
Theoretical Runtime Analyses of Search Algorithms on the Test Data Generation
for the Triangle Classification Problem

Andrea Arcuri, Per Kristian Lehre and Xin Yao
The Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA),
School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

email:{a.arcuri,p.k.lehre,x.yao}@cs.bham.ac.uk

Abstract

Software Testing plays an important role in the life cycle
of software development. Because software testing is very
costly and tedious, many techniques have been proposed to
automate it. One technique that has achieved good results is
the use ofSearch Algorithms. Because most previous work
on search algorithms has been of an empirical nature, there
is a need for theoretical results that confirm the feasibility of
search algorithms applied to software testing. Such theoret-
ical results might shed light on the limitations and benefits
of search algorithms applied in this context. In this paper,
we formally analyse the expected runtime of three different
search algorithms on the problem of Test Data Generation
for an instance of theTriangle Classificationprogram. The
search algorithms that we analyse areRandom Search, Hill
ClimbingandAlternating Variable Method. We believe that
this is a necessary first step that will lead and help the Soft-
ware Engineering community to better understand the role
of Search Based Techniques applied to software testing.

1 Introduction

Software Testing is used to find the presence of bugs in
computer programs [16]. If no bug is found, testing cannot
guarantee that the software is bug-free. However, testing
can be used to increase our confidence in the software re-
liability. Unfortunately, testing is expensive, time consum-
ing and tedious. It is estimated that testing requires around
50% of the total cost of software development [1]. This cost
is paid because testing is very important. Releasing bug-
ridden and non-functional software is indeed an easy way
to lose customers. For example, in the USA alone it is esti-
mated that every year around $20 billion could be saved if
better testing was done before releasing new software [19].

White Box Testing [16] is a type of testing in which the
quality of a test suite is based on structural criteria. One

common criterion isbranch coverage, in which we look
for a test suite that when run executes each branch in the
code of the tested program. The reason for doing white box
testing is that bugs can lie in parts of code that are rarely
executed. Hence, they are difficult to spot during the de-
velopment cycle. Our analyses in this paper focus only on
branch coverage.

Many techniques to automate the testing phase have been
proposed. Among them, modelling the test problem as a
search problem has got widespread consideration in the last
few years [2]. In fact, search algorithms such as Genetic Al-
gorithms (GAs) [9] have been successfully applied to solve
many complex tasks in several different engineering do-
mains, hence it is reasonable to apply them on Software
Engineering problems. Although their application in soft-
ware testing has given promising results so far [14], most
of the research work on that subject has been of empirical
nature. The only exceptions we are aware of are on comput-
ing unique input/output sequences for finite state machines
[12], and on the application of the Royal Road theory to
evolutionary testing [7].

In this paper we theoretically analyse the runtime be-
haviour of some search algorithms applied to an implemen-
tation of the Triangle Classification (TC) problem [16]. We
chose TC because it is the most famous problem in software
testing. The search algorithms considered for the analyses
are: Random Search (RS), Hill Climbing (HC) and Alter-
nating Variable Method (AVM).

The goal of analysing the runtime of a search algorithm
on a problem is to determine, via rigorous mathematical
proofs, thetime the algorithm needs to find an optimal so-
lution. In general, the runtime depends on characteristics
of the problem instance, in particular the problem instance
size. Hence, the outcome of runtime analysis is usually ex-
pressions showing how the runtime depends on the instance
size. This will be made more precise in the next sections.

To get a deeper understanding of the potential and lim-
itations of the application of search algorithms in software
engineering, it is necessary to complement the existing ex-

perimental research with theoretical investigations. Run-
time analysis is important part of this theoretical investiga-
tion, and brings the evaluation of search algorithms closer
to how algorithms are classically evaluated. During the last
decade, there has been much research on runtime analysis of
randomised search algorithms. The field has now advanced
to a point where the runtime of relatively complex search
algorithms can be analysed on classical combinatorial opti-
misation problems [17].

In search based white box testing, in the case of branch
coverage, it is common to tackle each different branch sep-
arately. In other words, there will be a different search for
each different branch. However, analyses on the dependen-
cies graph can be used to choose only a sub-set of branches.
In fact, the execution of a particular branch might imply
the execution of others. In such a case, a successful search
for covering that branch necessarily implies the coverage of
others, hence they do not need separated searches. Because
there is a constant number of branches, the runtime of a
search algorithm is determined only by the most expensive
search.

The main contributions of this paper are:

• To our best knowledge this is the first work on runtime
analyses of search algorithms applied to Software Test
Data Generation.

• We formally proved that exists at least one search al-
gorithm (e.g., HC and AVM) that has a runtime com-
plexity that is strictly better than the one of RS on at
least one important test problem (i.e, TC).

The paper is organised as follows. Section 2 gives back-
ground about runtime analysis. Section 3 describes in detail
the TC problem, whereas section 4 describes and analyses
the use of three different search algorithms applied to find
test data for TC. Finally, section 5 concludes the paper.

2 Runtime Analysis

To make the notion of runtime precise, it is necessary to
define time and size. We defer the discussion on how to
define problem instance size for software testing to Section
3, and define time first.

Time can be measured as the number of basic operations
in the search heuristic. Usually, the most time-consuming
operation in an iteration of a search algorithm is the evalua-
tion of the cost function. We therefore adopt theblack-box
scenario[5], in which time is measured as the number of
times the algorithm evaluates the cost function.

Definition 1 (Runtime [4, 8]). Given a classF of cost func-
tionsfi : Si → R, theruntimeTA,F(n) of a search algo-
rithm A is defined as

TA,F(n) := max {TA,f | f ∈ F with ℓ(f) = n} ,

whereℓ(f) is the problem instance size, andTA,f is the
number of times algorithmA evaluates the cost functionf
until the optimal value off is evaluated for the first time.

A typical search algorithmA is randomised, i.e. the run-
time depends on the random bits used. Hence, the corre-
sponding runtimeTA,F(n) will be a random variable. The
runtime analysis will therefore seek to estimate properties
of the distribution of random variableTA,F(n), in particu-
lar theexpected runtimeE [TA,F(n)] and thesuccess prob-
ability Pr [TA,F(n) ≤ t(n)] for a given time boundt(n).

3 Triangle Classification Problem

TC is the most famous problem in software testing. It
opens the classic1979 book of Myers [16], and has been
used/studied since at least the early 70s (e.g., [6, 18, 3]).
However, the true origin of TC is not completely clear [21].
At any rate, nowadays TC is still widely used in many publi-
cations (e.g., [13, 20, 14, 11, 15, 22]), although that is more
likely due to the lack of organisation of the community in
preparing a proper benchmark suite.

The used implementation for the TC problem is the one
published in survey by McMinn [14] (see figure 1).

In the case of the analysed implementation of TC, the
most difficult branch to cover is the one related to the classi-
fication of the triangle asequilateral. Although this is com-
monly believed to be so, it might not be necessarily be the
hardest branch to cover. Moreover, what is difficult for a
particular search algorithm might be very easy for others.
Hence, the difficulty of a test problem cannot be analysed
without considering the applied search algorithms. How-
ever, for the rest of the paper we will consider that hypoth-
esis as true for the search algorithms analysed in this paper.
Therefore, we can limit our studies only on the coverage
of that branch, because from that we can infer the overall
complexity of the analysed search algorithms.

A solution to the problem is represented as a vector
I = (x, y, z) of three integer variables. We call(a, b, c)
the permutation in ascending order ofI. For example, if
I = (3, 5, 1), then(a, b, c) = (1, 3, 5).

There is the problem to define what is thesizeof an in-
stance for TC. In fact, the goal of runtime analysis is not
about calculating the exact number of steps required for
finding a solution. On the other hand, the runtime com-
plexity of an algorithm gives us insight of scalability of the
search algorithm. The problem is that TC takes as input a
fixed number of variables, and the structure of its source
code does not change. Hence, what is thesizein TC? We
chose to consider the range for the input variables for the
size of TC. In fact, it is a common practice in software test-
ing to put constraints on the values of the input variables to
reduce the search effort. For example, if a function takes as

input 32 bit integers, instead of doing a search through the
over four billions values, a range like{0, . . . , 1000} might
be considered for speeding up the search.

Although limits on the input variables are common in
software testing, usually there is no guarantee that there ex-
ists a global optimum within those limits. However, how
fast the runtime of a search algorithm increases, when the
range of the variables is increased, gives us useful informa-
tion. For example, what are the consequences of choosing a
too wide range?

At any rate, limits on the input variables are always
present in the form of bit representation size. For exam-
ple, the same piece of code might be either run on machine
that has8 bit integers or on another that uses32 bit. What
will happen if we want to do a search for test data on the
same code that runs on a64 bit machine? Therefore, using
the range of the input variables as the size of the problem
seems an appropriate choice.

In our analyses, the sizen of the problem defines the
rangeR = {−n/2 + 1, . . . , n/2} in which the variables
in I can be chosen (i.e.,x, y, z ∈ R). Hence, the search
spaceS is defined asS = {(x, y, z)|x, y, z ∈ R}. To ob-
tain full coverage, it is necessary thatn ≥ 8, otherwise the
branch regarding the classification asscalenewill never be
covered. To note that different types ofR could be consid-
ered (e.g.,R′ = {0, . . . , n}), and for each type there would
be different behaviours of the search algorithms. We based
our choice on what is commonly done in literature.

The search space is composed byn3 elements. However,
instead of consideringn, we could useq with 2q−1 < n ≤
2q, whereq represents the max number of bits allowed for
the input variables. In that case, the search space would be
large23q. In our analyses, we prefer to considern instead
of q because we think it is more clear.

As defined in [14], the objective function used here is
the sum of the approach level with the normalised branch
distance. In our particular case, the objective functionf to
minimise is:

f(V) =

{

1 + ω(d(¬(a + b ≤ c))) if a + b ≤ c ,
0 + ω(d(a = b ∨ b = c)) otherwise,

(1)
where:

d(¬(a+b ≤ c)) =

{

0 if c − a − b < 0 ,
(c − a − b) + K otherwise,

(2)

d(a = b ∧ b = c) =

{

0 if a = b ,
abs(a − b) + K otherwise,

+

{

0 if b = c ,
abs(b − c) + K otherwise,

int tri_type(int a, int b, int c) {
int type;
if (a > b) { int t = a; a = b; b = t; }
if (a > c) { int t = a; a = c; c = t; }
if (b > c) { int t = b; b = c; c = t; }
if (a + b <= c) {

type = NOT_A_TRIANGLE;
} else {

type = SCALENE;
if (a == b && b == c) {

type = EQUILATERAL;
} else if (a == b || b == c) {

type = ISOSCELES;
}

}
return type;

}

Figure 1. Triangle Classification Program
[14].

ω(h) =
1

1 + e−h
. (3)

K can be any arbitrary positive constant (e.g.,K = 1),
and the inputh can be any real number. Note that, for Eq.
(3), any normalising function in the range[0, 1] can be used.
Moreover, if a search algorithm uses the fitness values only
for direct comparisons (as is the case for all the search al-
gorithms described in this paper), the choice of the normal-
ising function does not have any effect besides its computa-
tional cost. An example, for which this would not apply, is
the use a “Fitness Proportional Selection” in GAs.

4 Search Algorithms

There are many search algorithms, and for each algo-
rithm there are several different variants.

To simplify the writing of the search algorithm imple-
mentations, and for making them more readable, they are
not presented in their general form. Instead, they are spe-
cialised in working on vector solutions of length three.
However, the general versions, that consider that length as
a problem parameter, would have the same computational
behaviour in term of evaluated solutions.

The runtime of the algorithm is defined as the number
of iterations until the optimum has been found for the first
time. Hence, the choice of the termination criterion does
not influence the runtime, and is therefore left unspecified
to simplify the description of the algorithms.

Theorem 1. Given the objective function (1) and the space
of solutionsR, there aren/2 global optima, and they are
on the formG = (t, t, t), with t > 0.

Proof. This can be proved by considering fitness function
(1), in which the minimal fitness value is given for(a+ b >
c)∧(a = b)∧(b = c). The pointsG are the only that satisfy
(a = b)∧ (b = c), andt + t > t impliest > 0. Because the
range of the variables isR = {−n/2 + 1, . . . , n/2}, there
aren/2 possible differentt with t > 0.

The two following simple properties of the problem will
be used extensively in the runtime analysis.

Proposition 1. Leta ≤ b ≤ c, andv > 0, thenf(a, b, c) <
f(a − v, b, c).

Proof. In the case whena+b ≤ c, thena−v+b ≤ c and we
havef(a, b, c) = 1+ω(c−a− b+K) andf(a−v, b, c) =
1 + ω(c− (a − v) − b + K), in which case the proposition
holds. Assume on the other hand thata + b > c. Let g be:

g =







0 if a = b ∧ b = c ,
2K if a 6= b ∧ b 6= c ,
K otherwise,

we get:

f(a − v, b, c) ≥ ω(c − a + v + g)
> ω(c − a + g)
= f(a, b, c) .

Proposition 2. If a ≤ b ≤ c, andv > 0, thenf(a, b, c) <
f(a, b, c + v).

Proof. In the case whena + b ≤ c, we have:

f(a, b, c + v) = 1 + ω(v + c − a − b + K)
> 1 + ω(c − a − b + K)
= f(a, b, c) .

For the opposite casea + b > c, we have:

f(a, b, c + v) ≥ ω(v + c − a + g)
> ω(c − a + g)
= f(a, b, c) ,

whereg is as defined in the proof of Proposition 1.

4.1 Random Search

RS is the easiest search algorithm. It simply samples
search points at random, and stops when a global optimum
is found (i.e., when the target branch is covered). RS does
not exploit any information got so far by the visited points
when choosing the next to sample. Often, RS is used as a

baseline for evaluating the performance of other more so-
phisticated meta-heuristics.

At any rate, it is important to not confuse RS in white box
testing with Random Testing (RT). In RT, in fact, random
points (i.e., test cases) are sampled, and those will compose
the final test suite. On the other hand, in our case we use RS
to find and choose test cases for getting the highest possible
branch coverage.

Definition 2 (Random Search (RS)).

while termination criterion not met
ChooseI uniformly fromS.

Theorem 2. The expected time for RS to find an optimal
solution to TC isΘ(n2).

Proof. The probability of getting three identical values is
1/n2. The probability that a pointI = (a, a, a) hasa > 0
is1/2. Therefore, the probability that a random search point
is a global optimum is1/2n2.

The behaviour of RS can therefore be described as a
Bernoulli process, where the probability of getting a global
optimum for the first time aftert steps is geometrically
distributed Pr [TRS = t] = (1 − 1/2n2)t−1 · (1/2n2).
Hence, the expected time for RS to find a global optimum
is E[TRS] = 2n2.

Theorem 3. The probability that RS has found an optimal
solution to TC withinn3 iterations is exponentially large
1 − e−Ω(n).

Proof. Using the inequality(1− 1/x)x ≤ e−1, it is easy to

see thatPr
[

TRS > n3
]

=
(

(

1 − 1
2n2

)2n2
)n/2

≤ e−n/2.

4.2 Hill Climbing

HC is a search algorithm that belongs to the class oflocal
searchalgorithms. That means that given a starting pointI0,
it looks at neighbour solutionsN(I0) that are “near” toI0.
If a better solutionI ′ ∈ N(I0) exists, then the next pointI1

will be thatI ′. Then, the same procedure of looking at the
neighbour solutions is done onI1, until a final pointIi is
reached, in which∀I ′ ∈ N(Ii) : f(I ′) ≥ f(Ii), assuming
we want to minimise functionf . This means that no neigh-
bour solution is better, and the algorithm is said to be stuck
in either a local or global optimum. IfIi is not a global
optimum, then HC can restart from a new different pointI0.

At any rate, HC is not a single specific algorithm, but a
family of algorithms. In fact, we need to define how the
neighbourhoodN is generated, the strategyδ for visiting
N , and finally how to do the restarts.

Given that the solution is a vector of integers (of length
three in our particular case), an appropriate neighbourhood
is N(Ii) := {Ii + d | d ∈ D andIi + d ∈ S}, where
D := {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.

A random restart is a common choice, and we use it for
the HC that we analyse. Regarding the strategyδ, we do
not need to define one. In fact, the following analyses of
HC are valid for all strategies satisfying the following con-
straint: unless a new better solution is found, each neigh-
bour solution will be visited in at most a constant number
of iterations (assuming that the neighbourhood size is con-
stant). The implication is very straightforward: if the cur-
rent pointIi is neither a local or global optimum, then a
better solution will be found in at most a constant number
of iterations. Note that this constraint is very common, and
most of the HC variants satisfy it.

Definition 3 (Hill Climbing (HC)).

while termination criterion not met
ChooseI uniformly at random fromS.
while I not a local optimum inN(I),

ChooseI ′ fromN(I) according to strategyδ
if f(I ′) < f(I), then

I := I ′.

Theorem 4. The expected time for HC to find an optimal
solution to TC isΘ(n).

Proof. We first need to prove that all the points of the form
L = (t, t, t) with t ≤ 0 are local optima. Because for all of
thema + b ≤ c is true, we havef(L) = 1 + ω(−t + K).
Any operation on the vectorI can either increasec by one,
or decreasea by one. In both the cases, the resulting points
L′ have worse fitness (Proposition 1 and 2), that isf(L′) =
1 + ω(−t + 1 + K). Becausef(L′) > f(L), the pointsL
are local optima.

Considering Propositions 1 and 2, a solutionI ′ is not ac-
cepted if the value ofa has decreased, or if the value ofc
has increased. Moreover, there is always a gradient fora to
increase up tob, and forc to decrease down tob, because
there would be a fitness improvement whatevera + b ≤ c
is true or not. Although the value ofb can either increase or
decrease, its number of changes is finite, becausea ≤ b ≤ c
is always true and because HC accepts as new solutions
only strictly better points. Therefore, after a finite num-
ber of steps (i.e., the algorithms does not enter in an infinite
loop, like it would happen if new solutions with equal fit-
ness would be accepted), the current solutionI converges
to a point of the formW = (t, t, t), with a ≤ t ≤ c. If b
does not change during the search, thent = b.

Although we already proved that all the points in the
form (t, t, t) are either local or global optima, only after
the discussion in the previous paragraph we can state thatL
are the only possible local optima. In fact, regardless of the

starting point, HC reaches eitherL or G, andG are global
optima.

A step is called successful if the new search pointI ′

is accepted. The number of successful stepsη for HC to
reach an optimum depends on how the value ofb changes.
If it does not change, then there areb − a steps in which
a increases, andc − b steps in whichc decreases. Hence,
η = c − a. There is only one case in whichb can decrease:
(a + b > c) ∧ (b = a + 1), because in all other cases the
fitness would never be better. Ifb is decreased beforea in-
creases (that depends on how the strategyδ works), then
η = 1 + c − a, because thena = b anda andb cannot be
changed again. If it is still(a + b > c) but (b 6= a + 1),
then b cannot be altered untila is increased up tob − 1,
because the fitness would not change. On the other hand,
while (a + b ≤ c), there is always a gradient forb to in-
crease up toc− a+1. However, ifa ≤ 0, b can increase up
to c. Again, depending onδ, it is possible thatc decreases
beforeb increases, and vice-versa. In the worst case with
a = b anda ≤ 0, we can haveη = 2(c − a), becauseb can
takec− a steps to increase up toc, and otherc− a steps for
a to increase up toc as well. Therefore, regardless of the
starting pointI and strategyδ, the numberη of successful
steps is bounded by(c − a) ≤ η ≤ 2(c − a).

Unless the algorithm is stuck in an optimum, in at most
a constant number of iterations it will find a better solu-
tion in its neighbourhood. Considering the bounds ofη,
the expected number of iterations for reaching an optimum
is Θ(c − a). This difference can be expressed in terms
of problem sizen by noting that the expected value ofa
is E [a | b] = b/2 − (n/2 + 1)/2, whereasE [c | b] =
b + (n/2 − b)/2. It now follows thatE [c − a | b] =
E [c | b]−E [a | b] = (n+1)/2, independently ofb. There-
fore, starting from a random point, the expected number of
iterations for reaching either a local or a global optimum is
Θ(n).

When an optimum is reached, HC does a restart if that
point is a local optimum. Therefore, we need to calculate
the number of restarts that are required for HC to find an
optimal solution.

If c ≤ 0, then HC is bound to reach a local optimum
regardless of the strategyδ. That happens because it will
reach a point(t, t, t) with t ≤ c. Becausec ≤ 0 impliest ≤
0, then that point is a local optimum. With the same type
of reasoning, ifa > 0, then HC is bound to find a global
optimum. We said that there is only one case in whichb can
decrease up toa, and that isb = a + 1. However, because
for doing it there is the need ofa + b > c, thena > 0 is
required. Therefore, ifb > 0, thenb will always remain
a positive value. Hence, we can generalise the condition of
reaching a global optimum froma > 0 to a more significant
b > 0. Note thata > 0 impliesb > 0, but the opposite is
not always true.

There is still to consider the case(b ≤ 0) ∧ (c > 0), in
which the result is actually depending on the strategyδ. If
it chooses to decreasec at least down to0 before increas-
ing b up to 1, then a local optimum will be reached, or a
global optimum if it chooses to do the opposite. However,
as we will show, the analysis of that situation is not impor-
tant for finding a lower and an upper bound for the number
of required restarts.

The probability of starting from a point withc ≤ 0 is
P (c ≤ 0) = 1

8 . On the other hand, the probability of
starting from a point withb > 0 is equivalent at the prob-
ability of flipping a coin three times and getting at least
two heads, hence,P (b > 0) = 1

8 + 3 1
8 = 1

2 . There-
fore, regardless of the strategyδ, we have that the proba-
bility of reaching a global optimum from a random point is
1
2 ≤ P (global) ≤ 3

4 , whereas for reaching a local optimum
it is 1

8 ≤ P (local) ≤ 1
2 .

Therefore, the expected number of restarts is no more
than2. Because reaching either a local or global optimum
from a random point requiresΘ(n) steps, and the expected
number of restarts to reach a global optimum is no more
than 2, it follows that the expected runtime of HC is on TC
Θ(n).

Theorem 5. The probability that HC has found an optimal
solution to TC withinc · n2 iterations is exponentially large
1 − e−Ω(n), wherec is a constant.

Proof. The time to reach a local optimum is at mostc · n
iterations, where the constantc is determined by the strategy
δ. The probability that HC finds a local optimum more than
n times before a global optimum is found is less than2−n =
e−Ω(n).

4.3 Alternating Variable Method

AVM is similar to an HC, and was employed in the early
work of Korel [10]. The algorithm starts on a random search
pointI, and then it considers the modifications of the input
variables one at the time. It applies to the chosen variable an
exploratory search, in which that variable is slightly mod-
ified (in our case, by±1). If one of the neighbours has a
better fitness, then the exploratory search is successful. As
it happens in HC, that better neighbour will be selected as
the new current solution. Moreover, apattern searchwill
take place. Otherwise, AVM continues to do exploratory
searches on the other variables, until either a better neigh-
bour has been found or all the variable have been unsuc-
cessfully explored. In that latter case, a restart from a new
random point is done if a global optimum was not fund.

A pattern search consists of applying larger changes to
that variable and increase the size of the changes after each
new better solution is found. The type of change depends on
the exploratory search, which gives a direction of growth.

For example, if a better solution is found by applying a−1
to the input variable, then the following pattern search will
focus on decreasing the value of that input variable.

A pattern search ends when it does not find a better solu-
tion. In that case, AVM will start a new exploratory search
on the same input variable. In fact, the algorithm moves
to consider one other variable only in the case that an ex-
ploratory search is unsuccessful.

Definition 4 (Alternating Variable Method (AVM)).

while termination criterion not met
ChooseI uniformly inS.
while I improved in last3 loops

i := current loop index.
ChooseTi ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} such that

Ti 6= Ti−1 ∧ Ti 6= Ti−2.
found := true.
while found

for d := 1 andd := −1
found := exploratory search(Ti, d, I).
if found, then

pattern search(Ti, d, I)

Definition 5 (exploratory search(Ti, d, I)).

I ′ := I + dTi.
if I ′ /∈ S ∨ f(I ′) ≥ f(I), then

return false.
else

I := I ′.
return true.

Definition 6 (pattern search(Ti, d, I)).

k := 2.
I ′ := I + kdTi.
while I ′ ∈ S ∧ f(I ′) < f(I)

I := I ′.
k := 2k.
I ′ := I + kdTi.

Theorem 6. The expected time of AVM for finding an opti-
mal solution isΩ(log n) andO((log n)2).

Proof. We first start to prove that, before doing a restart,
AVM converges to a solution in the formT = (t, t, t),
wherea ≤ t ≤ c. The discussion is similar to the proof
done for HC. The variable representinga can only increase
(Proposition 1), and has a gradient to increase up tob, i.e.,
each succession of increments ofa has better fitness (that
can be easily proved with an induction on Proposition 1).
Similarly, c cannot increase (Proposition 2), and it has a

gradient to decrease down tob, and althoughb can change,
b will still be in the interval[a, c].

The difference is that, during the search, the input vari-
ables might take values lower than the startinga and bigger
thanc. For example, in the latter case that might happen
if the variablex (for example) representingb gets an high
increase, and that increase will makex bigger thanc. How-
ever, in that casex (now representing the newc′) will have
a gradient to be decreased at least down to the originalc
(that now has become the newb′). Therefore, even if a vari-
able can get a value bigger thanc, it will be immediately
decreased afterwards. That happens because AVM works
on the same variable till its change can improve the fitness.
The case of having values lower than the initiala can be
discussed in the same way.

Because AVM accepts only strictly better solutions, there
will be a finite number of steps before converging toT .
Moreover, once a random (re-)starting point is chosen, the
behaviour of AVM is deterministic. Therefore, the proba-
bility of finding either a local or global optimum depends
only on the starting point.

Following the same discussion done for HC, both these
probabilities are lower and upper bounded by constants. In
particular, if we just consider the casesa > 0 andc ≤ 0,
we have1

8 ≤ P (global) ≤ 3
4 . Hence, in expectation, AVM

needs a constant numberΘ(1) of restarts to reach a global
optimum in the same way as HC.

For discussing the convergence toT , we consider two
opposite cases in which only one of the following opposite
predicates holds:a + b ≤ c anda + b > c. We separately
study the runtime of each of these cases. The reason for
doing that is to simplify the proof. In fact, during the search
it can happen only once that from a solution that satisfies
a + b ≤ c we move to a case in whicha+ b > c is true, and
the vice-versa is not possible. That happens because, due to
the fact thatω(x) < 1 for all x, all the solutions satisfying
the latter predicate have a strictly better fitness value than
the cases in whicha + b ≤ c hold.

Although we can separately study the expected runtime
of these two cases, what we are actually interested in is the
overall runtime. We will prove that in both cases we get the
same runtimeΩ(log n) andO((log n)2). Hence, because
there might be only one swap froma + b ≤ c to a + b > c,
the overall asymptotic runtime will be the same.

In the case ofa + b ≤ c, we will consider the change
of each variable separately. As a reminder, we have three
input variables(x, y, z), which represent the ordered values
(a, b, c). AVM works on the inputs(x, y, z), and if for ex-
amplex represents the lowest valuea and it gets increased,
then it might representb in successive steps of the search.
With (a0, b0, c0) we consider the ordered values of(x, y, z)
when AVM starts to do a new exploratory search.

We start to consider the case in which the first variable

b0 b1 b2 b3
c0

Figure 2. Example in which c0 − b0 = 15. In
that case we will have bs = c0.

b0b1 b2 b3
c0bs bs+1

Figure 3. Example in which c0 − b0 = 17. In
that case bs+1 is not accepted, and that is rep-
resented by a dashed arrow.

to be searched for isb. It cannot be decreased (otherwise
the fitness would be worse), and it has a gradient to increase
towardc. In the best case, there will beΩ(log(c− b)) steps,
because in the pattern search the step size doubles each
time. Considering thatE[c− b|a] = E[c − a|b]/2 = Θ(n),
then the number of expected steps isΩ(log n). Let s be
the number of steps for which we get as close toc as
possible. Afters steps, the increment to the variableb is
∑s

i=0 2i = 2s+1 − 1. Let k = 2s+1, hence afters steps the
value ofb is bs = b0 + k− 1. Figure 2 shows an example in
which bs = c0. Unfortunately,bs can be different fromc0,
but we can be sure thatbs+1 > c0. Two opposite cases re-
quires to be studied: whether forbs+1 = b0 +2k−1 we get
a better fitness or not. If we get a worse fitness (as shown
in an example in figure 3), we will have a new exploratory
search aroundbs (that now has become the newb0), and it
will have a gradient to increase towardc. We can induc-
tively apply the same discussion on the new valueb0, with
the difference that the distance fromc has been decreased.
In particular, the original distanced = c0 − b0 (with b0 the
old value, and not the new one that is equal tobs) is de-
creased down tod = c0 − bs. To note that the distance ofb
from c influences the fitness in a linear way. In the best case
we would haved = 1, but what happens in the worst case?
In other words, what is the lowest value thatbs can have?
The following inequalities must be satisfied:







b0 + k − 1 < c0 ,
b0 + 2k − 1 > c0 ,
c0 − bs ≤ bs+1 − c0 ,

which is the case fork ≥ 2
3 (c0 − b0 + 1). Hence, even for

the lowestbs, the distance fromc is reduced by at least23 .
The opposite case is whenbs+1 is accepted (an example is
shown in figure 4). In that case it would become the newc0.

b0b1 b2 b3
c0bs bs+1

Figure 4. Example in which c0 − b0 = 25. In
that case bs+1 is accepted.

b0
c0c1cs

cs+1

Figure 5. Example in which c0 − b0 = 6. In
that case cs+1 is accepted. To note that is the
continuation of the search done in figure 4,
which is represented in dotted arrows. The
former bs+1 has become the new c0, whereas
the old c0 is now the new b0.

We are interested in the highest value thatbs+1 can take.
Given the inequalities:







b0 + k − 1 < c0 ,
b0 + 2k − 1 > c0 ,
c0 − bs > bs+1 − c0 ,

the highest value that we can have isbs+1 = b0+
4
3 (c0−b0+

1). Therefore, the distance ofb0 from c0 has been reduced
again at least by23 . That means that, whatever the situa-
tion is, we can reduce the distancec0 − b0 by 2

3 in Θ(log n)
steps. Before analysing the new exploratory search starting
from eitherbs or bs+1 (that will become the newc0), we
need to analyse the case in which the considered variable
for the exploratory search isc. The case in which the con-
sidered variable isc has the same specular properties asb.
The variable cannot be increased (Proposition 2), and it has
a gradient to decrease down tob0. Figure 5 shows an exam-
ple in whichc decreases. That example is the continuation
of the search in figure 4.

If c does not arrive down tob0 in a single pattern search,
that will stop with a distance fromb0 that has been reduced
by at least23 . The only difference is thatc can decrease
so much thatcs+1 might become lower thana0. In that
case,cs+1 would become the newa0, with a gradient toward
b0 (that has become the newc0). Even if cs+1 < a0, its
distance fromb0 would be no more than13 of the original
distancec0 − b0 + 1.

The case in which the considered variable isa follows
the same behaviour ofb, with the difference that before
reachingc it will become the newb as soon as it gets bigger

than the startingb0.
If we start from eitherb or c, a pattern search will reduce

the distancec−b by at least23 in Θ(log n) steps. How many
new exploratory searches followed by pattern searches do
we need before gettingb = c? In the worst case we get the
distancec − b reduced by only23 , hence we needO(log n)
searches. That would mean that we getb = c in Ω(log n)
andO((log n)2) steps. However, the distancec − b gets
reduced at each search. Hence, the upper bound for the
steps is:

∑log n
i=0 log(n

3i) =
∑log n

i=0 (log n + log 3−i)

= (log n)2 − log 3
∑log n

i=0 i

= (log n)2 − log 3 (log n)(log n+1)
2

= O((log n)2) .

Unfortunately, although the distance is reduced at each
new pattern search, the upper bound does not change.

Once we getb = c, the waya changes follows the same
discussion done forb and c. Note that, if we start from
a, after a certain point it will becomeb. Therefore, from
whatever variable (i.e.,x, y or z) AVM starts the search,
we expect to getb = c in Ω(log n) andO((log n)2) steps,
and then the finala = b = c in additionalΩ(log n) and
O((log n)2) steps, which does not change the asymptotic
runtime.

To finish the proof, we still need to consider the case
in which a + b > c. It follows the same type of proof of
a+b ≤ c. The only difference is thatb can be changed only
in two cases:

b = a + 1 ,
b = c − 1 .

In these two cases, a single exploratory search makes
either a = b or b = c in at most two steps. The final
a = b = c will be reached inΩ(log n) andO((log n)2).
As stated above, a constant number of restarts suffices to
find a global optimum.

Theorem 7. The probability that AVM has found an optimal
solution to TC withinc · n · (log n)2 iterations is exponen-
tially large 1 − e−Ω(n), wherec is a constant.

Proof. Except for the choice of search point in the initial it-
eration, or in case of a restart, AVM is a deterministic algo-
rithm. By the proof of Theorem 6, AVM has reached a local
optimum withinc · (log n)2 iterations, for some constantc.
A global optimum is found if the initial search point satis-
fiesa > 0, an event which occurs with constant probability
p. The probability that AVM needs more thann restarts be-
fore the initial search point satisfies the condition above,is
less than(1 − p)n = e−Ω(n).

5 Conclusions and Future Work

In this paper we have theoretically analysed the runtime
of three search algorithms (RS, HC and AVM) on the test
data generation for the TC problem. Our theoretical analy-
ses confirm the experimental results obtained so far in the
literature. In other words, on that problem RS has a worse
time complexity than HC, and AVM has the best.

At any rate, the most used meta-heuristic in software
testing are GAs. Hence, we are currently investigating its
runtime. The problem is that, in literature, GAs have been
very difficult to analyse.

Considering the smooth nature of the search landscape,
we would expect that GAs would have a complexity not
better than the one of HC, and not worse than the one of
RS. The question would be whether the runtime complexity
of GAs would be closer to RS or to HC.

However, experimental results and wrong assumptions
can be misleading. Therefore, it might be possible that GAs
have an inferior runtime to RS, but with a lower constant
which hides this fact in experimental results. In the same
way, although GAs are global search algorithms, bigger
jumps done by the crossover operator might make the run-
time of GAs better than that of HC. Therefore, we need to
theoretically prove the runtime complexity of GAs to shed
light on these questions.

For the future we are also planning to analyse more com-
plex software. Moreover, it will be important to analyse
how the obtained results can be generalised for different
classes of test problems.

6 Acknowledgements

The authors are grateful to Ramón Sagarna for insightful
discussions. This work is supported by EPSRC grants EP/-
D052785/1 and EP/C520696/1.

References

[1] B. Beizer. Software Testing Techniques. Van Nostrand
Rheinhold, New York, 1990.

[2] J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones,
M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,
and M. Shepperd. Reformulating software engineering as a
search problem.IEE Proceedings - Software, 150(3):161–
175, 2003.

[3] R. A. DeMillo, R. J. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmer.Com-
puter, 11(4):34–41, 1978.

[4] S. Droste, T. Jansen, and I. Wegener. On the analysis of the
(1+1) evolutionary algorithm. Theoretical Computer Sci-
ence, 276:51–81, 2002.

[5] S. Droste, T. Jansen, and I. Wegener. Upper and lower
bounds for randomized search heuristics in black-box op-
timization. Theory of Computing Systems, 39(4):525–544,
2006.

[6] F. Gruenberger. Program testing: The historical perspective.
Program Test Methods, pages 11–14, 1973.

[7] M. Harman and P. McMinn. A theoretical & empirical anal-
ysis of evolutionary testing and hill climbing for structural
test data generation. InProceedings of the International
Symposium on Software Testing and Analysis (ISSTA), pages
73–83, 2007.

[8] J. He and X. Yao. A study of drift analysis for estimating
computation time of evolutionary algorithms.Natural Com-
puting, 3(1):21–35, 2004.

[9] J. H. Holland.Adaptation in Natural and Artificial Systems,
second edition. MIT Press, Cambridge, 1992.

[10] B. Korel. Automated software test data generation.IEEE
Transactions on Software Engineering, pages 870–879,
1990.

[11] B. Legeard, F. Peureux, and M. Utting. Controlling test
case explosion in test generation from b formal models: Re-
search articles.Software Testing, Verification and Reliabil-
ity, 14(2):81–103, 2004.

[12] P. K. Lehre and X. Yao. Runtime analysis of (1+1) ea on
computing unique input output sequences. InCongress on
Evolutionary Computation (CEC), 2007.

[13] J. C. Lin and P. L. Yeh. Automatic test data generation for
path testing using GAs.Information Sciences, 131(1-4):47–
64, 2001.

[14] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105–156, June 2004.

[15] J. Miller, M. Reformat, and H. Zhang. Automatic test data
generation using genetic algorithm and program dependence
graphs. Information and Software Technology, 48(7):586–
605, 2006.

[16] G. Myers. The Art of Software Testing. Wiley, New York,
1979.

[17] P. S. Oliveto, J. He, and X. Yao. Time complexity of evolu-
tionary algorithms for combinatorial optimization: A decade
of results.International Journal of Automation and Comput-
ing, 4(1):100–106, 2007.

[18] C. V. Ramamoorthy, S. B. F. Ho, and W. T. Chen. On the au-
tomated generation of program test data.IEEE Transactions
on Software Engineering, 2(4):293–300, 1976.

[19] G. Tassey. The economic impacts of inadequate infrastruc-
ture for software testing, final report.National Institute of
Standards and Technology, 2002.

[20] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary test
environment for automatic structural testing.Information
and Software Technology, 43(14):841–854, 2001.

[21] M. Woodward. Editorial: A test of time across the genera-
tions.Software Testing, Verification & Reliability, 14(2):79–
80, 2004.

[22] M. Xiao, M. El-Attar, M. Reformat, and J. Miller. Empiri-
cal evaluation of optimization algorithms when used in goal-
oriented automated test data generation techniques.Empiri-
cal Software Engineering, 12(2):183–239, 2007.

