algorithm. Each model
corresponds to a one term expression ρ · t(n) of the runtime, where the model parameter ρ corresponds to
the constant to be estimated. The residual sum of squares of each fitted model was calculated to identify
the model which corresponds best with the observed runtimes. This methodology was implemented in
the statistical tool R [47]. Ten different runtime models were considered (shown in Table 1). Note that
the ten models were chosen before the theoretical investigation was started, and that choice was made
based on what we thought would be appropriate.

The models with lowest error are shown in Table 2. The branch that seems most difficult to cover is
the one related to the classification as equilateral, i.e. ID8.

To study the effect that the size of data has on the accuracy of the models, we carried out another
set of experiments. We used a size set S = {16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192}, and
we run experiments with different ordered subsets of S (8 in total), as for example {16, 32, 64}, . . . ,
{16, . . . , 8192}. For each size in S we run 30 trials. Table 3 shows the results for branch ID8. The
fitness function uses the branch distance.

At any rate, this type of empirical analysis has the following limitations:

• although more experimental data could lead to infer the right models, it is a priori difficult to
estimate how much data is needed for obtaining them. Moreover, experiments might be computa-
tionally expensive, hence it might be not possible to obtain the right amount of data.

• if an algorithm has an high complexity (e.g., Θ(2n) or Θ(n5)), only experiments with low values
of n can be carried out. That limits the accuracy of the model (e.g., there might be not much
difference between n5 and n4 log(n)2).

• when we try to fit a set of models, the correct one might not be necessarily among them.

12



Table 2: Result of the empirical study. Each branch has an ID based on its order in the code. For each
branch, there are shown the results whether the branch distance was used (T) or not (F).

Branch ID Branch Distance RS HC AVM (1+1) EA (µ+1) SSGA

ID0 T 2.2000 0.9497 log(n)2 0.4558 log(n) 1.1470 log(n) 2.0480
F 2.2380 7.8480 8.0810 1.3270 log(n) 2.0520

ID1 T 1.9570 0.0173 n log(n) 0.5796 log(n) 5.5710 1.9050
F 1.8190 7.6380 0.9658 log(n) 1.0750 log(n) 1.9570

ID2 T 3.2140 0.0008 n2 1.1690 log(n) 10.6100 3.3430
F 3.2480 15.0100 12.6400 2.0560 log(n) 3.3950

ID3 T 1.4100 0.1435 n 0.4358 log(n) 3.5670 1.5330
F 1.5570 4.5140 0.5952 log(n) 0.5458 log(n) 1.4330

ID4 T 1.4860 0.0018 n log(n)2 0.4037 log(n) 0.5677 log(n) 1.5240
F 1.4430 4.2190 4.7520 3.8190 1.5330

ID5 T 0.3781 log(n) 0.0315 n log(n) 0.9759 log(n) 12.3300 3.1140
F 2.7480 14.1900 1.6010 log(n) 1.6730 log(n) 2.6670

ID6 T 1.0710 0.0126 n 1.2430 1.1240 1.0480
F 1.0810 1.2670 1.2430 0.1790 log(n) 1.0670

ID7 T 15.4000 0.9594 n 4.4670 log(n) 2.1370 log(n)2 30.5600
F 17.7400 95.5200 98.7700 10.6500 log(n) 48.9400

ID8 T 0.2476 n2 log(n) 1.3670 n 6.8240 log(n) 5364.0000 n 37.3000 log(n)2

F 2.4110 n2 0.0235 n2 log(n)2 1.7690 n2 0.0319 n2 log(n) 0.4475 n2

ID9 T 15.8300 0.1025 n log(n) 4.8760 log(n) 13.5100 log(n) 37.2200
F 14.2300 91.7200 93.7400 70.4400 40.9000

ID10 T 1.7310 n 1.1090 n 4.8320 log(n) 0.4556 n 5.6970 log(n)2

F 0.2525 n log(n) 3.8490 n 4.5880 n 3.4860 log(n)2 1.0800 n

ID11 T 17.5900 2.8810 n 31.8500 14.4700 log(n) 41.4700
F 19.1600 110.8000 105.6000 79.3500 45.8000

Table 3: Result of experiments for branch ID8. Data were collected with different values of n.

Max n RS HC AVM (1+1) EA (µ+1) SSGA

16 1.8970 n log(n)2 1.8390 n 7.4300 log(n) 0.1839 n2 log(n) 3.9180 n log(n)

32 1.8970 n log(n)2 1.8390 n 7.4300 log(n) 0.1839 n2 log(n) 3.9180 n log(n)

64 0.0696 n2 log(n)2 1.6050 n 33.7400 0.1478 n3 21.3400 log(n)2

128 2.5960 n2 1.6400 n 6.5310 log(n) 0.2961 n2 log(n)2 24.5100 log(n)2

256 2.2170 n2 1.6680 n 6.2120 log(n) 14.1200 n2 10.3500 n

512 2.0150 n2 1.5510 n 6.3620 log(n) 57.4300 n log(n)2 35.0800 log(n)2

1024 1.9560 n2 1.5240 n 6.4170 log(n) 8.2890 n2 40.7100 log(n)2

2048 0.0218 n2 log(n)2 0.1559 n log(n) 6.6250 log(n) 682.0000 n log(n) 4.2890 n

4096 2.1580 n2 1.6950 n 6.9210 log(n) 6025.0000 n 0.0025 n2

8192 2.2910 n2 1.6920 n 7.2870 log(n) 6279.0000 n 116.7000 log(n)2
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Figure 3: Fitness landscape of modified fitness function f8 with n = 24 and x fixed to the value 6.

6 Theoretical Analysis

For RS and AVM we studied the runtime on each target branch. For HM and (1+1) EA, we only focused
on branch ID8. We have not formally analysed the runtime of SSGA, although we carried out empirical
experiments for sake of comparison.

For fitness function f8, in Figures 3 and 4 we show 3D graphs of the fitness landscape with variable
x fixed to n/4 and −n/4 respectively. The value of n is 24. Because the use of a normalising function
ω would make difficult to visualise the difference between the fitness values of the solutions, we do not
use a normalising function. Instead, to draw the fitness landscape of f8 we use ω(h) = h, and then we
choose ζ = 2n high enough to guarantee that higher approach levels give worse fitness values. The value
of γ is 1. Note that in Figure 3 there are small plateaus that correspond to the cases when a+ b > c and
the value of b is modified.

For branch ID8, when the branch distance is not used, the fitness function is:

f(I) =


2ζ if a+ b ≤ c ,
0 if a = b ∧ b = c ∧ a+ b > c, and
1ζ otherwise .

(1)

6.1 Global Optima

For each branch IDi, we calculate the number of global optima.

Proposition 1. For the objective function f0, considering the space of solutions S, there are g0 =
(1/2)(n− 1)n2 global optima.

Proof. We need to consider all the cases in which x > y and z can assume any value.

g0 = n

(n−1)∑
i=1

(n− i) = n
(
n(n− 1)− (1/2)(n− 1)(n)

)
= (1/2)(n− 1)n2 .
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Figure 4: Fitness landscape of modified fitness function f8 with n = 24 and x fixed to the value −6.

Proposition 2. For the objective function f1, considering the space of solutions S, there are g1 =
(1/2)(n+ 1)n2 global optima.

Proof. If branch ID0 is not executed, then ID1 is executed. Therefore, using Proposition 1:

g1 = n3 − (1/2)(n− 1)n2 = (1/2)(n+ 1)n2 .

Proposition 3. For the objective function f2, considering the space of solutions S, there are g2 =
(1/6)(n− 1)(n)(2n− 1) global optima.

Proof. We need to consider all the cases in which x > z and y > z.

g2 =
n−1∑
i=1

(n− i)2 = (1/6)(n− 1)(n)(2n− 1) .

Proposition 4. For the objective function f3, considering the space of solutions S, there are g3 =
(1/6)(n)(n+ 1)(4n− 1) global optima.

Proof. If branch ID2 is not executed, then ID3 is executed. Therefore, using Proposition 3:

g3 = n3 − (1/6)(n− 1)(n)(2n− 1) = (1/6)(n)(n+ 1)(4n− 1) .

Proposition 5. For the objective function f4, considering the space of solutions S, there are g4 =
(1/3)(n)(n− 1)(2n− 1) global optima.
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Proof. We need to consider all the cases in which max(x, y) > max(z,min(x, y)). There is no valid
solution to this inequality if x = y. Because max(x, y) ≥ min(x, y), those cases can be simplified to
max(x, y) > z with x 6= y.

g4 = 2
n−1∑
i=1

n∑
j=i+1

(j − 1) = 2
n−1∑
i=1

(
(1/2)(n)(n− 1)− (1/2)(i)(i− 1)

)
= (1/3)(n)(n− 1)(2n− 1) .

Proposition 6. For the objective function f5, considering the space of solutions S, there are g5 =
(1/3)(n)(n2 + 3n− 1) global optima.

Proof. If branch ID4 is not executed, then ID5 is executed. Therefore, using Proposition 5:

g5 = n3 − (1/3)(n)(n− 1)(2n− 1) = (1/3)(n)(n2 + 3n− 1) .

Proposition 7. For the objective function f8, considering the space of solutions S, there are n/2 global
optima, and they are of the form G = (t, t, t), with t > 0.

Proof. This can be proved by considering fitness function f8, in which the minimal fitness value is given
for (a + b > c) ∧ (a = b) ∧ (b = c). The points G are the only that satisfy (a = b) ∧ (b = c), and
t + t > t implies t > 0. Because the range of the variables is R = {−n/2 + 1, . . . , n/2}, there are
g8 = n/2 possible different t with t > 0.

Proposition 8. For the objective function f10, considering the space of solutions S, there are g10 =
(3/16)(n)(3n− 8) global optima.

Proof. We first analyse the case b = c.

k =
(

3
1

) n/2∑
a=1

((n/2)− a) = (3/2)(n)
n/2∑
a=1

1− 3
n/2∑
a=1

a = (3/8)(n)(n− 2) .

We then need to consider the cases in which a = b.

t =
(

3
1

)( n/2∑
a=1

min(2a−1,n/2)∑
c=a+1

1
)

= 3
( n/4∑
a=1

2a−1∑
c=a+1

1
)

+ 3
( n/2∑
a=1+n/4

n/2∑
c=a+1

1
)

= (3/16)(n2 − 4n) .

Finally:
g10 = k + t = (3/8)(n)(n− 2) + (3/16)(n2 − 4n) = (3/16)(n)(3n− 8) .

Proposition 9. For the objective function f11, considering the space of solutions S, there are g11 =
(1/16)(n)(n− 4)(n− 5) global optima.
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Proof. We need to consider all the cases in which a 6= b 6= c and a+ b > c. To make this latter predicate
true we need a ≥ 2.

g11 = 3!
(∑(n/2)−2

a=2

∑(n/2)−1
b=a+1

∑min(a+b−1,n/2)
c=b+1 1

)
= 6

(∑(n/4)−1
a=2

∑(n/2)−a
b=a+1

∑a+b−1
c=b+1 1

)
+ 6
(∑n/4

a=2

∑(n/2)−1
b=(n/2)−a+1(n/2)− b

)
+

+6
(∑(n/2)−2

a=(n/4)+1

∑(n/2)−1
b=a+1 (n/2)− b

)
= (1/32)(n)(n− 4)(n− 8) + (1/64)(n)(n+ 4)(n− 4) + (1/64)(n)(n2 − 12n+ 32)
= (1/16)(n)(n− 4)(n− 5) .

Proposition 10. For the objective function f9, considering the space of solutions S, there are g9 =
(1/16)(n)(n+ 2)(n− 2)global optima.

Proof. Using Propositions 8 and 9, we just need to add the global optima for branches ID10 and ID11.

g9 = (3/16)(n)(3n− 8) + (1/16)(n)(n− 4)(n− 5) = (1/16)(n)(n+ 2)(n− 2) .

Proposition 11. For the objective function f7, considering the space of solutions S, there are g7 =
(1/16)(n)(n2 + 4) global optima.

Proof. Using Propositions 7 and 10, we just need to add the global optima for branches ID8 and ID9.

g9 = (n/2) + (1/16)(n)(n+ 2)(n− 2) = (1/16)(n)(n2 + 4) .

Proposition 12. For the objective function f6, considering the space of solutions S, there are g6 =
(1/16)(n)(15n2 − 4) global optima.

Proof. If branch ID7 is not executed, then ID6 is executed. Therefore, using Proposition 11:

g6 = n3 − (1/16)(n)(n2 + 4) = (1/16)(n)(15n2 − 4) .

6.2 General Properties

The following simple properties of the problem will be used extensively in the runtime analysis.

Proposition 13. For the objective function f8, let a ≤ b ≤ c, and v > 0, then f8(a, b, c) < f8(a−v, b, c).

Proof. In the case when a+ b ≤ c, then a− v + b ≤ c and we have f8(a, b, c) = ζ + ω(c− a− b+ γ)
and f8(a − v, b, c) = ζ + ω(c − (a − v) − b + γ), in which case the proposition holds. Assume on the
other hand that a+ b > c. Let g be:

g =


0 if a = b ∧ b = c ,
2γ if a 6= b ∧ b 6= c ,
γ otherwise ,

we get:
f8(a− v, b, c) ≥ ω(c− a+ v + g)

> ω(c− a+ g)
= f8(a, b, c) .
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Proposition 14. For objective function f8, if a ≤ b ≤ c, and v > 0, then f8(a, b, c) < f8(a, b, c+ v).

Proof. In the case when a+ b ≤ c, we have:

f8(a, b, c+ v) = ζ + ω(v + c− a− b+ γ)
> ζ + ω(c− a− b+ γ)
= f8(a, b, c) .

For the opposite case a+ b > c, we have:

f8(a, b, c+ v) ≥ ω(v + c− a+ g)
> ω(c− a+ g)
= f8(a, b, c) ,

where g is as defined in the proof of Proposition 13.

Proposition 15. Given x and y uniformly and independently distributed in R, then their expected differ-
ence with y ≥ x isE[y−x|y ≥ x] = n−1

3 = Θ(n). The largest difference would be y−x = n−1 = Θ(n)

Proof.
E [y − x | y ≥ x] = (n+ 2(n− 1) + 3(n− 2) + . . .+ n(1))

/ n(n+1)
2 − 1

=
∑n

i=0(i+ 1)(n− i) · 2
n(n+1) − 1

= n(n+1)(n+2)
6 · 2

n(n+1) − 1
= n−1

3
= Θ(n) .

The highest value that y can take is n/2. The lowest value x can take is −n/2 + 1. Hence, n/2 −
(−n/2 + 1) = n− 1.

Proposition 16. The expected difference between c and a is linear in n independently of b, i.e. E [c− a] =
(n+1)

2 = Θ(n).

Proof. The expected value of a is E [a | b] = b/2− (n/2 + 1)/2, whereas E [c | b] = b+ (n/2− b)/2.
It now follows that E [c− a | b] = E [c | b]− E [a | b] = (n+ 1)/2, independently of b.

Proposition 17. Given x and y uniformly and independently distributed in R, then the probability that
x > y is (1/2)− (1/2n). The probability that x ≤ y is (1/2) + (1/2n).

Proof. The probability that x > y, with X and Y the random variables representing them, is:

Pr [X > Y ] =
∑
y

n/2∑
i=y+1

Pr [X = i | Y = y] · Pr [Y = y]

=
1
2
− 1

2n
,

The probability of x ≤ y is hence 1− (1
2 −

1
2n) = 1

2 + 1
2n

Lemma 1. For search algorithms that use the fitness function only for direct comparisons of candidate
solutions, the expected time for covering a branch IDw is not higher than the expected time to cover any
of its nested branches IDz .
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Proof. Before a target nested branch IDz is executed, its “parent” branch IDw needs to be executed.
Until IDw is not executed, the fitness function fwz (i.e., search for IDz and IDw is not covered) will be
based on the predicate of the branch IDw. Hence, that fitness function would be equivalent to the one
fw used for a direct search for IDw. In particular, fwz (I) = ζ + fw(I), that because the approach level
would be different. However, because the constant ζ > 0 would be the same to all the search points, the
behaviour of a search algorithm, that uses the fitness function only for direct comparisons of candidate
solutions, would be same on these two fitness functions (all search algorithms used in this work satisfies
this constraint).

Because the time to solve (i.e., finding an input that minimises) fwz is not higher than the time needed
for fz and because fwz is equivalent to fw, then solving fw cannot take in average more time than solving
fz .

6.3 Analysis of RS

Lemma 2. Given g global optima in a search space of |S| elements, then the expected time for RS to find
an optimal solution is E[TRS ] = |S|/g.

Proof. The probability of sampling an optimal solution is p = g/|S|. The behaviour of RS can therefore
be described as a Bernoulli process, where the probability of getting a global optimum for the first time
after t steps is geometrically distributed Pr [TRS = t] = (1 − p)t−1 · (p). Hence, the expected time for
RS to find a global optimum is E[TRS ] = (1/p) = |S|/g.

Theorem 1. The expected time for RS to find an optimal solution to objective function f8 is 2n2 = Θ(n2)
and for objective function f10 it is Θ(n). For all the other branches, the expected time is Θ(1).

Proof. The search space is composed of n3 elements. The proof simply follows by Lemma 2 and all the
Propositions in Section 6.1.

Theorem 2. The probability that RS has found an optimal solution to objective function f8 within n3

iterations is exponentially large 1− e−Ω(n).

Proof. Using the inequality (1 − 1/x)x ≤ e−1 and Theorem 1, we can see that Pr
[
TRS > n3

]
=((

1− 1
2n2

)2n2
)n/2

≤ e−n/2.

Proposition 18. The expected time for RS to find an optimal solution to objective function f8 when the
branch distance is not used (i.e., Equation 1) is 2n2 = Θ(n2).

Proof. RS does not exploit any gradient in the fitness function. Therefore, the use of the branch distance
does not make any difference. Proof hence follows from Theorem 1.

6.4 Analysis of HC

Theorem 3. The expected time for HC with neighbourhood Nd to find an optimal solution to objective
function f8 is Θ(n).

Proof. We first need to prove that all the points of the form L = (t, t, t) with t ≤ 0 are local optima.
Because a+ b ≤ c holds for all of them, we have f8(L) = ζ + ω(−t+ γ). Any operation on the vector
I can either increase c by one, or decrease a by one. In both the cases, the resulting points L′ have worse
fitness (Proposition 13 and 14), that is f8(L′) = ζ +ω(−t+ 1 + γ). Because f8(L′) > f8(L), the points
L are local optima.
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Considering Propositions 13 and 14, a solution I ′ is not accepted if the value of a has decreased,
or if the value of c has increased. Moreover, there is always a gradient for a to increase up to b, and
for c to decrease down to b, because there would be a fitness improvement whether a + b ≤ c is true
or not. Although the value of b can either increase or decrease, its number of changes is finite, because
a ≤ b ≤ c is always true and because HC accepts as new solutions only strictly better points. Therefore,
after a finite number of steps (i.e., the algorithms does not enter in an infinite loop, like it would happen
if new solutions with equal fitness would be accepted), the current solution I converges to a point of the
form W = (t, t, t), with a ≤ t ≤ c. If b does not change during the search, then t = b.

Although we have already proved that all the points on the form (t, t, t) are either local or global
optima, only after the discussion in the previous paragraph we can state that L are the only possible local
optima. In fact, regardless of the starting point, HC reaches either L or G, and G are global optima by
Proposition 7.

A step is called successful if the new search point I ′ is accepted. The number of successful steps η
for HC to reach an optimum depends on how the value of b changes. If it does not change, then there
are b − a steps in which a increases, and c − b steps in which c decreases. Hence, η = c − a. There
is only one case in which b can decrease: (a + b > c) ∧ (b = a + 1), because in all other cases the
fitness would never be better. If b is decreased before a increases (that depends on how the strategy ψ
works), then η = 1 + c − a, because then a = b and a and b cannot be changed again. If it is still
(a+ b > c) but (b 6= a+ 1), then b cannot be altered until a is increased up to b− 1, because the fitness
would not change. On the other hand, while (a+ b ≤ c), there is always a gradient for b to increase up to
c−a+1. However, if a ≤ 0, b can increase up to c. Again, depending on ψ, it is possible that c decreases
before b increases, and vice-versa. In the worst case with a = b and a ≤ 0, we can have η = 2(c − a),
because b can take c− a steps to increase up to c, and other c− a steps for a to increase up to c as well.
Therefore, regardless of the starting point I and strategy ψ, the number η of successful steps is bounded
by (c− a) ≤ η ≤ 2(c− a).

Unless the algorithm is stuck in an optimum, in at most a constant number of iterations it will find a
better solution in its neighbourhood. Considering the bounds of η, the expected number of iterations for
reaching an optimum is Θ(c−a). For Proposition 16, starting from a random point the expected number
of iterations for reaching either a local or a global optimum is hence Θ(n).

When an optimum is reached, HC does a restart if that point is a local optimum. Therefore, we need
to calculate the number of restarts that are required for HC to find an optimal solution.

If c ≤ 0, then HC is bound to reach a local optimum regardless of the strategy ψ. This happens
because it will reach a point (t, t, t) with t ≤ c. Because c ≤ 0 implies t ≤ 0, then that point is a local
optimum. With the same type of reasoning, if a > 0, then HC is bound to find a global optimum. We
said that there is only one case in which b can decrease up to a, and that is b = a+ 1. However, because
for doing it there is the need of a + b > c, then a > 0 is required. Therefore, if b > 0, then b will
always remain a positive value. Hence, we can generalise the condition of reaching a global optimum
from a > 0 to a more significant b > 0. Note that a > 0 implies b > 0, but the opposite is not always
true.

There is still to consider the case (b ≤ 0) ∧ (c > 0), in which the result is actually depending on the
strategy ψ. If it chooses to decrease c at least down to 0 before increasing b up to 1, then a local optimum
will be reached, or a global optimum if it chooses to do the opposite. However, as we will show, the
analysis of that situation is not important for finding a lower and an upper bound for the number of
required restarts.

The probability of starting from a point with c ≤ 0 is Pr [c ≤ 0] = 1
8 . On the other hand, the

probability of starting from a point with b > 0 is equivalent to the probability of flipping a coin three times
and getting at least two heads, hence, Pr [b > 0] = 1

8 + 31
8 = 1

2 . Therefore, regardless of the strategy ψ,
we have that the probability of reaching a global optimum from a random point is 1

2 ≤ Pr [global] ≤ 3
4 ,
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whereas for reaching a local optimum it is 1
8 ≤ Pr [local] ≤ 1

2 .
Therefore, the expected number of restarts is no more than 2. Because reaching either a local or

global optimum from a random point requires Θ(n) steps, and the expected number of restarts to reach a
global optimum is no more than 2, it follows that the expected runtime of HC is on TC Θ(n).

Theorem 4. The probability that HC with neighbourhood Nd has found an optimal solution to objective
function f8 within k · n2 iterations is exponentially large 1− e−Ω(n), where k is a constant.

Proof. The time to reach a local optimum is at most k · n iterations, where the constant k is determined
by the strategy ψ. The probability that HC finds a local optimum more than n times before a global
optimum is found is less than 2−n = e−Ω(n).

Theorem 5. The expected time for HC with neighbourhood Nd to find an optimal solution to objective
function f8 when the branch distance is not used (i.e., Equation 1) is Θ(n2).

Proof. Objective function in Equation 1 can assume only 3 values. Hence, before doing a restart, there
can be at most 2 successful steps. Because the neighbourhood size is constant, then there can be at most
a constant number of steps before doing a restart.

On the one hand, in the optimal scenario, all the solutions that are 2 steps away from a global optimum
would have a gradient toward it. The probability of starting from one of these points would be n

2 ·6
2 · 1
n3 =

18
n2 , hence the runtime would be Ω(n2). On the other hand, in the worst scenario none of these points
have a gradient, and HC would degenerate in a RS with runtime O(n2) (Theorem 1). Because the lower
bound is equal to the upper bound, hence HC has runtime Θ(n2).

Theorem 6. The expected time for HC with neighbourhood Nd to find an optimal solution to objective
function f0 is Θ(n).

Proof. Following by Proposition 17, we have 1
4 ≤ Pr [x > y] < 1

2 for any n > 1. Hence, with constantly
bounded probability, HC finds a solution in the first step, i.e. Θ(1) steps.

In the case in which x ≤ y, there is a gradient to either increase x or to decrease y. By Proposition
15, the distance is Θ(n), hence Θ(n) steps are required.

Considering the constant bounds on the probability of the 2 different runtimes, the overall runtime is
Θ(n).

6.5 Analysis of AVM

Lemma 3. For any branch, if the probability that the random starting point is a global optimum is lower
bounded by a positive constant p > 0, then AVM needs at most a constant number Θ(1) of restarts to
find a global optimum.

Proof. If we consider only the starting point, the AVM behaves as a random search, in which the prob-
ability of finding a global optimum is bigger than p. That can be described as a Bernoulli process (see
Lemma 2), with expected number of restarts that is lower or equal than 1/p.

Theorem 7. The expected time for AVM to find an optimal solution to the coverage of branches ID0 and
ID1 is O(log n).
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Proof. Considering that the search is done for values of n bigger or equal than 8, then both the searches
for ID0 and ID1 start with a random point that is a global optimum with a probability lower bounded
by a positive constant (Proposition 17). Therefore, AVM needs at most a constant number of restarts
(Lemma 3), independently of the presence and number of local optima.

For both branches, either the starting point is a global optimum, or the search will be influenced by
the distance x− y that is Θ(n) (Proposition 15). We hence analyse this latter case.

Until the predicate is not satisfied, the fitness function ω(|y−x|+γ) (with γ a positive constant) based
on the branch distance rewards any reduction of that distance. The third variable z does not influence the
fitness function, hence an exploratory search fails on that. For the coverage of ID0, the variable x has
gradient to increase its value, and y has gradient to decrease. For ID1 it is the opposite. The distance
|x− y| can be covered in O(log n) steps of a pattern search.

Theorem 8. The expected time for AVM to find an optimal solution to the coverage of branches ID2,
ID3, ID4 and ID5 is O(log n).

Proof. The sentences in lines 5, 8 and 11 of the source code (Figure 1) only swap the value of the three
input variables. Hence, the predicate conditions of branches ID2, ID3, ID4 and ID5 are directly based
on the values of two different input variables.

The type of predicates is the same of branches ID0 and ID1 (i.e., >), and the condition of the
comparison is the same (i.e., > on two input variables). The three input variables are uniformly and
independently distributed in R, and by Proposition 15 the maximum distance among them is Θ(n).
There are the same conditions of Theorem 7 apart from the fact that the variables could be swapped
during the search, i.e. the fact that lines 5 and 8 are executed or not can vary during the search.

For branches ID2 and ID3, starting from z no variation of the executed code is done until the branch
is covered. For branch ID3, for either x or y a search starting from the maximum of them would result
in no improvement of the fitness function. The minimum of x and y has a gradient to decrease, and while
it does so the relation of their order is not changed. Hence, no variation of the executed code is done.
On the other hand, for branch ID2, the minimum has gradient to increase, but the pattern search would
stop once it becomes the maximum of the two (e.g., x > y if the search started on x with x < y). That
happens in at most O(log n) steps because their difference is at most Θ(n) (Proposition 15). If the next
variable considered by AVM is not z, then the above behaviour will happen again. However, the next
variable will be necessarily z, hence we have at most O(log n) steps done 3 times, that still results in
O(log n) steps.

For any pair of values we have that min(x, y) ≤ max(x, y). For branch ID4, if it is not executed,
then max(x, y) ≤ max(z,min(x, y)) and necessarily it would be z ≥ max(x, y) ≥ min(x, y). Hence,
z would have gradient to decrease down untilmax(x, y), in which case ID4 gets executed afterO(log n)
steps. A modification of the minimum value between x and y does not change the fitness value. For the
maximum value, it can increase up to z, in which case ID4 gets executed after O(log n) steps. The
relation of the order of the input variables would not changed during those searches.

For branch ID5, if it is not executed, thenmax(x, y) > max(z,min(x, y)) and necessarily it would
be x 6= y and max(x, y) > z. Starting the search from the maximum of x and y would have gradient to
decrease down tomax(z,min(x, y)), that would be done inO(log n) steps that will make ID5 executed.
If z < min(x, y), modifying z would have no effect to the fitness function, whereas the minimum of x
and y has gradient to increase up tomax(x, y). In the other case z ≥ min(x, y), it is the other way round,
i.e. z can increase whereas the minimum between x and y cannot change. In both cases, in O(log n)
steps branch ID5 gets executed with no change in the relation of the order of the input variables.

The expected time for branches ID2, ID3, ID4 and ID5 is therefore the same as for branches ID0

and ID1, i.e. O(log n).
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Theorem 9. The expected time for AVM to find an optimal solution to the coverage of branch ID6 is
O(log n).

Proof. If the predicate a + b ≤ c is not true, the fitness function would be ω(|a + b− c|+ γ) (with γ a
positive constant). For values a ≤ 0, the predicate is true because a+ b ≤ b ≤ c.

There is gradient to decrease a and b, and there is gradient to increase c. If the search starts from
either a or b, in O(log n) steps of a pattern search the target variable assumes a negative value (the
highest possible starting value is n/2). In particular, if the search starts from b, at a certain point the
input variable representing b will instead represent a. Otherwise, it sufficient to increase c up to the value
a+ b ≤ n/2 + n/2 = n, that can be done in O(log n) steps of a pattern search.

Lemma 4. For objective f8, given a starting point (a, b, c), before doing a restart AVM converges to an
optimum T = (t, t, t), where a ≤ t ≤ c.

Proof. The variable representing a can only increase (Proposition 13), and it has a gradient to increase
up to b, i.e., each succession of increments of a has better fitness till a′ = b. Similarly, c cannot increase
(Proposition 14), and it has a gradient to decrease down to b, and although b can change, b will still be in
the interval [a, c].

In the case of a pattern search that leads to a value k outside [a, c], then that value has a gradient
toward a if k < a and toward c if k > c (that can be easily proved with an induction on Propositions 13
and 14).

AVM modifies the same variable until it finds better solutions. Hence, before any other variables is
modified, the current variable will have a value in the interval [a, c].

Because, AVM accepts only strictly better solutions and it is deterministic, it will hence converge to
a point T = (t, t, t) in a finite number of iterations.

Lemma 5. For objective f8, starting an exploratory search on any variable g ∈ {x, y, z}, after Θ(log(n))
steps of AVM the distance of g from the closest other variable is reduced by at least 2/3.

Proof. The variable representing a can only increase (Proposition 13) toward b, and the variable repre-
senting c can only decrease down to b (Proposition 14).

Considering the fitness function f8, the variable representing b can increase toward c if a + b ≤ c.
Otherwise, it can be modified only in 2 cases:

b = a+ 1 ,
b = c− 1 .

In these two cases, a single exploratory search makes either a = b or b = c in at most two steps.
If g represents either a or b, then a pattern search will increase its value, otherwise the value will be

decreased (case c).
Let h be the closest variable to g. After a pattern search, we can have three cases: either g = h,

or g < h or g > h. Given (a0, b0, c0) the ordered values of (x, y, z) when AVM starts to do a new
exploratory search, Figures 5, 6 and 7 show examples of these three cases for g representing b. For
Propositions 13 and 14, a pattern search ends when g assumes value bigger than c or lower than a.

To simplify the proof, assume that g < h (the other case g > h can be analysed in the same way by
inverting the signs of the arithmetic operations and the inequalities).

Let g′ be the value of g at the end of the pattern search. For Proposition 16, it follows that |g − h| =
Θ(n). Hence, given s the number of steps for which AVM gets g as close as possible to h with gs < h,
then s = Θ(log(n)).
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b0 b1 b2 b3 c0

Figure 5: Example where c0 − b0 = 15, in which case bs = c0.

b0b1 b2 b3 c0bs bs+1

Figure 6: Example where c0 − b0 = 17, in which case bs+1 is not accepted, as indicated by the dashed
arrow.

After s steps, the increment to the variable g is
∑s

i=0 2i = 2s+1 − 1. Let k = 2s+1, hence after s
steps the value of g is gs = g + k − 1. Hence:{

g + k − 1 < h ,
g + 2k − 1 > h .

There can be two cases: either g′ = gs, and that happens if gs+1 leads to a worse fitness, or otherwise
g′ = gs+1. On the one hand, for g′ = gs, then it should be that:

h− gs ≤ gs+1 − h ,

which is the case for k ≥ 2
3(h− g + 1). On the other hand, for g′ = gs+1 it should be:

h− gs > gs+1 − h ,

and the highest value that g′ can have is gs+1 = g + 4
3(h − g + 1). Therefore it follows that |h − g′| ≤

1
3 |h− g|.

Lemma 6. The lower and upper bounds of the expected time of AVM for converging to an optimum for
objective f8 is Ω(log n) and O((log n)2).

Proof. By Lemma 4, AVM converges to a solution T = (t, t, t) before doing a restart if T is not a global
optimum.

Starting the search on any variable g ∈ {x, y, z}, after Θ(log(n)) steps, its distance from the closest
other variable is reduced by at least 2/3 (Lemma 5). AVM does modifications on the same variable till
improvements can be found. Figure 8 shows an example of a new pattern search on the same variable.

By applying Lemma 5 recursively, because the distance is reduced at least by 2/3 at each pattern
search, then after O(log n) pattern searches we have g that is equal to another variable, which we

b0b1 b2 b3 c0bs bs+1

Figure 7: Example where c0 − b0 = 25, in which case bs+1 is accepted.
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b0 c0c1cs
cs+1

Figure 8: Example in which c0 − b0 = 6. In that case cs+1 is accepted. To note that is the continuation
of the search done in figure 7, which is represented in dotted arrows. The former bs+1 has become the
new c0, whereas the old c0 is now the new b0.

call h. Therefore, that in expectation would happen after a number of steps with bounds Ω(log n) and
O((log n)2).

However, the distance |g − h| gets reduced at each search. Hence, the upper bound for the steps is:∑logn
i=0 log( n

3i
) =

∑logn
i=0 (log n+ log 3−i)

= (log n)2 − log 3
∑logn

i=0 i

= (log n)2 − log 3 (logn)(logn+1)
2

= O((log n)2) .

Although the distance is reduced at each new pattern search, the upper bound does not change.
Once we get g = h, any modification of g and h would not lead to any better value for fitness

function f8. The modification of the third variable will follow the same behaviour of g, and after another
i expected iterations with same bounds, AVM converges to T . Because only a constant number of
variables is modified (i.e., 2), the lower and upper bounds of the expected time of AVM for converging
to T is Ω(log n) and O((log n)2).

Lemma 7. For objective f8, in expectation, AVM needs a constant number Θ(1) of restarts to reach a
global optimum.

Proof. If a > 0, then AVM converges to an optimum (Lemma 4) which is global (Proposition 7). The
probability of this event is 1

8 . Considering restarts as a geometric process, the expected number of restarts
is less or equal to 8 (Lemma 3).

Theorem 10. The lower and upper bounds of the expected time of AVM to find an optimal solution to
objective f8 is Ω(log n) and O((log n)2).

Proof. By Lemma 7 there are Θ(1) restarts, and by Lemma 6, each search requires in expectation
Ω(log n) and O((log n)2) steps regardless it takes to a global or local optimum.

Theorem 11. The probability that AVM has found an optimal solution to objective function f8 within
k · n · (log n)2 iterations is exponentially large 1− e−Ω(n), where k is a constant.

Proof. Except for the choice of search point in the initial iteration, or in case of a restart, AVM is a
deterministic algorithm. By Lemma 6, AVM has reached a local optimum within k · (log n)2 iterations,
for some constant k. A global optimum is found if the initial search point satisfies a > 0, an event which
occurs with constant probability p. The probability that AVM needs more than n restarts before the initial
search point satisfies the condition above, is less than (1− p)n = e−Ω(n).

Theorem 12. The expected time for AVM to find an optimal solution to objective function f8 when the
branch distance is not used (i.e., Equation 1) is Θ(n2).
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Proof. The proof follows the same discussion as in the proof of Theorem 5 for HC. The difference is
that the visited neighbourhood might be larger due to a possible pattern search. However, the number of
visited solutions is still bounded by a constant, so the runtime is like the one of HC, i.e. Θ(n2).

Theorem 13. The expected time for AVM to find an optimal solution to the coverage of branch ID7 is
O((log n)2).

Proof. The branch ID8 is nested to branch ID7, hence by Lemma 1 and Theorem 10 the expected time
is O((log n)2).

Theorem 14. The expected time for AVM to find an optimal solution to the coverage of branch ID9 is
O((log n)2).

Proof. By Theorem 13, the branch ID7 can be covered in O((log n)2) steps. The branch ID9 (that is
nested to ID7), will be covered if ¬(a = b ∧ b = c). If that predicate is not true, a single exploratory
search of AVM makes it true because it is just sufficient to either increase or decease any input variable
by 1. The only case in which this is not possible is for I = (1, 1, 1), because it is the only solution that
satisfies a = b ∧ b = c ∧ a− 1 + b ≤ c ∧ a+ b ≤ c+ 1 ∧ a+ b > c. In that case, a restart is done.

With a probability that is lower bounded by a constant, in a random starting point each input variable
is higher than n/4. In that case, a+ b > c, because (n/4) + 1 + (n/4) + 1 > (n/2). By Lemma 3, we
need only Θ(1) restarts.

Theorem 15. The expected time for AVM to find an optimal solution to the coverage of branch ID10 is
O((log n)2).

Proof. By Theorem 14, the branch ID9 can be covered in O((log n)2) steps. The branch ID10 (that is
nested to ID9), will be covered if only two input variables are equal (and not all three equal to each other
at the same time).

If when the branch ID7 (branch ID9 is nested to it) is executed all the three input variables are equal
(in that case branch ID8 is executed), then a single exploratory search is sufficient to execute branch
ID10, because we just need to change the value of a single variable.

The other case in which all the three variables are different is quite complex to analyse. Instead of
analysing it directly, we prove the runtime by a comparison with the behaviour of AVM on the branch
ID8 (proved in Theorem 10).

Once branch ID9 is executed, the fitness function f10 for covering branch ID10 is based onmin(δ(a =
b), δ(b = c)), whit δ the branch distance function for the predicates. For simplicity, let consider
δ(a = b) < δ(b = c). The other case can be studied in the same way.

An exploratory search cannot accept a reduction of the distance c− b, because the value of f10 would
not improve. A search on a would leave the distance c − b unchanged. About b, only a decrease of its
value would be accepted, and in that case the distance c − b would increase (but that has no effect on
the fitness function because it takes the minimum of the two distances). Because the branch distance δ
only rewards the reduction of the distance b − a, a search starting from either a or b will end in a = b
by modifying only the value of only one of these variables (AVM keeps doing searches on the same
variable till an exploratory search fails). During that search, the fitness function would hence be based
on δ(a = b).

In a search for covering branch ID8, if the branch ID7 (in which both ID8 and ID10 are nested)
is executed, then the fitness function f8 depends on δ(a = b) + δ(b = c). A search starting from a
would finish in a = b for the same reasons explained before or it would finish in a′ > b (with a′ the
latest accepted point for a that will become the new b in the next exploratory search). During that search,
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the value of δ(b = c) does not change, so it can be considered as a constant. Because AVM uses the
fitness function only on direct comparisons, the presence of a constant does not influence its behaviour.
Therefore, in this particular context (i.e., δ(a = b) < δ(b = c), branch ID7 executed and search starting
from a) the behaviour of AVM on f10 and f8 will be the same until a = b or a′ > b.

In the case a = b, branch ID10 gets executed and the search for that branch ends. In the other case
a′ > b, the previous b becomes the new ak and a′ becomes the new bk. Modifications on the variable
c does not change the value of either ak or bk. The previous analysis can hence be recursively applied
to the new values ak and bk. If a′ > c, then ak = b, bk = c, ck = a′ and it will become the case
δ(a = b) > δ(b = c).

It is still necessary to analyse the behaviour of AVM on f10 when the search starts on b rather than a.
That is similar to the case of f8 when the variable c is decreased down to b. In that context, the two fitness
functions are of the same type because in f8 the distance δ(a = b) would be a constant until b = c or
c′ < b (with c′ the latest accepted point for c that will become the new b in the next exploratory search).
Therefore, the runtime for AVM on f10 to obtain a = b would be the same.

By Theorem 10, the expected time for covering branch ID8 is O((log n)2). Because we proved that
the coverage of ID8 takes more time than the coverage of ID10, then the expected runtime for covering
ID10 is O((log n)2).

Theorem 16. The expected time for AVM to find an optimal solution to the coverage of branch ID11 is
O((log n)2).

Proof. By Theorem 14, the branch ID9 can be covered in O((log n)2) steps. The branch ID11 (that is
nested to ID9), will be covered if a 6= b∧a 6= c∧ b 6= c. In the moment that the branch ID9 is executed,
then the three variables cannot assume all the same value (otherwise the branch ID8 would have been
executed). If that predicate is not true, a single exploratory search of AVM makes it true because it is just
sufficient to increase by 1 any of the two variables that have same values.

6.6 Analysis of (1+1) EA

In contrast to the other algorithms we have analysed so far, the (1+1) EA uses binary strings to represent
solutions. We denote the ith bit of bitstring x by xi, the length of a bitstring x by `(x), and the concate-
nation of two bitstrings x and y either by x · y or xy. Test cases for the triangle classification program
will be encoded as bitstrings I ∈ {0, 1}3m, which for notational convenience will be denoted as a triple
{x, y, z} where x := I1 · · · Im, y := Im+1 · · · I2m and z := I2m+1 · · · I3m. Here, we will consider
unsigned integers, where a bitstring x of length `(x) has integer value bin(x) :=

∑`(x)
i=1 xi · 2m−i.

The (1+1) EA is a comparison-based algorithm in the sense that the decision whether to replace the
current search point x with a new search point x′ only depends on the ordering of x and x′ with respect
to the fitness function f , and not on the actual fitness value of search point x′. Hence, the (1+1) EA
will not change behaviour if the fitness function f is replaced by another fitness function g where for all
bitstrings x and y, f(x) < f(y) if and only if g(x) < g(y). To simplify the notation, we will therefore
use the function f(x, y, z) = |x − y| + |y − z| = max{x, y, z} −min{x, y, z} instead of function f8.
Furthermore, instead of directly analysing function f0, we consider the function f(x, y) = y − x.

To analyse the progress of the (1+1) EA towards the optimum of function f8, we define the block
length of a search point, and use this is a potential function.

Definition 9 (Block length). Let x, y and z be three bitstrings of length m with longest common prefix σ.
The prefix-length of the triple x, y, z is the length `(σ) of the prefix σ, and the block length is the largest
integer s such that x, y, z ∈ {σ10sα, σ01sβ | α, β ∈ {0, 1}m−`(σ)−1−s}.
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Among bitstrings with the same prefix length, the value of Korel’s distance function decreases almost
monotonically with the block length.

Lemma 8. On objective function f8, if bitstrings x, y and z have length m, longest common prefix σ,
and block length s, then 2r−s + 1 ≤ f(x, y, z) ≤ 2r−s+2 − 1, where r = m− `(σ)− 2.

Proof. The initial part of the triangle classification program assigns the minimal value of x, y, z to vari-
able a, and the maximal value of x, y, z to c. Hence, we have f(x, y, z) = bin(c) − bin(a). If the
bitstring representations of a and c can be written on the form a = σ01sxβ and b = σ10s1α, then
bin(σ10s1α)−bin(σ01sxβ) = 2r−s ·(3−x)+bin(α)−bin(β). Otherwise, it must be possible to write
the bitstrings on the forms c = σ10s1α and a = σ01sxβ, in which case bin(σ10sxα)− bin(σ01s0β) =
2r−s · (2 + x) + bin(α) − bin(β). Furthermore, the difference bin(α) − bin(β) is at least −2r−s + 1
and at most 2r−s − 1. So in all cases, 2r−s + 1 ≤ bin(c)− bin(a) ≤ 2r−s+2 − 1.

The probability of increasing the prefix-length is small.

Lemma 9. Consider (1+1) EA on objective function f8 with bitstring length 3m. If the prefix-length of
the current search point is s, then the probability that the current search point in the following iteration
has prefix length s+ i for any i > 0, is less than m−l−1, where l := min{i, s}.

Proof. The case where i > s is trivial, because one of the bitstrings differs in s + 1 positions, and it is
therefore necessary to flip at least these s+ 1 bits to increase the length of the common prefix bits by i.

Consider the case where i ≤ s. Without loss of generality, assume that the current search point is of
the form {σ10i−100s−iα, σ01i−111s−iβ, σ01i−111s−iκ}, where `(α) = `(β) = `(κ) = m−`(σ)−s−1.
By Lemma 8, the fitness value of this search point is no more than 2`(α)+1 − 1. To increase the prefix-
length by i, it is necessary to flip at least i bits after σ in at least one of the bitstrings. Assume that the
mutated search point is accepted without also flipping the next bit in position `(σ) + i + 1. Then the
search point will be of the form {σ01i−10α′, σ01i−11β′, σ01i−11κ′}, where `(α′) = `(β′) = `(κ′) =
m− `(σ)− i−1 ≥ `(α). The fitness of this search point is at least bin(σ01i−11β′)−bin(σ01i−10α′) ≥
2 · 2`(α′) − bin(α′) ≥ 2`(α

′) + 1, which is strictly larger than the original search point and therefore
contradicts that the search point was accepted by (1+1) EA.

We are now in position to lower bound the runtime of (1+1) EA on the equilateral branch of the
triangle inequality program. We only count the runs where the algorithm reaches the search point
{10m−1, 01m−1, 01m−1} before the optimum has been found, and optimistically assume that all other
runs are finished in 0 iterations.

Lemma 10. With constant probability p > 0, (1+1) EA will reach a search point on the form {10m−1, 01m−1, 01m−1}
before reaching the global optimum of objective function f8.

Proof. With probability 3/29, the initial search point is on the form x, y, z = {100α, 011β, 011κ}.
Clearly, this search point does not satisfy the predicate (a + b <= c), hence the remaining of the
search consists in trying to reach the equilateral branch. Let the block length of this search point be
s ≥ 2. The probability that the prefix length increases, is by Lemma 9 no more than 1/m2. In the
following, we will analyse a duration of km2 iterations, where k will be specified later, and assume that
the prefix length will never increase during this period, an event which happens with probability at least
(1− 1/m2)km

2
= Ω(1).

By Lemma 8, if the block length increases to s + 2, then all future search points will have block
length at least s + 1. We call a trial a sequence of search points where the current block length s is
increased or decreased. The trial lasts until either the block length has been reduced to s−1, or the block
length has been increased from s to s + 2, in which case the trial is called successful. We now estimate
the probability of a successful trial.
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s0 s1 s2 s3 s4 s5 s6

q q q q q
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1− p 1− p− q1− p− q1− p− q1− p− q1− p− q 1

Figure 9: Markov chain in the proof of Lemma 10.

In order to decrease the block length to s− 1, it is necessary to flip at least one of the bits in position
1 + s of x, y or z, an event which happens with probability no more than 1/m. In order to increase
the block length to s + 2, it suffices to flip the two right-most 1-bits in α, the two right-most 0-bits in
β and the two right-most 0-bits in κ. Each of these 6 bit-flips happen with a probability of 1/3m in
any iteration. When all 6 bits have been flipped, the block length must necessarily have been increased
to at least s + 2. To analyse the stochastic process behind these bitflips, we construct a Markov chain
corresponding to the number of those bits that have the “correct” value. We pessimistically assume that
at most one bit can be flipped correctly in each iteration, and if the block length is reduced, or one of
these bits are flipped back, then all bits are lost. The Markov chain is depicted in Figure 9, where state si
corresponds to i correct bits, and the values of the variables occurring in the state transition probabilities
are defined as p := 1/3em and q := 1/m. With some algebraic manipulation, it is easy to see that
the expected hitting time from state s0 to state s6 is 7/p + 6q/p2 = km for some constant k. The
block length must be increased at most m times, hence the expected time until the search point is on the
form {10m−1, 01m−1, 01m−1} is no more than km2, and by Markov’s inequality, the probability that this
search point is reached within 2km2 steps is at least 1/2.

The probability of increasing the block length within km2 iterations is by union bound no more than
k. Hence, the probability that the search point {10m−1, 01m−1, 01m−1} has been obtained before the
prefix length is increased is at least 3/29 · (1/2)/(1/2 + k) > 0.

Theorem 17. The expected running time of (1+1) EA on objective function f8 with integers in the interval
[0, n) represented in binary is Ω((log2 n)5).

Proof. Define m := log2 n. We define a typical run as a run where the EA reaches the search point
{10m−1, 01m−1, 01m−1}, which has function value 1, before reaching the global optimum. By Lemma
10, there is a constant probability that the run is typical. We will lower bound the expected runtime
by the expected number of iterations needed to find the global optimum starting from this position. By
Lemma 8, the only non-optimal search points that will be accepted from this point are on one of the
forms {σ10s, σ01s, σ01s} and {σ01s, σ10s, σ10s}. All other search points have block lengths at most
m− `(σ)− 2, and therefore function values at least 2.

In order to reach the global optimum, it is necessary to increase the prefix length to m. We use drift
analysis [23] to bound expected runtime until this happens, using m minus the prefix length as distance
function. In order to decrease the distance by i > 0, it necessary to flip at least i+ 3 bits simultaneously.
Hence, the expectation of the drift ∆ in each iteration is at most

∑m
i=1 i ·m−i−3 = O(m−4). The initial

distance from the optimum isB = Θ(m), hence the expected runtime is at leastB/E [∆] = Ω(m5).

Theorem 18. The expected running time of (1+1) EA on objective function f8 with integers in the interval
[0, n) represented in binary is O((log2 n)5).

Proof. Define m := log2 n. We divide a run of the EA into three phases. The first phase begins with the
initial iteration and lasts until a + b > c holds. The second phase ends when the search point has block
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length m − `(σ) − 1. The third phase lasts until a search point a = b = c, i.e. the global optimum, has
been found.

For the first phase to end, it suffices to wait for a search point on the form a = 1α, b = 1β, c = 1κ,
because bin(1α) − bin(1β) − bin(1κ) ≤ −1 for any α, β and κ. Such search points are obtained
by flipping at most 3 bits simultaneously, hence the expected duration of the first phase is bounded by
O(m3).

The runtime of the second phase can be analysed using drift analysis, similarly to the proof of Lemma
10. Hence, the duration of the second phase is bounded from above by O(m2).

For the third phase, we apply drift analysis as in the proof of Theorem 17. For reasons that will be
explained later, we start analysing the algorithm after iteration m3. In the worst case, the search point
has prefix-length 0 at this point in time. In a given iteration, we distinguish between two complementary
events. Let E be the event that the search point is on one of the two forms {σ1 · 10s, σ1 · 01s, σ1 · 01s}
or {σ0 · 10s, σ0 · 10s, σ0 · 01s}, and let the complementary event E denote the event that the search point
is on one of the two forms {σ0 · 10s, σ0 · 01s, σ0 · 01s} or {σ1 · 10s, σ1 · 10s, σ1 · 01s}.

In the case of event E , it is necessary to flip 5 bits to reduce the prefix-length by 1. Hence, the con-
ditional expected drift becomes E [∆ | E ] = Ω(m−4) − O(m−5) = Ω(m−4). In the complementary
event E , it is necessary to flip 4 bits to reduce the prefix length by 1, but the probability of increas-
ing the prefix-length is no larger than the probability of increasing the prefix-length. Hence, we have
E
[
∆ | E

]
≥ 0. We first claim that Pr [E ] = Ω(1). If this claim holds, we have unconditional expected

drift E [∆] = Ω(m−4), and the expected duration of the second phase is O(m5).
We finally show that the claim Pr [E ] = Ω(1) holds. Let the current iteration number be t. Let

random variable X ∈ {0, 1} denote the value of the last bit of the common prefix σ in iteration t. We
will analyse the behaviour of variable X in the time interval t−m3 to t conditional on the event F that
the prefix length is constant in this period. The probability of increasing the prefix-length in any iteration
is less than m−4, so the probability of event F is at least (1 −m−4)m

3
= Ω(1). Given that the prefix

length is constant, the probability of changing the value of X in any iteration is Θ(m−3). If X0 = 0,
then the probability that Xm3 = 1 is at least m3 · (1 − m−3)m

3−1m−3 = Ω(1). If X0 = 1, then the
probability that Xm3 = 1 is at least m3 · (1 − m−3)m

3
= Ω(1). Hence, the probability of event E is

Ω(1).
The expected duration of all three phases is therefore O(m5).

We now turn to the runtime of (1+1) EA on the first branch in the program ID0, in which case Korel’s
distance function gives the minimisation objective y − x.

Theorem 19. The expected runtime of (1+1) EA using either branch distance and approach level (i.e.
objective function f0), or only approach level with integers in the interval [0, n) on the covering of branch
ID0 is Θ(log2 n).

Proof. Define m := log2 n. We will focus on the leading bits of x and y only. For the upper bound,
we pessimistically assume that the predicate cannot be satisfied when x1 = 0 and y1 = 0, however it is
clear that the predicate is necessarily satisfied when y1 = 0 and x1 = 1. In the worst case, we start with
y1 = 1 and x1 = 0. From this state, it suffices to wait for a sequence of two bit-flips which do not flip the
same variable twice. The expected time until one bit-flip occurs is less than em, and the expected time
until the right bit-flip sequence occurs is no more than 8em.

For the lower bound, we note that there is a constant probability that the initial search point has
y1 = 1 and x1 = 0, and that the probability that none of these are flipped within m iterations is at least
(1− 2/m)m = Ω(1). Hence, the runtime is lower bounded by Ω(m).

Note that the previous theorems for (1+1) EA do not consider negative values for the three input
variables. In order to consider negative values, it is necessary to extend the runtime analysis of (1+1) EA.
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However we conjecture that if signed integers are represented using a separate sign bit, the asymptotic
runtime results will be the same. In the following discussion, we will assume that this conjecture holds.

7 Discussion

Table 4 summarises the empirical results and the theoretical ones for branches ID8 and ID0.
For branch ID8, the theoretical analyses show that RS has the worst runtime, whereas AVM has the

best. Not only can AVM find a solution in an efficient way, but we also proved that it has an extremely
low probability of not finding an optimal solution in a reasonable time (Theorem 11). In other words, it
is very unlikely that AVM will run for a long time (depending on n) without finding an optimal solution.
This is an important result which cannot be obtained with empirical studies. In fact, given any number
k of experiments, we can say only little about the worst case scenario, and how often it happens. For
example, the experiments might show a low runtime, although actually it can happen that with a small
probability the runtime is enormous (and hence in average the runtime is enormous), but k was not large
enough to show it.

We proved that the runtime of AVM is O(log(n)2) on all the branches of TC. This is necessary and
sufficient to state that AVM has the best runtime among the analysed search algorithms because all the
other heuristics have a strictly worse runtime on at least one branch of TC.

It is not a surprise that AVM has the best runtime. The fitness landscape is relatively simple even
for the most difficult branch ID8. The big jumps of the pattern search quickly bring AVM to a global
optimum. AVM avoids the local optima that exist in this problem through restarts. This is particularly
helpful when the local optima are far from the global optima, as is the case on this problem. Although
the search landscape can be considered easy, analysing the actual behaviour of search algorithms on this
landscape is far from been trivial.

The empirical results in Table 3 show that, even with low values of n, most of the time the correct
runtimes for RS, HC and AVM are correctly inferred by the regression analysis. On the other hand, the
empirically estimated runtime for (1+1) EA in Table 3 is incorrect because the correct model was not
used for the regression.

We proved that (1+1) EA on target ID8 has a runtime of Θ((log n)5). That was a surprise for
us, because we were expecting something similar to the runtime of either AVM or HC. Although the
empirical results in Table 3 clearly show that (1+1) EA is much slower than HC for low values of n, the
asymptotic runtime of (1+1) EA is strictly better. In other words, (1+1) EA is faster than HC for large
values of n. If we do not consider the constants, it will happen for values n for which n > (log n)5 is
true, i.e. for n ≥ 5 · 106. In our experiments we tested till n = 8192, and the performances of (1+1)
EA for that value (and below) are poor because (log 8192)5 = 371293, which is much higher than 8192.
This is a clear example of an algorithm that empirically seems to perform relatively poorly compared
with another algorithm, but actually has better scalability.

Because the first regression analysis on target ID8 did not include the correct runtime model for (1+1)
EA, supplemental regression analysis was carried out with the following large set of models ρnt log(n)v,
where t ∈ {0, 1, 2} and v ∈ {0, . . . , 10}. The results are shown in Table 5. Unfortunately, the correct
model could still not be inferred from the empirical results. More runs and empirical data is needed.

SSGA was not analysed theoretically. It would be difficult to estimate a runtime for this algorithm
based on the empirical results in Table 3. In fact, with size till 1024 the empirically estimated runtime is
ρ log(n)2, but if we add 30 new points obtained with size 2048, then the inferred model is ρn. Adding
another set of experiments (i.e., 30 points with size 4096) changes the estimated model to ρn2, and then
again to ρ log(n)2 when we consider size 8192. It is unclear what model would be inferred with further
empirical data on even larger instance sizes. In general, we cannot answer this question with empirical
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Table 4: Summary of the empirically (Emp.) and theoretically (Th.) obtained runtimes for target branches
ID8 and ID0. BD stands for “Branch Distance”.

Target Branch BD RS HC AVM (1+1) EA (µ+1) SSGA

Emp. Th. Emp. Th. Emp. Th. Emp. Th. Emp. Th.

ID8 T ρn2 log(n) Θ(n2) ρn Θ(n) ρ log(n) O(log(n)2) ρn Θ(log(n)5) ρ log(n)2 −
F ρn2 Θ(n2) ρn2 log(n)2 Θ(n2) ρn2 Θ(n2) ρn2 log(n) − ρn2 −

ID0 T ρ Θ(1) ρ log(n)2 Θ(n) ρ log(n) Θ(log(n)) ρ log(n) Θ(log(n)) ρ −

Table 5: Result of experiments for branch target ID8 with a larger set of models. Data were collected
with different values of n.

Max n (1 + 1)EA

16 0.0120 log(n)7

32 0.0120 log(n)7

64 0.0000 n2 log(n)10

128 0.0023 n log(n)7

256 0.0009 log(n)10

512 0.0063 log(n)9

1024 0.0839 n log(n)5

2048 0.0716 log(n)8

4096 7.8240 log(n)6

8192 6279.0000 n

studies, because for each tested size there will be always a bigger one that we have not tested. Moreover,
as was the case for (1+1) EA, the correct runtime model may not be among those that were tested.

By Theorem 1, RS is very efficient (i.e., Θ(1)) for most of the branches. It is only for ID8 that
it gets the runtime Θ(n2). For branch ID10 it has the runtime Θ(n), which is equal with the overall
runtime of HC (assuming that HC has not worse runtime on the other 10 branches besides ID0 and ID8

that we have not theoretically analysed). This is very important to keep in mind. In fact, when we test
software, not all of the testing tasks are necessarily difficult to carry out. Some of them can be easy. We
need sophisticated techniques only for the difficult testing problems, because on simple problems they
can give worse results. Because a priori it is very difficult to understand whether a problem is either
easy or difficult, hybrid strategies are required. For example, doing random testing before applying more
sophisticated techniques is likely a wise choice.

Branch distance has been designed to improve the performance of search algorithms. When we do not
use the branch distance in the fitness function (e.g., as in Equation 1), the search practically degenerates
to random search. Counterintuitively, as we explained, on easy instances that can even produce better
results.

8 Conclusion

In this paper we have illustrated how runtime analysis can be applied in SBSE, and we have advocated
its importance.
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On one hand, it was shown that empirical results can be misleading. Theoretical analyses can give
insights into the behaviour of the search algorithms that empirical studies cannot give. This insight can
be very useful in the long term to design new algorithms that push the boundaries of the current state of
art. The obtained theoretical results are stronger than empirical ones. They can be used in the future any
time the analysed case study is employed in new empirical analyses where novel techniques are validated
and compared.

On the other hand, theoretical analyses have their own limits. It can be hard to analyse the runtime,
and it might be infeasible to show for large and complex software (e.g., it is required that all the optima
are known in advance). Besides, proofs for a particular testing problem are difficult to generalise to
another case study. Theoretical analyses are hence not meant to replace empirical studies.

It is important to note that theoretical analyses are not meant to be used on new problems for which
we are looking for a solution. Their goal is to get insight knowledge and to compare the behaviour of
search algorithms. This is similar to the type of empirical analysis in which different search algorithms
are applied (and then compared) to known problems whose optimal solutions have been already found
[62, 3].

In future work, we are planning to formally analyse more search algorithms that are commonly used
in SBSE, like for example Simulated Annealing [54] and Genetic Algorithms [46]. This can be very
challenging, but their theoretical analyses in traditional combinatorial problems are appearing in recent
years [44]. Other problems in SBSE (e.g., requirement engineering [4]) should be addressed as well.
Regarding software testing, general theoretical results that can be applied to entire classes of software
are worth pursuing.
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