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ABSTRACT
Software testing can be re-formulated as a search problem,
hence search algorithms (e.g., Genetic Algorithms) can be
used to tackle it. Most of the research so far has been of
empirical nature, in which novel proposed techniques have
been validated on software testing benchmarks. However,
only little attention has been spent to understand why meta-
heuristics can be effective in software testing. This insight
knowledge could be used to design novel more successful
techniques. Recent theoretical work has tried to fill this
gap, but it is very complex to carry out. This has limited
its scope so far to only small problems. In this paper, we
want to get insight knowledge on a difficult software testing
problem. We combine together an empirical and theoretical
analysis, and we exploit the benefits of both.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging;
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms, Experimentation, Theory, Reliability

Keywords
Evolutionary Testing, Theory, Object-Oriented Software,
Search Landscape

1. INTRODUCTION
In software engineering there are many tasks that are ex-

tremely expensive. For example, it is very common that
software testing can take up to half the resources of the de-
velopment of a new software [4]. This is the reason why in
literature there has been a lot of effort to automate as many
of these tasks as possible.

In software testing several different techniques have been
developed. Among them, the use of search algorithms like

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

for example Genetic Algorithms [8] has been quite successful
[13]. However, most of the research so far has been of empir-
ical nature. This has validated the use of search algorithms
on many benchmark problems in software testing. And it
made it possible to test the effectiveness of new techniques
aimed at improving the performance of search algorithms
(e.g., Testability Transformations [6]). Unfortunately, in
general these types of analysis have difficulties in explain-
ing why a search algorithm is effective on a software testing
problem and which are its potential and limitations.

Theoretical analyses have been recently started to be ap-
plied to search based software testing to try to get insight
knowledge on how search algorithms work. We are aware of
only few results, that are on computing unique input/output
sequences for finite state machines [12, 11], the application
of the Royal Road theory to evolutionary testing [7], and
testing the triangle classification problem [2, 1]. Unfortu-
nately, theoretical analyses are difficult to carry out, and
that has limited their scope so far to only small problems.

In this paper, we want to get insight knowledge in a chal-
lenging testing problem. Because a full theoretical analysis
would not be feasible, we integrate it with an empirical anal-
ysis to mitigate its limitations.

We choose to analyse the testing of Red-Black Trees [5]. In
particular, we consider the white-box scenario in which the
full coverage of all the branches of the software is sought.
Containers are a typical benchmark in software testing of
object-oriented programs. For example, they have been
used to validate search algorithms [3], more traditional tech-
niques [17] and hybrids of these two [9]. Empirically, it has
been shown that red-black trees are the most difficult to test
among the considered containers [17, 3, 9].

We analysed four different search algorithms: Random
Search (RS), Hill Climbing (HC), (1+1) Evolutionary Algo-
rithm (EA), and a Genetic Algorithm (GA). They are typi-
cal search algorithms used in the software testing literature.

The main contributions of this paper are:

• We deeply analyse a difficult search based software
testing problem.

• We show how empirical and theoretical analyses can be
combined together to obtain more insight knowledge.

The paper is organised as follows. Section 2 describes the
search problem we want to solve. A description of the search
algorithms that we use follows in Section 3. On one hand,
in Section 4 we carry out a type of empirical analysis that
is common in literature. On the other hand, in Section 5 we
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do more detailed analyses. Finally, Section 6 concludes the
paper.

2. THE SEARCH PROBLEM
We took an implementation of red-black trees from the

class TreeMap in the the Java API edition 6. That class has
several methods, and we concentrated only on two of them:
put(key,value) and remove(key). A test case is hence a
sequence of function calls of these two methods. Let l be the
length of this sequence. Each sequence is called on a new
tree object initialised with its default constructor.

According to our previous work [3], for branch coverage it
is enough to use integer objects for the inputs of these meth-
ods, as long as all the possible permutations of their relative
order are permitted. To do that, we can choose input inte-
gers i in the range 0 ≤ i < l. Note that constraints on the
input variables are commonly used to reduce search efforts,
but in general it cannot be guaranteed that any global op-
timum would lie within those limits. Furthermore, we use
the same objects for keys and values (so we can consider
put like having only a single input), and for simplicity of the
analyses we do not consider the insertion/removal of null

objects.
Given length l, the search space S is composed of |S| = 2lll

elements (there are 2l possible sequences of the two different
methods, and each method can have l different values for
input). We chose to consider a fixed length l = 7, which
results in a search space composed of 105,413,504 elements.
This number is sufficiently high to make sensible the study
of search algorithms on this problem, but not high enough to
preclude some types of exhaustive analyses of the full search
space. Each solution is composed of 14 variables, 7 for the
methods and the other 7 for their inputs.

On one hand, fixing the length of the test sequence could
preclude the execution of some of the code branches (i.e.,
the test sequence is too short). On the other hand, too long
sequences would make the computational cost of the fitness
function too expensive. Including the length of the sequence
in the search problem would help to mitigate this issue, but
it would make the analyses more difficult. We hence leave
it for future work.

We exhaustively evaluated all the test sequences in S, and
for each branch we kept track of how many test sequences
execute them. The branch that has been executed fewest
times, but at least once, belongs to the private method fix-

AfterDeletion. We call B this branch, and we chose it for
our analyses because it is likely the most difficult to cover
with conventional search algorithms (note that this is not
necessarily true, because it depends on the search landscape
and on the employed search algorithm). Figure 1 shows the
part of code in which the branch B appears.

To use search algorithms to find a test sequence that exe-
cutes B, we use a fitness function that is based on the com-
monly used branch distance and approximation level [13].
Note that fixAfterDeletion is a private method that can-
not be called directly. If that method is not executed at least
once, we give the worst possible fitness value. Otherwise, we
calculate the branch distance and approximation level in the
usual way.

The predicates on which the branch distance is calculated
from are all booleans. This is a problem (known as the flag
problem), because the search space will have large plateaus.
The possible different fitness values are only 6. In the rest

private void fixAfterDeletion(Entry<K,V> x) {

while (x != root && colorOf(x) == BLACK) {

if (x == leftOf(parentOf(x))) {

Entry<K,V> sib = rightOf(parentOf(x));

if (colorOf(sib) == RED) {

//TARGET, branch B

Figure 1: Part of the TreeMap code in which there
is the target branch B.

of the paper, for simplicity we map these values to integers
from 0 to 5 without changing their relative order. It is a
minimisation problem of fitness function f , in which the
fitness value 0 represents the fact that the branch B has
been covered.

3. THE SEARCH ALGORITHMS
There exist several search algorithms with different names.

In general, a name does not represent a particular algorithm.
It rather represents a family of algorithms that share similar
properties. In this paper, we analyse four different imple-
mentations of four different families of search algorithms.
Obviously, the results on a particular implementation can-
not be directly extended to its family.

A search algorithm might not find a global optimum in
a reasonable amount of time. Therefore, it is common to
put premature stopping criteria that are based on the avail-
able computational resources. A typical simple example is
to put an upper bound to the maximum number of fitness
evaluations that are allowed. In this paper, because in the
empirical experiments all the search algorithms find global
optima in reasonable time, for simplicity we do not put any
premature stopping criterion, unless otherwise stated.

RS is the simplest search algorithm. Random solutions are
sampled until a global optimum is found. The information
given by the fitness function is only used to check whether
a global optimum has been sampled. RS is commonly used
in literature as a base-line for comparing other search al-
gorithms. What distinguishes among RS algorithms is the
probability distribution used for sampling the new solutions.
We employ a uniform distribution. Its pseudo-code is shown
in Figure 2.

HC starts from a search point, and then it looks at neigh-
bour solutions. A neighbour solution is structurally close,
but the notion of distance among solutions is problem de-
pendent. If at least one neighbour solution has better fit-
ness value, HC “moves” to it and it recursively looks at the
new neighbourhood. If no better neighbour is found, HC
re-starts from a new solution. HC algorithms differ on how
the starting points are chosen, on how the neighbourhood is
defined and on how the next solution is chosen among better
ones in the neighbourhood. We choose the starting points at
random. The neighbourhood N is defined by swapping one
single method at one time (i.e., a put is replaced by a remove,
and vice-versa) without altering the inputs, and by modify-
ing each input by ±1%l. Hence the neighbourhood has size
l+2l. The strategy δ to visit the neighbourhood starts from
left to right in the representation (i.e., the method in the
first function call is modified, then the second visited neigh-
bour consists of adding 1 to the input of the first method,
etc.). As soon as a better solution is found, HC moves to
it. In visiting the new neighbourhoods, instead of starting
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while global optimum not found
Choose I uniformly at random from S.

Figure 2: Pseudo-code of RS

while global optimum not found
Choose I uniformly at random from S.
while I not a local optimum in N(I)

Choose I ′ from N(I) according to strategy δ.
if f(I ′) < f(I), then

I := I ′.

Figure 3: Pseudo-code of HC

from the leftmost variable, HC starts from the successive
of the last considered (whose modification has led to a new
better solution), and it continues toward the rightmost, for
then coming back as in a ring to the leftmost and finishing
moving right until all neighbours have been visited. The
pseudo-code of HC is shown in Figure 3.

(1+1)EA is a single individual evolutionary algorithm. A
single offspring is generated at each generation by mutating
the parent. The offspring never replace their parents if they
have worse fitness value. In a binary representation, a mu-
tation consists of flipping bits with a particular probability.
Typically, each bit is considered for mutation with probabil-
ity 1/k, with k the length of the bit-string. In our case, we
have that a test sequence is composed of l function calls. We
consider the methods in the test sequences as bits (e.g., 0 to
represent put and 1 for remove), and the method inputs as
groups of bits that are mutated together with a special op-
erator. Therefore, in our case we have k = 2l. Each method
type and input is mutated with probability 1/(2l). In case of
a mutated input, a new different valid value is chosen with
uniform probability. The pseudo-code is shown in Figure 4.

GAs are the most famous meta-heuristic used in the lit-
erature of search based software testing, and they are in-
spired by the Darwinian Evolution theory. They rely on
four basic features: population, selection, crossover and mu-
tation. More than one solution is considered at the same
time (population). At each generation (i.e., at each step of
the algorithm), some good solutions in the current popula-
tion chosen by the selection mechanism generate offspring
using the crossover operator. This operator combines parts
of the chromosomes (i.e., the solution representation) of the
offspring with probability Pxover, otherwise it just produces
copies of the parents. These new offspring solutions will fill
the population of the next generation. The mutation oper-
ator is applied to make small changes in the chromosomes
of the offspring. To avoid the possible loss of good solu-
tions, a number of best solutions can be copied directly to
the new generation (elitism) without any modification. We
used a rank-based selection [18] with bias 1.5. The employed
crossover operator is a single point crossover. The mutation
is done in the same way as for (1+1)EA. Figure 5 shows the
pseudo-code of the employed GA.

Choose I uniformly at random from S
while global optimum not found

I ′ := I .
Mutate I ′.
If f(I ′) ≤ f(I)

then I := I ′.

Figure 4: Pseudo-code of (1+1)EA

Table 1: Results of empirical experiments. Each
search algorithm has been run 100 times.

Algorithm Min Median Mean Max Variance

RS 736 66170 82570 272700 4.72 · 109

HC 102 30590 46770 227400 2.15 · 109

(1+1)EA 141 2506 3927 15270 1.21 · 107

GA 809 23030 43730 264900 2.59 · 109

4. FIRST EMPIRICAL EXPERIMENTS
A common practice in literature is to run a randomised

search algorithm on a testing problem several times (e.g., 100
times) and then collecting statistics from those runs. It is
technically unsound to run a randomised search algorithm
only once, because the result would be too noisy. All the
search algorithms in this paper are randomised.

We ran this type of experiments on all the four consid-
ered search algorithms. In particular, GA has a population
of 100 individuals, Pxover = 0.75 and elitism rate of 1 indi-
vidual per generation. We have not tuned these three values,
and they represent reasonable choices that are common in
literature.

Table 1 shows the results of each search algorithm run
100 times with different random seeds. The performance of
a search algorithm is based on how many fitness evaluations
it requires before reaching a global optimum.

Mann-Whitney U tests with significance 0.05 have been
carried out to see if there is any statistical difference among
the median values of these search algorithms. Resulting p-
values are shown in Table 2. It should be noted that we had
to use a non-parametric statistical test because we do not
have sufficient evidence to suppose any particular distribu-
tion of the data.

The experiments show that HC and GA are roughly twice
as fast as RS. There is no statistically significant differ-
ence between HC and GA. The fastest search algorithm
is (1+1)EA, and it is much more efficient, nearly 10 times
faster than HC and GA.

This type of empirical analysis can tell us the performance
of each search algorithm, and whether there is any significant
difference among them. However, what is the reason why
we get those results? We try to shed light on this important
research question in the next section.

5. INSIGHT KNOWLEDGE
Often, search algorithms are considered as “black boxes”

in which only the output is considered. However, it is im-
portant to look inside those boxes to understand how search
algorithms behave. Collecting this type of insight knowledge
would help to obtain a better understanding of search base
software testing, and it could lead to the discovery of new
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Choose population K uniformly at random from S.
while global optimum not found

Copy best n solutions from K to K′.
while K′ is not completely filled

Select 2 parents from K according to selection criterion,
Generate 2 offspring that are copies of their parents,
Apply crossover on offspring with probability Pxover,
Mutate each offspring,
Copy the 2 new offspring into K′.

K = K′.

Figure 5: Pseudo-code of GA

Table 2: For each pair of search algorithms, p-values of Mann-Whitney U tests are shown.
RS HC (1+1)EA GA

RS - 8.31 · 10−5 2.20 · 10−16 2.17 · 10−6

HC 8.31 · 10−5 - 2.20 · 10−16 0.28
(1+1)EA 2.20 · 10−16 2.20 · 10−16 - 2.20 · 10−16

GA 2.17 · 10−6 0.28 2.20 · 10−16 -

Table 3: For each fitness value, it is shown the num-
ber of solutions that have that value.

Fitness Value Solutions
0 1008
1 832356
2 1514856
3 1503516
4 11669112
5 89892656

properties of the problem that could be exploited to design
more efficient algorithms.

5.1 Fitness Values
The fitness function f can assume only 6 values, from 0 to

5. We evaluated all the over 105 million solutions, and for
each fitness value we checked how many solutions have that
particular fitness value. Results are summarised in Table 3.

Two interesting things can be noted. First, approximately
only 1/6 of the solutions execute the method
fixAfterDeletion (all solutions with fitness 4 or below ex-
ecute it). Second, there is one global optimum only every
104,576.88 solutions. The global optima are only a small
fraction of the search space S.

5.2 Global Optima
There are 1008 different global optima (i.e., test sequences

that execute the target branch) in the search space S. By
analysing them, we noted that they have a very precise struc-
ture. To simplify the analysis, we use the array M to repre-
sent the inputs in a test sequence. For example, M [2] = 4
means that the input of the third function call is a 4.

A global optimum follows all these rules:

• The test sequences are composed of 6 put followed by
1 final remove.

• The input values of the first 6 function calls are all
different.

• The input value M [6] for the last function call is a
0 if that value appears in the the first 6 function call
inputs, otherwise it is a 1 (this latter happens only 144
times out of 1008).

• If M [0] ∈ {0,1} and M [1] ∈ {0,1}, then M [2],M [3],M [4],
M [5] ∈ {2,3,4,5,6}. There are 240 global optima in
which this condition appears.

• If M [0] ∈ {0,1} and M [1] = 2, then there are 2 cases.
If M [2] ≥ 3, then M [3],M [4],M [5] ∈ {3,4,5,6}\M [2],
otherwise M [3],M [4],M [5] ∈ {3,4,5,6}. The conditions
of this rule appear in 96 global optima.

• If M [0] ∈ {0,1} and M [1] ≥ 3, then M [2] ∈ {0,1,2}.
In particular, if is M [2] = 2, then M [3],M [4],M [5] ∈
{3,4,5,6}\M [1], otherwise M [3],M [4],M [5] ∈ {3,4,5,6}.
There are 240 global optima in which this condition
appears.

• If M [0] = 2 and M [1] ∈ {0,1} there are 2 cases. If
M [2] ≥ 3, then M [3],M [4],M [5] ∈ {3,4,5,6}\M [2],
otherwise M [3],M [4],M [5] ∈ {3,4,5,6}. The conditions
of this rule appear in 96 global optima.

• If M [0] = 2 and M [1] ≥ 3, then M [2] ∈ {0,1} and
M [3],M [4],M [5] ∈ {3,4,5,6}\M [1]. There are 48 global
optima in which this condition appears.

• If M [0] ∈ {3,4,5,6}, then M [1],M [2] ∈ {0,1,2}. If
in particular it is M [1] = 2, then M [3],M [4],M [5] ∈
{3,4,5,6}\M [0], otherwise M [3],M [4],M [5] ∈ {3,4,5,6}.
The conditions of this rule appear in 288 global optima.

These rules have some interesting properties. On one
hand, among the global optima the variables regarding the
methods are independent. Each of them can in fact assume
only one single value. On the other hand, the variables rep-
resenting the inputs of the first 6 function calls are highly
correlated to each other (i.e., their values depend on each
other). The last input (i.e., M [6]) assumes the value 0 in
85.71% of the global optima, so it is less correlated than the
others.
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We can hence see a double structure in the global optima,
in which half the variables are independent (regarding the
global optima), whereas the other are highly correlated.

5.3 Expected Runtime of RS
Given 1008 global optima in a search space of 105,413,504

solutions, we can use the theorems in our previous work [2]
to calculate the exact expected time for RS. Very simply, we
can just divide the total number of solutions by the num-
ber of global optima. The calculation brings to the exact
expected time of 104,576.88 fitness evaluations. The ex-
periments shown in Table 1 give the result 82,570, that is
roughly 20% smaller than the real expected time. More ex-
periments (i.e., more than 100 runs) could bring to more
precise results, but there would be no guarantee to obtain
the exact value. We use theoretical analysis to obtain the
real expected value, but to obtain the necessary knowledge of
the number of global optima we used an empirical analysis,
because it would have been too difficult to obtain it theo-
retically. That is a clear example in which theoretical and
empirical analyses are combined together to obtain stronger
results on a non-trivial problem.

5.4 Expected Runtime of HC
In the employed HC, the only randomised part are the

starting points. Because the neighbourhoods have size 21
and because there are only 6 different values for the fitness
function, we can infer that HC uses at most 1+((6−1)∗21) =
106 fitness evaluations before reaching either a local or a
global optimum. This is a reasonable small number, hence
it was possible to carry out an exhaustive empirical analy-
sis of HC on every possible starting solution (but without
considering the restarts, because there can be an infinite
number of them).

We found that HC reaches a global optimum in 57,204
cases. On average, HC takes 27.12 steps when it reaches a
local optimum, whereas 16.89 steps in the 57,204 cases in
which a global optimum is found.

The restarts of HC can be theoretically modelled like a
random search process [2]. Hence, we can combine this in-
formation with the average steps to reach an optimum that
have been empirically calculated. That leads to the exact
average time of 49,965.54 steps for HC to find a global op-
timum. The estimated mean in Table 1 is 46,770, and that
is very close to the real average.

Like for RS, we combined empirical and theoretical analy-
ses to get stronger results that would have been too difficult
to obtain by using only one of them.

Considering that the neighbourhood size is 21, an average
of 27.12 steps in case of local optima is quite informative.
It in fact tells us that most of the search points are local
optima. That is not a surprise if we note that there are
only 6 possible values for the fitness function. Nevertheless,
HC is on average twice as fast as RS, and that is not an
hypothesis, it is a theoretically sound result.

5.5 Expected Runtime of (1+1)EA
To get more insight information on how (1+1)EA behaves

in our search problem, we analysed what is the probability
that a mutation on a solution can improve its fitness value.
We divide the solutions based on their fitness values. For
each group Gi with fitness value i, we calculate a probabil-
ity for each group Gj<i with lower fitness value j. Those

represent the probability that a solution in group Gi can be
mutated in a solution in group Gj<i. Unfortunately, this re-
quires |Gi| · |Gj<i| evaluations, because we need to consider
all the possible pairs among these two groups. For example,
calculating the probability that a solution with fitness value
5 can be mutated to a solution with fitness value 4 would
require 1.6 · 1015 calculations.

We hence decided to estimate those probabilities by con-
sidering only 106 randomly chosen solution pairs for each
pair of the groups (that are 15 in total). Table 4 summarises
the results.

Why (1+1)EA is so much faster than HC? For HC most of
the points are local optima. Therefore, HC spends most of
its time in doing restarts even in the case of good quality so-
lutions. For (1+1)EA it is quite difficult to mutate directly
to a global optimum. However, Table 4 shows that there is
a gradient toward the global optima if we go throughout all
possible fitness values. For example, starting from G5 jump-
ing directly to a global optimum is done with probability of
2.44·10−6 . However, if we jump smoothly throughout all the
possible fitness values (i.e., 5 transactions of group), the low-
est probability we find is from G1 to G0, that is 3.58 · 10−4,
which is 146.72 times higher than jumping directly from G5

to G0.
If the probabilities in Table 4 were exact, we could the-

oretically calculate the exact expected time of (1+1)EA to
find a global optimum [15, 16]. At any rate, we did that the-
oretical analysis. Comparing the result with Table 1 would
in fact be useful to see if the two results are similar. Be-
cause the approach to obtain them is completely different,
if they are similar that would give stronger support to their
validity. The theoretical approach yields an expected time
of 2,961 fitness evaluations, that is similar to the value 3,927
shown in Table 1.

Given P (Gi,Gj) the probability that a solution in Gi can
be mutated into one in Gj , and given P (Gi) the probability
that a random solution belongs to the group Gi, then the
expected time E of (1+1)EA can be mathematically calcu-
lated with:

E = 1 +
5X

i=0

(P (Gi) · T (i)) ,

where T (i) is calculated in this way:

T (i) =

(
0 if i = 0 ,
1+

Pi−1
j=0(P (Gi,Gj)·T (j))

1−P (Gi,Gi)
otherwise .

Note that P (Gi,Gj) are the probabilities shown in Table
4, whereas P (Gi) can be easily calculated by dividing the
cardinality of the input group (shown in Table 3) by the total
number of possible solutions (that are more than 105 mil-
lions.) Also note that P (Gi,Gj) is not a symmetric function
(i.e., it is not necessarily true that P (Gi,Gj) = P (Gj ,Gi)),
that because (1+1)EA does not accept worse offspring.

5.6 Improved Fitness Function
Our analyses have shown that (1+1)EA has the best per-

formance. But can we improve it even further? One way
would be to improve the fitness function f (i.e., by making
it smoother). Given the code in Figure 1, we see that the
basic predicates on which f is based on are all boolean flags.
They are:

• A <- x != root
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Table 4: For each group Gyon axis y it is calculated the average probabilities that any of its solutions can be
mutated to a solution belonging to a group Gx on axis x.

G0 G1 G2 G3 G4 G5

G0 1.0 0.0 0.0 0.0 0.0 0.0
G1 3.58 · 10−4 0.99 0.0 0.0 0.0 0.0
G2 3.34 · 10−6 8.80 · 10−3 0.99 0.0 0.0 0.0
G3 2.94 · 10−5 2.66 · 10−2 4.33 · 10−2 0.93 0.0 0.0
G4 1.62 · 10−7 1.78 · 10−3 4.65 · 10−3 2.77 · 10−3 0.99 0.0
G5 2.44 · 10−6 3.41 · 10−3 8.88 · 10−3 7.17 · 10−3 4.87 · 10−2 0.93

• B <- colorOf(x) == BLACK

• C <- x == leftOf(parentOf(x))

• D <- colorOf(rightOf(parentOf(x)) == RED

These predicates directly depend on the internal state of
the tree. The properties of the tree from which the predi-
cates are calculated from are still flags. Therefore, flag re-
moval techniques [6] would not help in this case.

Once the method fixAfterDeletion is executed, the first
predicate to satisfy is Z = A ∧ B. The branch distance is
based on that Z. Until the search for satisfying Z is not
finished, any improvement that would make either C or D
true is ignored. That because they are in nested branches
that are not executed yet. One way to improve the fitness
function is to consider these nested predicates even when
they should not be executed yet [14]. Doing that is not
always possible, that because side-effects and data depen-
dencies could be present. In our case there is no problem in
prematurely calculating C and D.

The branch distance of the while would be hence based
on A ∧ B ∧ C ∧ D, whereas for the first if it would be
C ∧ D instead of just C. With this new “improved” fitness
function, we carried out a set of experiments to see which
amount of improvement can be achieved for (1+1)EA. We
ran (1+1)EA with and without the improved fitness 1,000
times each. Results are shown in Table 5. The compared
results are very similar, and a Mann-Whitney U test yields
the p-value 0.56. So using this “improved” fitness function
does not give any statistical difference.

Why we do not get any improvement? Having a look at
the fitness value of each solution in the search space (as we
did in Table 3) sheds lights on this problem. Results are
shown in Table 6. If we compare Table 3 with Table 6, we
can see that the only difference is that all the solutions that
had a fitness value of 3 now they have a value of 2. Therefore,
we should expect that this “improved”fitness function would
be slightly harmful, because it makes the fitness function less
smooth. In our problem, this happens for high values of the
fitness, and those correspond to solutions from which it is
relatively easy to escape from.

This is a clear example of an idea that sounds good, but
that in some cases ends up to be harmful.

5.7 Tuning the GA
Most meta-heuristics have many parameters that need to

be chosen. Often, no tuning is done, and the parameters are
chosen from common values in literature. For example, in
our experiments with GAs, we chose population size of 100,
crossover rate of 0.75 and elitism rate of 1 individual per

Table 5: Comparison of (1+1)EA with and without
the improved fitness function. Data were collected
from 1,000 runs for each of the two configurations.

Improved f Min Median Mean Max Variance

false 9 2522 3535 24190 1.08 · 107

true 38 2604 3470 20220 1.01 · 107

Table 6: For each fitness value of the “improved”
fitness function, it is shown the number of solutions
that have those values.

Fitness Value Solutions
0 1008
1 832356
2 3018372
3 0
4 11669112
5 89892656

generation. Furthermore, several different selection mecha-
nisms exist in literature.

Unfortunately, an optimal choice of the parameters is prob-
lem dependent. We hence ran a new set of experiments in
which we tested 10 population sizes from 21 to 210, then 10
crossover rates from 0.0 to 0.9 with 0.1 of increment. Fi-
nally, we considered 10 elitism rates from 0% to 90% (with
increments of 10%) of the current population. We tested
all their combinations, i.e. 1,000 configurations. For each
configuration we ran 100 independent experiments, and we
calculated the average number of fitness evaluations.

Because for some configurations the GA becomes very in-
efficient, we had to put the stopping criterion of limiting the
fitness evaluations by an upper bound of 1 million evalua-
tions.

The best configuration we found does have a population
size of 256, crossover rate of 0.9 and elitism rate of 0.6.
Because there is an infinite number of possible configurations
of the parameters, we cannot guarantee that these values are
optimal.

Because these values are different from the ones we orig-
inally used, we hence decided to compare again GA versus
(1+1)EA with new experiments. We do that in order to as-
sess whether (1+1)EA is still better. We ran each algorithm
1,000 times. Results are shown in Table 7. Note that we
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Figure 6: Given three different types of distance, each plot shows the correlation between the distance from
the closest global optimum and the average fitness value.

are not re-using the values in Table 5. Mann-Whitney U
test yields the p-value 2.2 · 10−16. This means that there is
strong evidence that their median values are different.

Why (1+1)EA is better than GA? This could happen if
the search landscape is like a “stair”, whose bottom rep-
resents the global optimum. Solutions on the same step
have same fitness, i.e. the steps are plateaus. It would be
easier to climb down that stair with a single individual in-
stead of an entire population (under the assumption that
crossover is not very useful). OneMax (one of the simplest
and most used toy problem in evolutionary computation)
does have that landscape, and indeed there are theoretical
results that show that the population-based evolutionary al-
gorithms analysed so far are not better than (1+1)EA [10,
19].

To give feasible explanation for the behaviour of GA in
our problem, we analyse whether our problem has a sim-
ilar type of stair structure. For each possible solution we
calculated its fitness value and its closest distance from a
global optimum. We used the Hamming distance in three
different ways: on the full sequence (14 variables), on only
the method types (7 variables) and finally on only the in-
puts of the methods (7 variables). For each possible distance
value, we calculated the average fitness value that the solu-
tions with that distance have. Results are shown in Figure
6. Indeed, a stair structure is clearly evident if we consider
the average fitness. That is particularly true for the method
types, but not if we only consider the inputs of the methods.
This could be related to the correlation of the variables we
discussed in Section 5.2.

The presence of this stair structure is only a hypothesis
(although well supported) because we are considering the
average fitness. The presence of more complex dynamics
cannot be excluded. A first step to shed light on this matter
is to show how the performance changes with the modifi-
cation of the three tested parameters. Figure 7 plots the
number of average fitness evaluations when one of the three
parameters is fixed to its best found value and the other two
vary.

First, from Figure 7 we can see that the crossover opera-
tor has a positive influence on the performance. However a
more detailed analysis of this operator will be done in future
work. Second, we can note that when no elitism is used, the
performance is poorer. Finally, the role of the population
size is different from what we did expect. Considering the
very good performance of (1+1)EA, we were expecting that
smaller populations would perform better than larger ones.

Table 7: Comparison of (1+1)EA against tuned GA.
Data were collected from 1,000 runs for each algo-
rithm.

Algorithm Min Median Mean Max Variance

(1+1)EA 27 2439 3513 26520 1.14 · 107

GA 294 3730 7883 466100 4.39 · 108

In fact, for small populations we were expecting that GA
would be very similar to (1+1)EA. What we see in Figure 7
is exactly the opposite.

A more detailed analysis of our GA implementation showed
us that our elitism operator tends to prefer the same best
individuals among the solutions with same fitness. That be-
cause in the implementation we just ascendingly sort the
population and we take the first n best starting from left.
The new offspring are added after these n best individuals.
The sort algorithm we used is in the Java API 6, and it
preserves the order of equivalent elements. We thought that
was a reasonable implementation, but it turned out that for
small populations it prevents random walks on the plateaus,
that it is a well known problem [11]. This is a clear example
of a low level detail of a search algorithm that initially does
not seem to be very important, but that then it results to
have drastic impact on the performance. Future work will
investigate this matter in more details.

6. CONCLUSIONS
In this paper we deeply analysed a difficult software test-

ing problem. We carried out both theoretical and empir-
ical analyses. Our goal was to give insight knowledge of
the problem to be able to answer why we obtain those par-
ticular behaviours of the analysed search algorithms. If we
know how search algorithms actually work inside their black
boxes, then we can exploit this information to understand
which are their limitations and therefore how we should pro-
ceed to improve them.

We found out that a simple (1+1)EA performs better than
a fairly tuned GA. This is in contrast with the current lit-
erature, in which population algorithms like GAs are very
common, and single individual algorithms are considered not
able to cope with the difficulty of software testing. But in
contrast to many empirical analyses in literature, we gave
sound reasons supported by compelling evidence to explain
such a behaviour.
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Figure 7: Average fitness evaluations when one of the three parameters (i.e., population size, crossover
probability and elitism rate) is fixed to its best found value and the other two vary.

We used constraints on the input ranges and on the num-
ber of method calls in the test sequences. On an unknown
testing problem, these constraints could preclude the find-
ing of any global optimum. However, in our case even a RS
search can give optimal solutions in a reasonable time when
constraints are used. Therefore, the problem is not so dif-
ficult. For future work, it will be important to extend our
analyses to scenarios in which no constraint is used. That
would help to understand the impact of the choice of these
constraints.
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