Theoretical Runtime Analyses of Search Algorithms on the Tst Data Generation
for the Triangle Classification Problem

Andrea Arcuri, Per Kristian Lehre and Xin Yao
The Centre of Excellence for Research in Computationalligesmce and Applications (CERCIA),
School of Computer Science, University of Birmingham, Eagfion, Birmingham B15 2TT, UK.
email: {a.arcuri,p.k.lehre,x.yg@@cs.bham.ac.uk

Abstract common criterion isbranch coveragein which we look
for a test suite that when run executes each branch in the

Software Testing plays an important role in the life cycle code of the tested program. The reason for doing white box
of software development. Because software testing is verytesting is that bugs can lie in parts of code that are rarely
costly and tedious, many technigues have been proposed texecuted. Hence, they are difficult to spot during the de-
automate it. One technique that has achieved good results isvelopment cycle. Our analyses in this paper focus only on
the use ofSearch AlgorithmsBecause most previous work branch coverage.
on search algorithms has been of an empirical nature, there Many techniques to automate the testing phase have been
is a need for theoretical results that confirm the feasipibit proposed. Among them, modelling the test problem as a
search algorithms applied to software testing. Such thteore search problem has got widespread consideration in the last
ical results might shed light on the limitations and benefits few years [2]. In fact, search algorithms such as Genetic Al-
of search algorithms applied in this context. In this paper, gorithms (GAs) [9] have been successfully applied to solve
we formally analyse the expected runtime of three differentmany complex tasks in several different engineering do-
search algorithms on the problem of Test Data Generation mains, hence it is reasonable to apply them on Software
for an instance of th@riangle Classificatioprogram. The Engineering problems. Although their application in soft-
search algorithms that we analyse &andom SeargiHill ware testing has given promising results so far [14], most
ClimbingandAlternating Variable Methodwe believe that of the research work on that subject has been of empirical
this is a necessary first step that will lead and help the Soft- nature. The only exceptions we are aware of are on comput-
ware Engineering community to better understand the role ing unique input/output sequences for finite state machines
of Search Based Techniques applied to software testing. [12], and on the application of the Royal Road theory to
evolutionary testing [7].

In this paper we theoretically analyse the runtime be-
haviour of some search algorithms applied to an implemen-
tation of the Triangle Classification (TC) problem [16]. We
chose TC because it is the most famous problem in software

Software Testing is used to find the presence of bugs intesting. The search algorithms considered for the analyses
computer programs [16]. If no bug is found, testing cannot are: Random Search (RS), Hill Climbing (HC) and Alter-
guarantee that the software is bug-free. However, testingnating Variable Method (AVM).
can be used to increase our confidence in the software re- The goal of analysing the runtime of a search algorithm
liability. Unfortunately, testing is expensive, time cons- on a problem is to determine, via rigorous mathematical
ing and tedious. It is estimated that testing requires atoun proofs, thetime the algorithm needs to find an optimal so-
50% of the total cost of software development[1]. This cost lution. In general, the runtime depends on characteristics
is paid because testing is very important. Releasing bug-of the problem instance, in particular the problem instance
ridden and non-functional software is indeed an easy waysize Hence, the outcome of runtime analysis is usually ex-
to lose customers. For example, in the USA alone it is esti- pressions showing how the runtime depends on the instance
mated that every year around $20 billion could be saved if size. This will be made more precise in the next sections.
better testing was done before releasing new software [19]. To get a deeper understanding of the potential and lim-

White Box Testing [16] is a type of testing in which the itations of the application of search algorithms in softavar
quality of a test suite is based on structural criteria. One engineering, it is necessary to complement the existing ex-

1 Introduction

perimental research with theoretical investigations. -Run where/(f) is the problem instance size, afd, ; is the
time analysis is important part of this theoretical invgati number of times algorithml evaluates the cost functigh
tion, and brings the evaluation of search algorithms closer until the optimal value of is evaluated for the first time.
to how algorithms are classically evaluated. During thé las
decade, there has been much research on runtime analysis of A typical search algorithmal is randomised, i.e. the run-
randomised search algorithms. The field has now advancedime depends on the random bits used. Hence, the corre-
to a point where the runtime of relatively complex search SPonding runtime’s =(n) will be a random variable. The
algorithms can be analysed on classical combinatoriat opti funtime analysis will therefore seek to estimate propsrtie
misation problems [17]. of the distribution of random variablE4 #(n), in particu-

In search based white box testing, in the case of branchlar theexpected runtimé [T’ »(n)] and thesuccess prob-
coverage, it is common to tackle each different branch sep-ability Pr[T'a #(n) < t(n)] for a given time bound(n).
arately. In other words, there will be a different search for
each different branch. However, analyses on the dependen3 Triangle Classification Problem
cies graph can be used to choose only a sub-set of branches.
In fact, thg execution of a particular branch might imply TC is the most famous problem in software testing. It
the execution of others. In such a case, a successful search ;

. AT opens the classit979 book of Myers [16], and has been

for covering that branch necessarily implies the coverdge o

used/studied since at least the early 70s (e.g., [6, 18, 3]).
others, hence they do not need separated searches. Becau - .
: ; owever, the true origin of TC is not completely clear [21].
there is a constant number of branches, the runtime of a

. : : . “Atany rate, nowadays TC is still widely used in many publi-
:EZ;EE algorithm is determined only by the most expensive ..o (e.9., [13, 20, 14, 11, 15, 22]), although that isenor

. S .) likely due to the lack of organisation of the community in
The main contributions of this paper are: . .
preparing a proper benchmark suite.
e To our best knowledge this is the first work on runtime The used implementation for the TC problem is the one
analyses of sgarch algorithms applied to Software Testpublished in survey by McMinn [14] (see figure 1).
Data Generation. In the case of the analysed implementation of TC, the
« We formally proved that exists at least one search al- most difficult branch to cover is the one related to the classi

gorithm (e.g., HC and AVM) that has a runtime com- fication of the triangle asquilateral Although this is com-

plexity that is strictly better than the one of RS on at monly believed to be so, it might not be necessarily be the
least one important test problem (i.e, TC). hardest branch to cover. Moreover, what is difficult for a

.))) particular search algorithm might be very easy for others.
The paper is organised as follows. Section 2 gives back-pence the difficulty of a test problem cannot be analysed
ground about runtime analysis. Section 3 describes inldetai ithout considering the applied search algorithms. How-
the TC problem, whereas section 4 describes and analysegyer, for the rest of the paper we will consider that hypoth-
the use of three different search algorithms applied to find ggjs as true for the search algorithms analysed in this paper
test data for TC. Finally, section 5 concludes the paper. Therefore, we can limit our studies only on the coverage
of that branch, because from that we can infer the overall
2 Runtime Analysis complexity of the analysed search algorithms.
A solution to the problem is represented as a vector
To make the notion of runtime precise, it is necessary to /| = (z,v, z) of three integer variables. We cdlt, b, c)
define time and size. We defer the discussion on how tothe permutation in ascending order bf For example, if
define problem instance size for software testing to Section] = (3,5, 1), then(a, b, ¢) = (1, 3,5).
3, and define time first. There is the problem to define what is tsigeof an in-
Time can be measured as the number of basic operationstance for TC. In fact, the goal of runtime analysis is not
in the search heuristic. Usually, the most time-consuming about calculating the exact number of steps required for
operation in an iteration of a search algorithm is the evalua finding a solution. On the other hand, the runtime com-
tion of the cost function. We therefore adopt thlack-box plexity of an algorithm gives us insight of scalability ofth
scenario[5], in which time is measured as the number of search algorithrm. The problem is that TC takes as input a
times the algorithm evaluates the cost function. fixed number of variables, and the structure of its source

Definition 1 (Runtime [4, 8]) Given a classF of costfunc- ~ code does not change. Hence, what isstzein TC? We

tions f; : S; — R, theruntime Ty #(n) of a search algo- ~ chose to consider the range for the input variables for the
rithm A is defined as ’ size of TC. In fact, it is a common practice in software test-

. ing to put constraints on the values of the input variables to
Ta,F(n) == max{Tay | f € Fwith((f) =n}, reduce the search effort. For example, if a function takes as

input 32 bit integers, instead of doing a search through the
over four billions values, a range likg@, ..., 1000} might
be considered for speeding up the search.

Although limits on the input variables are common in
software testing, usually there is no guarantee that there e
ists a global optimum within those limits. However, how
fast the runtime of a search algorithm increases, when the
range of the variables is increased, gives us useful informa

tion. For example, what are the consequences of choosing a

too wide range?
At any rate, limits on the input variables are always
present in the form of bit representation size. For exam-

ple, the same piece of code might be either run on machine

that has8 bit integers or on another that usés bit. What
will happen if we want to do a search for test data on the
same code that runs or6d bit machine? Therefore, using

the range of the input variables as the size of the problem}

seems an appropriate choice.

In our analyses, the size of the problem defines the
rangeR = {—n/2 + 1,...,n/2} in which the variables
in I can be chosen (i.ex,y,2z € R). Hence, the search
spaces is defined asS = {(z,y, z)|z,y,2 € R}. To ob-
tain full coverage, it is necessary that> 8, otherwise the
branch regarding the classification ssalenewill never be
covered. To note that different types Bfcould be consid-
ered (e.g.R' = {0,...,n}), and for each type there would
be different behaviours of the search algorithms. We based
our choice on what is commonly done in literature.

The search space is composedByelements. However,
instead of considering, we could use with 297! < n <
24, whereq represents the max number of bits allowed for

the input variables. In that case, the search space would bé

large232. In our analyses, we prefer to consideinstead
of ¢ because we think it is more clear.

As defined in [14], the objective function used here is
the sum of the approach level with the normalised branch
distance. In our particular case, the objective functfcio
minimise is:

FV) = l+w(d(-(a+b<¢)) ifat+b<ec,
(V) = 0+w(dla=bV b=c)) otherwise,
1)
where
0 ifc—a—b<0,
d(~(a+b < 0)) = { (¢c—a—0)+ K otherwise,
(@)
da=bAb=c)=1 0 fa=b,
“= -9 abs(a —b) + K otherwise,
0 ifb=c,

B

abs(b—c)+ K otherwise,

int tri_type(int a, int b, int c) {
int type;
if (a>Db) { intt=a a=Db b=t;}
if (a>c) {intt =a a=c;, c=1t; }
if (b>c) { int't =Db; b=c; c=1t; }
if (a+b<=c){
type = NOT_A_TRI ANGLE;
} else {
type = SCALENE;
if (a==Db & b ==2c) {
type = EQUI LATERAL;
} elseif (a==0b || ==c) {
type = | SOSCELES;
}
}
return type;
Figure 1. Triangle Classification Program
[14].
h) = ! 3
(.d()_1_|_€7h' ()

K can be any arbitrary positive constant (e§.,= 1),
and the input: can be any real number. Note that, for Eq.
(3), any normalising function in the ranffe 1] can be used.
Moreover, if a search algorithm uses the fitness values only
for direct comparisons (as is the case for all the search al-
orithms described in this paper), the choice of the normal-
ising function does not have any effect besides its computa-
tional cost. An example, for which this would not apply, is
the use a “Fitness Proportional Selection” in GAs.

4 Search Algorithms

There are many search algorithms, and for each algo-
rithm there are several different variants.

To simplify the writing of the search algorithm imple-
mentations, and for making them more readable, they are
not presented in their general form. Instead, they are spe-
cialised in working on vector solutions of length three.
However, the general versions, that consider that length as
a problem parameter, would have the same computational
behaviour in term of evaluated solutions.

The runtime of the algorithm is defined as the number
of iterations until the optimum has been found for the first
time. Hence, the choice of the termination criterion does
not influence the runtime, and is therefore left unspecified
to simplify the description of the algorithms.

Theorem 1. Given the objective function (1) and the space
of solutionsR, there aren/2 global optima, and they are
on the formG = (¢, t,t), witht > 0.

Proof. This can be proved by considering fithess function
(1), in which the minimal fitness value is given far+ b >
¢)A(a = b)A(b = ¢). The pointd7 are the only that satisfy

(a=b)A(b=rc),andt+t > timpliest > 0. Because the
range of the variables i® = {—n/2 4+ 1,...,n/2}, there
aren/2 possible different with ¢ > 0. O

The two following simple properties of the problem will
be used extensively in the runtime analysis.

Proposition 1. Leta < b < ¢, andv > 0, thenf(a, b, c) <
fla—wv,b,c).

Proof. Inthe case whea+b < ¢, thena—v+b < cand we
havef(a,b,¢c) =14+ w(c—a—b+ K)andf(a—wv,b,c) =
14+ w(c— (a —v) — b+ K), in which case the proposition
holds. Assume on the other hand that b > c. Let g be:

0 fa=bAb=c,

g= 2K ifa#£bAb+#c,
K otherwise,
we get:
fla=v.b¢) >wlc—a+v+g)
> w(c—a+g)
= f(a,b,c) .

O

Proposition 2. If a < b < ¢, andv > 0, thenf(a,b,c) <
f(aa b7 c + ’U).
Proof. In the case when + b < ¢, we have:

fla,be+v) =14wlv+c—a—b+K)
>l4wlc—a—-b+K)

For the opposite case+ b > ¢, we have:

fla,byc+v) >wlv+c—a+g)

>w(c—a+yg)
= f(a,b,c),

whereg is as defined in the proof of Proposition 1. [
4.1 Random Search

RS is the easiest search algorithm.

baseline for evaluating the performance of other more so-
phisticated meta-heuristics.

Atany rate, itis important to not confuse RS in white box
testing with Random Testing (RT). In RT, in fact, random
points (i.e., test cases) are sampled, and those will compos
the final test suite. On the other hand, in our case we use RS
to find and choose test cases for getting the highest possible
branch coverage.

Definition 2 (Random Search (RS))

while termination criterion not met
Choosel uniformly fromsS.

Theorem 2. The expected time for RS to find an optimal
solution to TC is9(n?).

Proof. The probability of getting three identical values is
1/n2. The probability that a point = (a,a,a) hasa > 0

is 1/2. Therefore, the probability that a random search point
is a global optimum ig /2n2.

The behaviour of RS can therefore be described as a
Bernoulli process, where the probability of getting a globa
optimum for the first time aftet steps is geometrically
distributed Pr [Trs =t] = (1 — 1/2n2)!=1 . (1/2n?)
Hence, the expected time for RS to find a global optimum
is E[Tgs] = 2n°. O

Theorem 3. The probability that RS has found an optimal

solution to TC withinn? iterations is exponentially large
1 — e %),

e*l |t is easy to
) < efn/Q

Proof. Using the inequality1 — 1/z)* <

(0

4.2 Hill Climbing

see thatr [Trs > n?]

2n2

HC is a search algorithm that belongs to the cladeal
searchalgorithms. That means that given a starting pdint
it looks at neighbour solutiond (1) that are “near” taly.
If a better solutionl’ € N (1) exists, then the next poid{
will be thatI’. Then, the same procedure of looking at the
neighbour solutions is done an, until a final point/; is
reached, in whicWI’ € N(I;) : f(I') > f(I;), assuming
we want to minimise functiorf. This means that no neigh-
bour solution is better, and the algorithm is said to be stuck
in either a local or global optimum. If; is not a global

It simply samplesoptimum, then HC can restart from a new different pdint

search points at random, and stops when a global optimum At any rate, HC is not a single specific algorithm, but a

is found (i.e., when the target branch is covered). RS doesfamily of algorithms.

not exploit any information got so far by the visited points

In fact, we need to define how the
neighbourhoodV is generated, the stratedyfor visiting

when choosing the next to sample. Often, RS is used as aV, and finally how to do the restarts.

Given that the solution is a vector of integers (of length
three in our particular case), an appropriate neighbouthoo
iSN(;) ={+d | d € Dandl; +d € S}, where
D := {(£1,0,0),(0,%+1,0), (0,0,41)}.

starting point, HC reaches eithéror GG, andG are global
optima.

A step is called successful if the new search pdinht
is accepted. The number of successful stegsr HC to

A random restart is a common choice, and we use it for reach an optimum depends on how the valué ofianges.

the HC that we analyse. Regarding the stratégwe do

If it does not change, then there dre- a steps in which

not need to define one. In fact, the following analyses of 4 increases, and — b steps in which: decreases. Hence,

HC are valid for all strategies satisfying the following eon

straint: unless a new better solution is found, each neigh-

bour solution will be visited in at most a constant number

of iterations (assuming that the neighbourhood size is con-

stant). The implication is very straightforward: if the eur
rent pointl; is neither a local or global optimum, then a

n = ¢ — a. There is only one case in whidlcan decrease:
(a+b>c)A(b=a+1), because in all other cases the
fitness would never be better. ifis decreased beforein-
creases (that depends on how the strateégyorks), then

n =1+ ¢ — a, because theam = b anda andb cannot be
changed again. Ifitis stilla + b > ¢) but (b # a + 1),

better solution will be found in at most a constant number then b cannot be altered unti is increased up tdé — 1,

of iterations. Note that this constraint is very common, and
most of the HC variants satisfy it.

Definition 3 (Hill Climbing (HC)).

while termination criterion not met
Choosel uniformly at random front.
while I not a local optimum inV (1),
Choosel’ from N(I) according to strategy
if f(I') < f(I),then
I1:=1T.

Theorem 4. The expected time for HC to find an optimal
solution to TC igD(n).

Proof. We first need to prove that all the points of the form
L = (t,t,t) with t < 0 are local optima. Because for all of
thema + b < cis true, we havef (L) = 1 + w(—t + K).
Any operation on the vectdr can either increaseby one,

or decrease by one. In both the cases, the resulting points
L' have worse fitness (Proposition 1 and 2), that(ig’) =

1+ w(—t+1+ K). Becausef(L') > f(L), the pointsL

are local optima.

Considering Propositions 1 and 2, a solutidiis not ac-
cepted if the value ofi has decreased, or if the value of
has increased. Moreover, there is always a gradient for
increase up t®, and forc to decrease down thy because
there would be a fithess improvement whatever b < ¢
is true or not. Although the value éfcan either increase or
decrease, its number of changes is finite, becausé < ¢

because the fithess would not change. On the other hand,
while (¢ + b < ¢), there is always a gradient forto in-
crease up te — a + 1. However, ifa < 0, b can increase up

to c. Again, depending on, it is possible that decreases
beforeb increases, and vice-versa. In the worst case with
a = banda < 0, we can have) = 2(c — a), becausé can
takec — a steps to increase up t9oand other — a steps for

a to increase up te as well. Therefore, regardless of the
starting point/ and strategy, the number; of successful
steps is bounded biy: — a) <1 < 2(c— a).

Unless the algorithm is stuck in an optimum, in at most
a constant number of iterations it will find a better solu-
tion in its neighbourhood. Considering the boundsyof
the expected number of iterations for reaching an optimum
is ©(c — a). This difference can be expressed in terms
of problem sizen by noting that the expected value of
is Efa|b = b/2 - (n/2+ 1)/2, whereasFE [c | b]
b+ (n/2 — b)/2. It now follows thatE [c — a |]
Elc|b—FE]a]|b] = (n+1)/2,independently ob. There-
fore, starting from a random point, the expected number of
iterations for reaching either a local or a global optimum is
O(n).

When an optimum is reached, HC does a restart if that
point is a local optimum. Therefore, we need to calculate
the number of restarts that are required for HC to find an
optimal solution.

If ¢ < 0, then HC is bound to reach a local optimum
regardless of the strategy That happens because it will

is always true and because HC accepts as new solutionseach a pointt, ¢, t) with ¢ < ¢. Because < 0 impliest <

only strictly better points. Therefore, after a finite num-
ber of steps (i.e., the algorithms does not enter in an iefinit
loop, like it would happen if new solutions with equal fit-
ness would be accepted), the current solutioronverges
to a point of the formiV = (¢,¢,t), witha <t < ec. If b
does not change during the search, thenb.

Although we already proved that all the points in the
form (¢,¢,t) are either local or global optima, only after
the discussion in the previous paragraph we can statd.that
are the only possible local optima. In fact, regardless ef th

0, then that point is a local optimum. With the same type
of reasoning, ifa > 0, then HC is bound to find a global
optimum. We said that there is only one case in wiichn
decrease up ta, and that i$ = a + 1. However, because
for doing it there is the need af + b > ¢, thena > 0 is
required. Therefore, ib > 0, thenb will always remain

a positive value. Hence, we can generalise the condition of
reaching a global optimum from > 0 to a more significant

b > 0. Note thate > 0 impliesb > 0, but the opposite is
not always true.

There is still to consider the cage < 0) A (¢ > 0), in For example, if a better solution is found by applying &
which the result is actually depending on the stratégif to the input variable, then the following pattern searcH wil
it chooses to decreasgeat least down td) before increas- focus on decreasing the value of that input variable.
ing b up to 1, then a local optimum will be reached, or a A pattern search ends when it does not find a better solu-
global optimum if it chooses to do the opposite. However, tion. In that case, AVM will start a new exploratory search
as we will show, the analysis of that situation is not impor- on the same input variable. In fact, the algorithm moves
tant for finding a lower and an upper bound for the number to consider one other variable only in the case that an ex-
of required restarts. ploratory search is unsuccessful.

The probability of starting from a point with < 0 is o))
P(c < 0) = L. On the other hand, the probability of Definition 4 (Alternating Variable Method (AVM))
starting from a point witth > 0 is equivalent at the prob- while termination criterion not met
ability of flipping a coin three times and getting at least Choosel uniformly in S
two heads, henceP(b > 0) = g + 35 = 5. There- while I improved in Iasﬁ loops
fore, regardless of the strategy we have that the proba- i = current loop index.
bility of reaching a global optimum from a random point is ChooseT; € {(1,0,0), (0, 1,0), (0,0, 1)} such that
1 < P(global) < 2, whereas for reaching a local optimum T £ %‘_1 AT ’# %_’2 TR
itis + < P(local) < 1. ’) ’ e

. ound := true.
Therefore, the expected number of restarts is no more /

while found

than2. Because reaching either a local or global optimum for d — 1andd = —1

from a random point require®(n) steps, and the expected found := exploratory_search(T}, d, I).
number of restarts to reach a global optimum is no more if found, then v
th?n)z, it follows that the expected runtime of HC is on TC patte;"n_search(Ti d, 1)

O(n). (| 7

Theorem 5. The probability that HC has found an optimal

solution to TC within: - n? iterations is exponentially large

1 — e (") wherec is a constant. I':= I +dT,.

if I’ ¢ Sv f(I')> f(I),then
return false.

else

Definition 5 (exploratory_search(T;, d, I)).

Proof. The time to reach a local optimum is at mestn
iterations, where the constatis determined by the strategy

0. The probability that HC finds a local optimum more than J

n times before a global optimum is found is less thaft = re'turn t

6752(71). 0 rue.

4.3 Alternating Variable Method Definition 6 (pattern_search(T;,d, I)).
AVM is similar to an HC, and was employed in the early k,:.: 2.

work of Korel [10]. The algorithm starts on a random search I hI: I/+ kdT;. ,

point 7, and then it considers the modifications of the input w |e.I E/S AT < ()

variables one at the time. It applies to the chosen variable a I :: I

exploratory searchin which that variable is slightly mod-];,'i2jk'+ dT:

ified (in our case, byt1). If one of the neighbours has a
better fitness, then the exploratory search is successhil. A
it happens in HC, tha_t better neighbour will be selec_ted aSTheorem 6. The expected time of AVM for finding an opti-
the new current solgtlon. Moreovgr,rmttern searchwill mal solution is(log n) andO((log n)2).
take place. Otherwise, AVM continues to do exploratory
searches on the other variables, until either a better neigh Proof. We first start to prove that, before doing a restart,
bour has been found or all the variable have been unsuc-AVM converges to a solution in the for = (¢,¢,1),
cessfully explored. In that latter case, a restart from a newwherea < t < ¢. The discussion is similar to the proof
random point is done if a global optimum was not fund. done for HC. The variable representiagan only increase

A pattern search consists of applying larger changes to(Proposition 1), and has a gradient to increase up te.,
that variable and increase the size of the changes after eackach succession of incrementsaohas better fithess (that
new better solution is found. The type of change depends oncan be easily proved with an induction on Proposition 1).
the exploratory search, which gives a direction of growth. Similarly, ¢ cannot increase (Proposition 2), and it has a

gradient to decrease down&pand althouglb can change,
b will still be in the intervalla, ¢].

The difference is that, during the search, the input vari-
ables might take values lower than the startirend bigger
thanc. For example, in the latter case that might happen
if the variablex (for example) representinggets an high
increase, and that increase will makbigger tharc. How-
ever, in that case (now representing the newl) will have
a gradient to be decreased at least down to the original
(that now has become the nély. Therefore, even if a vari-
able can get a value bigger thanit will be immediately

decreased afterwards. That happens because AVM works

on the same variable till its change can improve the fitness.
The case of having values lower than the iniiatan be
discussed in the same way.

Because AVM accepts only strictly better solutions, there
will be a finite number of steps before convergingZo
Moreover, once a random (re-)starting point is chosen, the
behaviour of AVM is deterministic. Therefore, the proba-

VSV

by by ba by co

Figure 2. Example in which ¢y — by = 15. In
that case we will have b, = cg.

bobr by by b,

[

Figure 3. Example in which ¢y — by = 17. In
that case b1 is not accepted, and that is rep-
resented by a dashed arrow.

bility of finding either a local or global optimum depends to be searched for i&. It cannot be decreased (otherwise

only on the starting point. the fitness would be worse), and it has a gradient to increase
Following the same discussion done for HC, both these towarde. Inthe best case, there will I5g(log(c — b)) steps,

probabilities are lower and upper bounded by constants. Inbecause in the pattern search the step size doubles each

particular, if we just consider the cases> 0 andc < 0,
we havel < P(global) < 3. Hence, in expectation, AVM
needs a constant numb@1) of restarts to reach a global
optimum in the same way as HC.

For discussing the convergence’f we consider two
opposite cases in which only one of the following opposite
predicates holdsz + b < canda + b > c. We separately

time. Considering thaE[c — bla] = E[c — a|b]/2 = ©(n),
then the number of expected stepsifogn). Let s be
the number of steps for which we get as closectas
possible. Afters steps, the increment to the varialblés
Sl p2t =25t — 1. Letk = 2!, hence aftek steps the
value ofb is by = by + k — 1. Figure 2 shows an example in
whichb, = ¢y. Unfortunatelyp, can be different from,

study the runtime of each of these cases. The reason foPut We can be sure that,, > ¢. Two opposite cases re-

doing that is to simplify the proof. In fact, during the sdarc
it can happen only once that from a solution that satisfies
a+b < cwe move to a case in whieh+ b > cis true, and

quires to be studied: whether foy, 1 = by + 2k — 1 we get
a better fitness or not. If we get a worse fithess (as shown
in an example in figure 3), we will have a new exploratory

the vice-versa is not possible. That happens because, due t8€arch around, (that now has become the néy), and it

the fact thatw(z) < 1 for all z, all the solutions satisfying
the latter predicate have a strictly better fitness valua tha
the cases in which + b < ¢ hold.

Although we can separately study the expected runtime
of these two cases, what we are actually interested in is th
overall runtime. We will prove that in both cases we get the
same runtime(logn) and O((logn)?). Hence, because
there might be only one swap fromt+ b < ctoa + b > ¢,
the overall asymptotic runtime will be the same.

In the case ofi + b < ¢, we will consider the change

of each variable separately. As a reminder, we have three

input variablegz, y, z), which represent the ordered values
(a,b,c). AVYM works on the inputgz, y, z), and if for ex-
amplex represents the lowest valaeand it gets increased,
then it might represerit in successive steps of the search.
With (ao, bg, co) we consider the ordered values(af y, z)
when AVM starts to do a new exploratory search.

We start to consider the case in which the first variable

[S)

will have a gradient to increase toward We can induc-
tively apply the same discussion on the new valgiewith

the difference that the distance franmhas been decreased.
In particular, the original distancé= ¢y, — by (with by the

old value, and not the new one that is equabfdis de-
creased down td = ¢y — bs. To note that the distance bf
from c influences the fitness in a linear way. In the best case
we would havel = 1, but what happens in the worst case?
In other words, what is the lowest value thiatcan have?
The following inequalities must be satisfied:

bo+k—1<c,
bo+2k—1> cp .
co—bs < bsp1 —co,

which is the case fok > 2(co — by + 1). Hence, even for
the lowesth,, the distance froma is reduced by at Iea%.
The opposite case is wheén, ; is accepted (an example is
shown in figure 4). In that case it would become the agw

VAN

boby by bs bs o bot1

Figure 4. Example in which ¢y — by = 25. In
that case b, 1 is accepted.

P . N

cs cico

b
Cst1

Figure 5. Example in which ¢y — by = 6. In
that case cs; is accepted. To note that is the
continuation of the search done in figure 4,
which is represented in dotted arrows. The
former b1, has become the new ¢q, whereas

than the startingy.

If we start from eitheb or ¢, a pattern search will reduce
the distance — b by at Ieast% in ©(logn) steps. How many
new exploratory searches followed by pattern searches do
we need before getting= ¢? In the worst case we get the
distancer — b reduced by only2, hence we nee@(logn)
searches. That would mean that we fet ¢ in Q(logn)
and O((logn)?) steps. However, the distanee- b gets
reduced at each search. Hence, the upper bound for the
steps is:

> log(3) = i) (logn + log 377)
(logn)? — log 3 (lzi‘fg; o
ogn)(logn+
= (logn)? — log 3-8~128n)

O((logn)?) .

Unfortunately, although the distance is reduced at each
new pattern search, the upper bound does not change.
Once we geb = ¢, the waya changes follows the same

discussion done fob and c. Note that, if we start from

a, after a certain point it will becomé&. Therefore, from
whatever variable (i.e, y or z) AVM starts the search,
we expect to geb = c in Q(logn) andO((logn)?) steps,
and then the finak = b = ¢ in additionalQ(log n) and
O((logn)?) steps, which does not change the asymptotic
bo+k—1<cp, runtime.

bo+2k —1>co, To finish the proof, we still need to consider the case
co—bs > bsi1 —co in whicha + b > c. It follows the same type of proof of
a+b < c. The only difference is thdtcan be changed only
in two cases:

the old c¢g is now the new by.

We are interested in the highest value that; can take.
Given the inequalities:

the highest value that we can havégjs; = bo+§(c0—bo+
1). Therefore, the distance &f from ¢y has been reduced
again at least b;%. That means that, whatever the situa-
tion is, we can reduce the distange— by by 2 in ©(log n)
steps. Before analysing the new exploratory search startin , X
from eitherb, or b, (that will become the new,), we eithera = b Orb = cin at most two steps. The2f|nal
need to analyse the case in which the considered variablg? = 0 = ¢ Will be reached in2(logn) and O((logn)”).
for the exploratory search is The case in which the con- As stated abovg, a constant number of restarts suffices to
sidered variable is has the same specular propertiegas [ind a global optimum.
The variable cannot be increased (Proposition 2), and it has O
a gradient to decrease downtg Figure 5 shows an exam-
ple in whichc decreases. That example is the continuation Theorem 7. The probability that AVM has found an optimal
of the search in figure 4. solution to TC withinc - n - (logn)? iterations is exponen-

If ¢ does not arrive down thy in a single pattern search, tially large 1 — ¢=*("), wherec is a constant.
that will stop with a distance frorty, that has been reduced
by at |east%_ The On'y difference is that can decrease PrOOf. Except fOI’ the Choice Of SearCh pOint in the |n|t|a| |t'
so much that,,; might become lower than,. In that eration, or in case of a restart, AVM is a deterministic algo-
caseg,, would become the new, with a gradient toward rithm. By the proof of Theorem 6, AVM has reached a local
by (that has become the new). Even ifc,y1 < ao, its optimum withine - (logn)? iterations, for some constaat
distance fromb, would be no more thalé of the original A global optimum is found if the initial search point satis-
distancery — bo + 1. fiesa > 0, an event which occurs with constant probability

The case in which the considered variable:ifollows - The probability that AVM needs more tharrestarts be-
the same behaviour df, with the difference that before fore the initial search point satisfies the condition abase,
reaching: it will become the nevb as soon as it gets bigger 1€ss than(1 — p)™ = e~ (). O

b=a+1,
b=c—1.

In these two cases, a single exploratory search makes

5 Conclusions and Future Work

In this paper we have theoretically analysed the runtime
of three search algorithms (RS, HC and AVM) on the test
data generation for the TC problem. Our theoretical analy-
ses confirm the experimental results obtained so far in the
literature. In other words, on that problem RS has a worse
time complexity than HC, and AVM has the best.

At any rate, the most used meta-heuristic in software
testing are GAs. Hence, we are currently investigating its
runtime. The problem is that, in literature, GAs have been
very difficult to analyse.

Considering the smooth nature of the search landscape, [9]
we would expect that GAs would have a complexity not
better than the one of HC, and not worse than the one of [10]
RS. The question would be whether the runtime complexity
of GAs would be closer to RS or to HC.

However, experimental results and wrong assumptions
can be misleading. Therefore, it might be possible that GAs
have an inferior runtime to RS, but with a lower constant
which hides this fact in experimental results. In the same 1]
way, although GAs are global search algorithms, bigger
jumps done by the crossover operator might make the run-
time of GAs better than that of HC. Therefore, we need to [13]
theoretically prove the runtime complexity of GAs to shed
light on these questions.

For the future we are also planning to analyse more com-
plex software. Moreover, it will be important to analyse
how the obtained results can be generalised for different [15]
classes of test problems.

6 Acknowledgements

(5]

(6]
(7]

(8]

[11]

[14]

[16]

The authors are grateful to Ramon Sagarna for insightful [17]
discussions. This work is supported by EPSRC grants EP/-
D052785/1 and EP/C520696/1.

References

(1]

B. Beizer. Software Testing TechniquesVan Nostrand
Rheinhold, New York, 1990.

[18]

[19]

[2] J. Clark, J. J. Dolado, M. Harman, R. Hierons, B. Jones, [20]

(3]

M. Lumkin, B. Mitchell, S. Mancoridis, K. Rees, M. Roper,
and M. Shepperd. Reformulating software engineering as a
search problem.IEE Proceedings - Softward50(3):161—
175, 2003.

R. A. DeMillo, R. J. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmeom-
puter, 11(4):34-41, 1978.

[4] S. Droste, T. Jansen, and |. Wegener. On the analysiseof th

(1+1) evolutionary algorithm. Theoretical Computer Sci-
ence 276:51-81, 2002.

[21]

[22]

S. Droste, T. Jansen, and |. Wegener. Upper and lower
bounds for randomized search heuristics in black-box op-
timization. Theory of Computing Systen®9(4):525-544,
2006.

F. Gruenberger. Program testing: The historical pectipe.
Program Test Methodpages 11-14, 1973.

M. Harman and P. McMinn. A theoretical & empirical anal-
ysis of evolutionary testing and hill climbing for strucalir
test data generation. IRroceedings of the International
Symposium on Software Testing and Analysis (IS$E4Es
73-83, 2007.

J. He and X. Yao. A study of drift analysis for estimating
computation time of evolutionary algorithmNatural Com-
puting 3(1):21-35, 2004.

J. H. Holland.Adaptation in Natural and Artificial Systems,
second editionMIT Press, Cambridge, 1992.

B. Korel. Automated software test data generatidBEE
Transactions on Software Engineerjingages 870-879,
1990.

B. Legeard, F. Peureux, and M. Utting. Controlling test
case explosion in test generation from b formal models: Re-
search articlesSoftware Testing, Verification and Reliabil-
ity, 14(2):81-103, 2004.

P. K. Lehre and X. Yao. Runtime analysis of (1+1) ea on
computing unique input output sequences.Clongress on
Evolutionary Computation (CEC2007.

J. C. Lin and P. L. Yeh. Automatic test data generatian fo
path testing using GAdnformation Scienced 31(1-4):47—
64, 2001.

P. McMinn. Search-based software test data generation
A survey. Software Testing, Verification and Reliability
14(2):105-156, June 2004.

J. Miller, M. Reformat, and H. Zhang. Automatic testaat
generation using genetic algorithm and program dependence
graphs. Information and Software Technolqg¥8(7):586—
605, 2006.

G. Myers. The Art of Software TestingWiley, New York,
1979.

P. S. Oliveto, J. He, and X. Yao. Time complexity of evolu
tionary algorithms for combinatorial optimization: A detma

of results.International Journal of Automation and Comput-
ing, 4(1):100-106, 2007.

C. V. Ramamoorthy, S. B. F. Ho, and W. T. Chen. On the au-
tomated generation of program test ddEEE Transactions

on Software Engineerin@(4):293-300, 1976.

G. Tassey. The economic impacts of inadequate infrastr
ture for software testing, final reporfNational Institute of
Standards and Technolog®002.

J. Wegener, A. Baresel, and H. Sthamer. Evolutionasy te
environment for automatic structural testingnformation
and Software Technolog$3(14):841-854, 2001.

M. Woodward. Editorial: A test of time across the genera
tions. Software Testing, Verification & Reliabilit§4(2):79—

80, 2004.

M. Xiao, M. El-Attar, M. Reformat, and J. Miller. Empiti
cal evaluation of optimization algorithms when used in goal
oriented automated test data generation technidtiegiri-

cal Software Engineerindl2(2):183—-239, 2007.

