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Abstract

Runtime Analysis is a type of theoretical investigation
that aims to determine, via rigorous mathematical proofs,
the time a search algorithm needs to find an optimal so-
lution. This type of investigation is useful to understand
why a search algorithm could be successful, and it gives
insight of how search algorithms work. In previous work,
we proved the runtimes of different search algorithms on
the test data generation for the Triangle Classification (TC)
problem. We theoretically proved that Alternating Variable
Method (AVM) has the best performance on the coverage of
the most difficult branch in our empirical study. In this pa-
per, we prove that the runtime of AVM on all the branches of
TC is O((log n)2). That is necessary and sufficient to prove
that AVM has a better runtime on TC compared to the other
search algorithms we previously analysed. The theorems in
this paper are useful for future analyses. In fact, to state that
a search algorithm has worse runtime compared to AVM, it
will be just sufficient to prove that its lower bound is higher
than Ω((log n)2) on the coverage of at least one branch of
TC.

1 Introduction

Although there has been a lot of research on Search
Based Software Engineering [6, 2, 5] in recent years (e.g,
in software testing [15]), there exists few theoretical re-
sults. The only exceptions we are aware of are on comput-
ing unique input/output sequences for finite state machines
[13, 12], the application of the Royal Road theory to evolu-
tionary testing [7], and our previous work on test data gen-
eration for the Triangle Classification (TC) problem [1].

To get a deeper understanding of the potential and limita-
tions of the application of search algorithms in software en-
gineering, it is essential to complement the existing exper-
imental research with theoretical investigations. Runtime
Analysis is an important part of this theoretical investiga-

tion, and brings the evaluation of search algorithms closer
to how algorithms are classically evaluated.

The goal of analysing the runtime of a search algorithm
on a problem is to determine, via rigorous mathematical
proofs, the time the algorithm needs to find an optimal so-
lution. In general, the runtime depends on characteristics
of the problem instance, in particular the problem instance
size. Hence, the outcome of runtime analysis is usually ex-
pressions showing how the runtime depends on the instance
size. This will be made more precise in the next sections.

The field of runtime analysis has now advanced to a
point where the runtime of relatively complex search algo-
rithms can be analysed on classical combinatorial optimisa-
tion problems [20]. We advocate that this type of analysis
in Search Based Software Engineering will be helpful to
get insight on how search algorithms behave in the software
engineering domain. The final aim is to exploit the gained
knowledge to design more efficient algorithms.

Branch coverage is the testing task we want to solve. We
do a different search for each branch in the code. The em-
ployed fitness function is the commonly used approxima-
tion level plus the branch distance [15]. Because the num-
ber of branches is a constant, the overall runtime for the ful-
filment of the test criterion is given by the most expensive
search. The size of the problem is given by the constraints
on the range of the input variables.

In our previous work [1], we proved runtimes for three
different search algorithms on the coverage of one branch
of the TC problem. The analysed search algorithms are:
Random Search, Hill Climbing and Alternating Variable
Method (AVM). The analysed branch is the one related to
the classification of the triangle as equilateral (that empiri-
cally seems the most difficult to cover).

In that previous work, we proved that AVM has a run-
time of O((log n)2), that is strictly better than the ones of
the other search algorithms we analysed (i.e., Θ(n) for Hill
Climbing and Θ(n2) for Random Search). However, that
is not sufficient to claim that AVM has a better runtime on
TC. In fact, although it has been empirically shown that the
“equilateral branch” is the most difficult to cover, that is not

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.16

113

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.16

113

1st International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.16

113

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 10:52 from IEEE Xplore.  Restrictions apply. 



necessarily true for high values of the size that have not been
empirically tested. Other branches might be more difficult.
This is one reason why theoretical analyses are necessary.

In this paper, we prove that the expected runtime of AVM
on all the branches of TC is O((log n)2). That is necessary
and sufficient to prove that AVM has a better runtime on
TC compared to the other search algorithms we previously
analysed. We also carried out an empirical study to integrate
the theoretical analysis.

The theorems in this paper are also useful for future anal-
yses. In fact, to state that a search algorithm has worse run-
time compared to AVM, it will be just sufficient to prove
that its lower bound is higher than Ω((log n)2) on the cov-
erage of at least one branch of TC.

The paper is organised as follows. Section 2 gives back-
ground information about runtime analysis. Section 3 de-
scribes in detail the TC problem, whereas Section 4 de-
scribes the AVM search algorithm. Theoretical analyses are
presented in Section 5, whereas the empirical study is dis-
cussed in Section 6. Finally, Section 7 concludes the paper.

2 Runtime Analysis

To make the notion of runtime precise, it is necessary to
define time and size. We defer the discussion on how to
define problem instance size for software testing to the next
section, and define time first.

Time can be measured as the number of basic operations
in the search heuristic. Usually, the most time-consuming
operation in an iteration of a search algorithm is the evalua-
tion of the cost function. We therefore adopt the black-box
scenario [4], in which time is measured as the number of
times the algorithm evaluates the cost function.

Definition 1 (Runtime [3, 8]). Given a class F of cost func-
tions fi : Si → R, the runtime TA,F (n) of a search algo-
rithm A is defined as

TA,F (n) := max {TA,f | f ∈ F with �(f) = n} ,

where �(f) is the problem instance size, and TA,f is the
number of times algorithm A evaluates the cost function f
until the optimal value of f is evaluated for the first time.

A typical search algorithm A is randomised. Hence, the
corresponding runtime TA,F (n) will be a random variable.
The runtime analysis will therefore seek to estimate proper-
ties of the distribution of random variable TA,F (n), in par-
ticular the expected runtime E [TA,F (n)] and the success
probability Pr [TA,F (n) ≤ t(n)] for a given time bound
t(n). More details can be found in [1].

The last decades of research in the area show that it is
important to apply appropriate mathematical techniques to
get good results [22]. Initial studies of exact Markov chain

models of search heuristics were not fruitful, except for the
the simplest cases.

A more successful and particularly versatile technique
has been so-called drift analysis [8, 19], where one intro-
duces a potential function which measures the distance from
any search point to the global optimum. By estimating the
expected one-step drift towards the optimum with respect
to the potential function, one can deduce expected runtime
and success probability.

In addition to drift analysis, the wide range of techniques
used in the study of randomised algorithms [17], in particu-
lar Chernoff bounds, have proved useful also for evolution-
ary algorithms.

3 Triangle Classification Problem

TC is the most famous problem in software testing. It
opens the classic 1979 book of Myers [18], and has been
used and studied since early 70s. Nowadays, TC is still
widely used in many publications (e.g., [14, 23, 15, 11, 16,
24]).

We use the implementation for the TC problem that was
published in the survey by McMinn [15] (see Figure 1).
Some slight modifications to the program have been intro-
duced for clarity.

A solution to the testing problem is represented as a vec-
tor I = (x, y, z) of three integer variables. We call (a, b, c)
the permutation in ascending order of I . For example, if
I = (3, 5, 1), then (a, b, c) = (1, 3, 5).

There is the problem to define what is the size of an in-
stance for TC. In fact, the goal of runtime analysis is not
about calculating the exact number of steps required for
finding a solution. On the other hand, the runtime com-
plexity of an algorithm gives us insight of scalability of the
search algorithm. The problem is that TC takes as input a
fixed number of variables, and the structure of its source
code does not change. Hence, what is the size in TC? We
chose to consider the range for the input variables for the
size of TC. In fact, it is a common practise in software test-
ing to put constraints on the values of the input variables to
reduce the search effort. For example, if a function takes
as input 32 bit integers, instead of doing a search through
over four billion values, a range like {0, . . . , 1000} might
be considered for speeding up the search.

Limits on the input variables are always present in the
form of bit representation size. For example, the same piece
of code might be either run on machine that has 8 bit inte-
gers or on another that uses 32 bits. What will happen if
we want to do a search for test data on the same code that
runs on a 64 bit machine? Therefore, using the range of the
input variables as the size of the problem seems an appro-
priate choice.
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In our analyses, the size n of the problem defines the
range R = {−n/2 + 1, . . . , n/2} in which the variables
in I can be chosen (i.e., x, y, z ∈ R). Hence, the search
space S is defined as S = {(x, y, z)|x, y, z ∈ R}, and it is
composed of n3 elements. Without loss of generality n is
even. To obtain full coverage, it is necessary that n ≥ 8,
otherwise the branch regarding the classification as scalene
will never be covered. Note that one can consider different
types of R (e.g., R′ = {0, . . . , n}), and each type may lead
to different behaviours of the search algorithms. We based
our choice on what is commonly used in literature. For sim-
plicity and without loss of generality, search algorithms are
allowed to generate solutions outside S. In fact, R is mainly
used when random solutions need to be initialised.

The employed fitness function f is the commonly used
approximation level A plus the branch distance δ [15]. For
a target branch z, we have that the fitness function fz is:

fz(I) = Az(I) + ω(δw(I)) .

Note that the branch distance δ is calculated on the node
of diversion, i.e. the last node in which a critical decision
(not taking the branch w) is made that makes the execution
of z not possible. For example, branch z could be nested
to a node N (in the control flow graph) in which branch w
represents the then branch. If the execution flow reaches
N but then the else branch is taken, then N is the node of
diversion for z. The search hence gets guided by δw to enter
in the nested branches.

Let be {N0, . . . , Nk} the sequence of diversion nodes
for the target z, with Ni nested to all Nj>i. Let be Di the
set of inputs for which the computation diverges at node Ni

and none of the nested nodes Nj<i is executed. Then, it is
important that Az(Ii) < Az(Ij) ∀Ii ∈ Di, Ij ∈ Dj , i <
j. A simple way to guarantee it is to have Az(Ii+1) =
Az(Ii) + ζ, where ζ can be any positive constant (e.g., ζ =
1) and Az(I0) = 0.

Because an input that makes the execution closer to z
should be rewarded, then it is important that fz(Ii) <
fz(Ii+1) ∀Ii ∈ Di, Ii+1 ∈ Di+1. To guarantee that, we
need to scale the branch distance δ with a scaling function
ω such that 0 ≤ ω(δj) < ζ for any predicate j. Note that δ
is never negative. We need to guarantee that the order of the
values does not change once mapped with ω, for example
h0 > h1 should imply ω(h0) > ω(h1). We can use for ex-
ample either ω(h) = (ζh)/(h+1) or ω(h) = ζ/(1+ e−h),
where h ≥ 0.

Having ζ > 0 and γ > 0, the fitness functions for the 12
branches (i.e., fi is the fitness function for branch IDi) are
shown in Figure 2. Note that the branch distance depends
on the status of the computation (e.g., the values of the local
variables) when the predicates are evaluated. For simplicity,
in an equivalent way we show the fitness functions based
only on the inputs I .

1: int tri_type(int x, int y, int z) {
2: int type;
3: int a=x, b=y, c=z;
4: if (x > y) { /* ID_0 */
5: int t = a; a = b; b = t;
6: } else { /* ID_1 */}
7: if (a > z) { /* ID_2 */
8: int t = a; a = c; c = t;
9: } else { /* ID_3 */}
10: if (b > c) { /* ID_4 */
11: int t = b; b = c; c = t;
12: } else { /* ID_5 */}
13: if (a + b <= c) { /* ID_6 */
14: type = NOT_A_TRIANGLE;
15: } else { /* ID_7 */
16: type = SCALENE;
17: if (a == b && b == c) {
18: /* ID_8 */
19: type = EQUILATERAL;
20: } else /* ID_9 */
21: if (a == b || b == c) {
22: /* ID_10 */
23: type = ISOSCELES;
24: } else {/* ID_11 */}
25: }
26: return type;
27: }

Figure 1. Triangle Classification (TC) pro-
gram, adapted from [15]. Each branch is
tagged with a unique ID.
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f0(I) =
{

0 if x > y ,
ω(|y − x| + γ) otherwise .

f1(I) =
{

0 if x ≤ y ,
ω(|x − y| + γ) otherwise .

f2(I) =
{

0 if min(x, y) > z ,
ω(|z − min(x, y)| + γ) otherwise .

f3(I) =
{

0 if min(x, y) ≤ z ,
ω(|min(x, y) − z| + γ) otherwise .

f4(I) =
{

0 if max(x, y) > max(z, (min(x, y))) ,
ω(|max(z, (min(x, y))) − max(x, y)| + γ) otherwise .

f5(I) =
{

0 if max(x, y) ≤ max(z, (min(x, y))) ,
ω(|max(x, y) − max(z, (min(x, y)))| + γ) otherwise .

f6(I) =
{

0 if a + b ≤ c ,
ω(|(a + b) − c| + γ) otherwise .

f7(I) =
{

0 if a + b > c ,
ω(|c − (a + b)| + γ) otherwise .

f8(I) =

⎧⎨
⎩

ζ + f7(I) if a + b ≤ c ,
0 if a == b ∧ b == c ∧ a + b > c ,
ω(|a − b| + |b − c| + 2γ) otherwise .

f9(I) =

⎧⎨
⎩

ζ + f7(I) if a + b ≤ c ,
0 if (a �= b ∨ b �= c) ∧ a + b > c ,
ω(2γ) otherwise .

f10(I) =

⎧⎪⎪⎨
⎪⎪⎩

2ζ + f7(I) if a + b ≤ c ,
ζ + f9(I) if a == b ∧ b == c ∧ a + b > c ,
0 if (a �= b ∨ b �= c) ∧ a + b > c ∧ (a == b ∨ b == c) ,
ω(min(|a − b| + γ, |b − c| + γ)) otherwise .

f11(I) =

⎧⎪⎪⎨
⎪⎪⎩

2ζ + f7(I) if a + b ≤ c ,
ζ + f9(I) if a == b ∧ b == c ∧ a + b > c ,
0 if a �= b ∧ b �= c ∧ a + b > c ,
ω(γ) otherwise .

Figure 2. Fitness functions fi for all the branches IDi of TC. The constants ζ and γ are both positive,
and 0 ≤ ω(h) < ζ for any h.
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4 Alternating Variable Method

AVM is similar to a Hill Climbing, and was employed
in the early work of Korel [10]. The algorithm starts on a
random search point I , and then it considers modifications
of the input variables, one at a time. The algorithm applies
an exploratory search to the chosen variable, in which the
variable is slightly modified (in our case, by ±1). If one
of the neighbours has a better fitness, then the exploratory
search is considered successful. Similarly to a Hill Climb-
ing, the better neighbour will be selected as the new current
solution. Moreover, a pattern search will take place. On
the other hand, if none of the neighbours has better fitness,
then AVM continues to do exploratory searches on the other
variables, until either a better neighbour has been found or
all the variables have been unsuccessfully explored. In the
latter case, a restart from a new random point is done if a
global optimum was not found.

A pattern search consists of applying increasingly larger
changes to the chosen variable as long as a better solution
is found. The type of change depends on the exploratory
search, which gives a direction of growth. For example, if a
better solution is found by decreasing the input variable by
1, then the following pattern search will focus on decreasing
the value of that input variable.

A pattern search ends when it does not find a better solu-
tion. In this case, AVM will start a new exploratory search
on the same input variable. In fact, the algorithm moves
to consider one other variable only in the case that an ex-
ploratory search is unsuccessful.

To simplify the writing of the AVM implementation, and
for making it more readable, it is not presented in its gen-
eral form. Instead, it is specialised in working on vector
solutions of length three. The general version, that consid-
ers this length as a problem parameter, would have the same
computational behaviour in terms of evaluated solutions.

Definition 2 (Alternating Variable Method (AVM)).

while termination criterion not met
Choose I uniformly in S.
while I improved in last 3 loops

i := current loop index.
Choose Ti ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)} such that

Ti �= Ti−1 ∧ Ti �= Ti−2.
found := true.
while found

for d := 1 and d := −1
found := exploratory search(Ti, d, I).
if found, then

pattern search(Ti, d, I)

Definition 3 (exploratory search(Ti, d, I)).

I ′ := I + dTi.
if f(I ′) ≥ f(I), then

return false.
else

I := I ′.
return true.

Definition 4 (pattern search(Ti, d, I)).

k := 2.
I ′ := I + kdTi.
while f(I ′) < f(I)

I := I ′.
k := 2k.
I ′ := I + kdTi.

5 Theoretical Analysis

Proposition 1. Given x and y uniformly and independently
distributed in R, then their expected difference with y ≥ x
is E[y − x|y ≥ x] = n−1

3 = Θ(n). The largest difference
would be y − x = n − 1 = Θ(n)

Proof.

E [y − x | y ≥ x] = (n + 2(n − 1) + 3(n − 2) + . . . + n(1))
/ n(n+1)

2 − 1
=

∑n
i=0(i + 1)(n − i) · 2

n(n+1) − 1

= n(n+1)(n+2)
6 · 2

n(n+1) − 1
= n−1

3
= Θ(n) .

The highest value that y can take is n/2. The lowest
value x can take is −n/2 + 1. Hence, n/2− (−n/2 + 1) =
n − 1.

Lemma 1. For any branch, if the probability that the ran-
dom starting point is a global optimum is lower bounded
by a positive constant k > 0, then AVM needs at most a
constant number Θ(1) of restarts to find a global optimum.

Proof. If we consider only the starting point, the AVM be-
haves as a random search, in which the probability of find-
ing a global optimum is bigger than k. That can be de-
scribed as a Bernoulli process (see our theorems on random
search in [1]), with expected number of restarts that is lower
or equal than 1/k.

Theorem 1. The expected time for AVM to find an opti-
mal solution to the coverage of branches ID 0 and ID 1 is
O(log n).
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Proof. The probability that x > y, with X and Y the ran-
dom variables representing them, is:

Pr [X > Y ] =
∑

y

n/2∑
i=y+1

Pr [X = i | Y = y] · Pr [Y = y]

=
1
2
− 1

2n
,

The probability of x ≤ y is hence 1
2 + 1

2n

Considering that the search is done for values of n big-
ger or equal than 8, then both the searches for ID 0 and
ID 1 start with a random point that is a global optimum
with a probability lower bounded by a positive constant.
Therefore, AVM needs at most a constant number of restarts
(Lemma 1), independently of the presence and number of
local optima.

For both branches, either the starting point is a global
optimum, or the search will be influenced by the distance
x − y that is Θ(n) (Proposition 1). We hence analyse this
latter case.

Until the predicate is not satisfied, the fitness function
ω(|y − x| + γ) (with γ a positive constant) based on the
branch distance rewards any reduction of that distance. The
third variable z does not influence the fitness function,
hence an exploratory search fails on that. For the coverage
of ID 0, the variable x has gradient to increase its value,
and y has gradient to decrease. For ID 1 it is the opposite.
The distance |x − y| can be covered in O(log n) steps of a
pattern search.

Theorem 2. The expected time for AVM to find an optimal
solution to the coverage of branches ID 2, ID 3, ID 4 and
ID 5 is O(log n).

Proof. The sentences in lines 5, 8 and 11 of the source code
(Figure 1) only swap the value of the three input variables.
Hence, the predicate conditions of branches ID 2, ID 3,
ID 4 and ID 5 are directly based on the values of two dif-
ferent input variables.

The type of predicates is the same of branches ID 0
and ID 1 (i.e., >), and the condition of the comparison is
the same (i.e., > on two input variables). The three input
variables are uniformly and independently distributed in R,
and by Proposition 1 the maximum distance among them is
Θ(n). There are the same conditions of Theorem 1 apart
from the fact that the variables could be swapped during the
search, i.e. the fact that lines 5 and 8 are executed or not can
vary during the search.

For branches ID 2 and ID 3, starting from z no vari-
ation of the executed code is done until the branch is cov-
ered. For branch ID 3, for either x or y a search starting
from the maximum of them would result in no improvement

of the fitness function. The minimum of x and y has a gra-
dient to decrease, and while it does so the relation of their
order is not changed. Hence, no variation of the executed
code is done. On the other hand, for branch ID 2, the min-
imum has gradient to increase, but the pattern search would
stop once it becomes the maximum of the two (e.g., x > y
if the search started on x with x < y). That happens in
at most O(log n) steps because their difference is at most
Θ(n) (Proposition 1). If the next variable considered by
AVM is not z, then the above behaviour will happen again.
However, the next variable will be necessarily z, hence we
have at most O(log n) steps done 3 times, that still results
in O(log n) steps.

For any pair of values we have that min(x, y) ≤
max(x, y). For branch ID 4, if it is not executed, then
max(x, y) ≤ max(z,min(x, y)) and necessarily it would
be z ≥ max(x, y) ≥ min(x, y). Hence, z would have
gradient to decrease down until max(x, y), in which case
ID 4 gets executed after O(log n) steps. A modification of
the minimum value between x and y does not change the
fitness value. For the maximum value, it can increase up to
z, in which case ID 4 gets executed after O(log n) steps.
The relation of the order of the input variables would not
changed during those searches.

For branch ID 5, if it is not executed, then max(x, y) >
max(z,min(x, y)) and necessarily it would be x �= y
and max(x, y) > z. Starting the search from the maxi-
mum of x and y would have gradient to decrease down to
max(z,min(x, y)), that would be done in O(log n) steps
that will make ID 5 executed. If z < min(x, y), modify-
ing z would have no effect to the fitness function, whereas
the minimum of x and y has gradient to increase up to
max(x, y). In the other case z ≥ min(x, y), it is the other
way round, i.e. z can increase whereas the minimum be-
tween x and y cannot change. In both cases, in O(log n)
steps branch ID 5 gets executed with no change in the re-
lation of the order of the input variables.

The expected time for branches ID 2, ID 3, ID 4 and
ID 5 is therefore the same as for branches ID 0 and ID 1,
i.e. O(log n).

Theorem 3. The expected time for AVM to find an optimal
solution to the coverage of branch ID 6 is O(log n).

Proof. If the predicate a + b ≤ c is not true, the fitness
function would be ω(|a + b − c| + γ) (with γ a positive
constant). For values a ≤ 0, the predicate is true because
a + b ≤ b ≤ c.

There is gradient to decrease a and b, and there is gra-
dient to increase c. If the search starts from either a or b,
in O(log n) steps of a pattern search the target variable as-
sumes a negative value (the highest possible starting value
is n/2). In particular, if the search starts from b, at a certain
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point the input variable representing b will instead repre-
sent a. Otherwise, it sufficient to increase c up to the value
a+ b ≤ n/2+n/2 = n, that can be done in O(log n) steps
of a pattern search.

Theorem 4. The expected time for AVM to find an optimal
solution to the coverage of branch ID 8 is O((log n)2).

Proof. This theorem has been proved in our previous work
[1].

Lemma 2. For search algorithms that use the fitness func-
tion only for direct comparisons of candidate solutions, the
expected time for covering a branch ID w is not higher
than the expected time to cover any of its nested branches
ID z.

Proof. Before a target nested branch ID z is executed, its
“parent” branch ID w needs to be executed. Until ID w is
not executed, the fitness function fw

z (i.e., search for ID z
and ID w is not covered) will be based on the predicate
of the branch ID w. Hence, that fitness function would be
equivalent to the one fw used for a direct search for ID w.
In particular, fw

z (I) = ζ + fw(I), that because the approxi-
mation level would be different. However, because the con-
stant ζ > 0 would be the same to all the search points,
the behaviour of a search algorithm, that uses the fitness
function only for direct comparisons of candidate solutions,
would be same on these two fitness functions (and AVM
satisfies this constraint).

Because the time to solve (i.e., finding an input that min-
imises) fw

z is not higher than the time needed for fz and
because fw

z is equivalent to fw, then solving fw cannot take
in average more time than solving fz .

Theorem 5. The expected time for AVM to find an optimal
solution to the coverage of branch ID 7 is O((log n)2).

Proof. The branch ID 8 is nested to branch ID 7, hence
by Lemma 2 and Theorem 4 the expected time is
O((log n)2).

Theorem 6. The expected time for AVM to find an optimal
solution to the coverage of branch ID 9 is O((log n)2).

Proof. By Theorem 5, the branch ID 7 can be covered
in O((log n)2) steps. The branch ID 9 (that is nested to
ID 7), will be covered if ¬(a = b ∧ b = c). If that predi-
cate is not true, a single exploratory search of AVM makes it
true because it is just sufficient to either increase or decease
any input variable by 1. The only case in which this is not
possible is for I = (1, 1, 1), because it is the only solution
that satisfies a = b ∧ b = c ∧ a − 1 + b ≤ c ∧ a + b ≤
c + 1 ∧ a + b > c. In that case, a restart is done.

With a probability that is lower bounded by a constant,
in a random starting point each input variable is higher than
n/4. In that case, a+b > c, because (n/4)+1+(n/4)+1 >
(n/2). By Lemma 1, we need only Θ(1) restarts.

Theorem 7. The expected time for AVM to find an optimal
solution to the coverage of branch ID 10 is O((log n)2).

Proof. By Theorem 6, the branch ID 9 can be covered in
O((log n)2) steps. The branch ID 10 (that is nested to
ID 9), will be covered if only two input variables are equal
(and not all three equal to each other at the same time).

If when the branch ID 7 (branch ID 9 is nested to it) is
executed all the three input variables are equal (in that case
branch ID 8 is executed), then a single exploratory search
is sufficient to execute branch ID 10, because we just need
to change the value of a single variable.

The other case in which all the three variables are dif-
ferent is quite complex to analyse. Instead of analysing it
directly, we prove the runtime by a comparison with the be-
haviour of AVM on the branch ID 8 (that is more complex
and we already proved it in our previous work [1]).

Once branch ID 9 is executed, the fitness function
f9
10 for covering branch ID 10 is based on min(δ(a =

b), δ(b = c)), whit δ the branch distance function for the
predicates. For simplicity, let consider δ(a = b) < δ(b =
c). The other case can be studied in the same way.

An exploratory search cannot accept a reduction of the
distance c− b, because the value of f9

10 would not improve.
A search on a would leave the distance c − b unchanged.
About b, only a decrease of its value would be accepted, and
in that case the distance c−b would increase (but that has no
effect on the fitness function because it takes the minimum
of the two distances). Because the branch distance δ only
rewards the reduction of the distance b − a, a search start-
ing from either a or b will end in a = b by modifying only
the value of only one of these variables (AVM keeps do-
ing searches on the same variable till an exploratory search
fails). During that search, the fitness function would hence
be based on δ(a = b).

In a search for covering branch ID 8, if the branch ID 7
(in which both ID 8 and ID 10 are nested) is executed,
then the fitness function f7

8 depends on δ(a = b)+δ(b = c).
A search starting from a would finish in a = b for the same
reasons explained before or it would finish in a′ > b (with
a′ the latest accepted point for a that will become the new
b in the next exploratory search). During that search, the
value of δ(b = c) does not change, so it can be considered
as a constant. Because AVM uses the fitness function only
on direct comparisons, the presence of a constant does not
influence its behaviour. Therefore, in this particular context
(i.e., δ(a = b) < δ(b = c), branch ID 7 executed and
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search starting from a) the behaviour of AVM on f9
10 and

f7
8 will be the same until a = b or a′ > b.

In the case a = b, branch ID 10 gets executed and the
search for that branch ends. In the other case a′ > b, the
previous b becomes the new ak and a′ becomes the new bk.
Modifications on the variable c does not change the value
of either ak or bk. The previous analysis can hence be re-
cursively applied to the new values ak and bk. If a′ > c,
then ak = b, bk = c, ck = a′ and it will become the case
δ(a = b) > δ(b = c).

It is still necessary to analyse the behaviour of AVM on
f9
10 when the search starts on b rather than a. That is similar

to the case of f7
8 when the variable c is decreased down

to b. In that context, the two fitness functions are of the
same type because in f7

8 the distance δ(a = b) would be a
constant until b = c or c′ < b (with c′ the latest accepted
point for c that will become the new b in the next exploratory
search). Therefore, the runtime for AVM on f9

10 to obtain
a = b would be the same.

By Theorem 4, the expected time for covering branch
ID 8 is O((log n)2). Because we proved that the coverage
of ID 8 takes more time than the coverage of ID 10, then
the expected runtime for covering ID 10 is O((log n)2).

Theorem 8. The expected time for AVM to find an optimal
solution to the coverage of branch ID 11 is O((log n)2).

Proof. By Theorem 6, the branch ID 9 can be covered in
O((log n)2) steps. The branch ID 11 (that is nested to
ID 9), will be covered if a �= b ∧ a �= c ∧ b �= c. In the
moment that the branch ID 9 is executed, then the three
variables cannot assume all the same value (otherwise the
branch ID 8 would have been executed). If that predicate
is not true, a single exploratory search of AVM makes it true
because it is just sufficient to increase by 1 any of the two
variables that have same values.

6 Empirical Study

We ran an implementation of AVM on each branch
of TC for values of n such that n = 2i, with i ∈
{4, 5, 6, . . . , 29, 30}. For each size of n, we ran 1000 trials
(with different random seeds) and recorded the number of
fitness evaluations done before reaching a global optimum.

Following [9], for each setting of algorithm and problem
instance size, we fitted different models to the observed run-
times using non-linear regression with the Gauss-Newton
algorithm. Each model corresponds to a one term expres-
sion η · g(n) of the runtime, where the model parameter η
corresponds to the constant to be estimated. The residual
sum of squares of each fitted model was calculated to iden-
tify the model which corresponds best with the observed

Table 1. Results of empirical experiments.
Branch ID Runtime

ID 0 0.48 log2 n
ID 1 0.50 log2 n
ID 2 1.03 log2 n
ID 3 0.36 log2 n
ID 4 0.34 log2 n
ID 5 1.62 log2 n
ID 6 0.10 log2 n
ID 7 5.31 log2 n
ID 8 0.53(log2 n)2

ID 9 5.10 log2 n
ID 10 7.47 log2 n
ID 11 5.01 log2 n

runtimes. This methodology was implemented in the statis-
tical tool R [21].

The used models were ηnt log(n)v , where t ∈ {0, 1, 2}
and v ∈ {0, . . . , 10}. The models with lowest error are
shown in Table 6.

The results in Table 6 are consistent with our theoreti-
cal results. They are able to provide the constants for the
runtime models. It is worth noting that running so many
experiments (i.e., 324, 000) was possible because the run-
time of AVM is O((log n)2). In the case for example of a
runtime Θ(n2) (e.g., Random Search [1]), running so many
experiments would have likely been unfeasible. The result-
ing estimated models could have been hence not precise.

At any rate, we ran our experiments only with values of
n up to 230. We cannot know for sure what could happen for
higher values. On the other hand, our theoretical analysis is
valid for each value of n.

7 Conclusions and Future Work

In this paper, we proved that the runtime of AVM on
all the branches of TC is O((log n)2). This is necessary
and sufficient to prove that AVM has a better runtime on
TC compared to the other search algorithms we previously
analysed, i.e. Random Search and Hill Climbing. In the
future, to state that a search algorithm performs worse than
AVM on TC, it will be just sufficient to prove that its lower
bound is higher than Ω((log n)2) on the coverage of at least
one branch of TC.

Previously, we proved that AVM requires on average
O((log n)2) steps for covering the branch related to the
classification of the triangle as equilateral (ID 8). How-
ever, we needed to prove the runtime on each single branch,
because ID 8 is not necessarily the most difficult to cover.
Although empirical studies in literature have shown that
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branch ID 8 seems the most difficult to cover, that is not
sufficient, because different behaviours might arise for very
high values of the size.

This type of analysis is important to understand the be-
haviour of search algorithms on software engineering prob-
lems. Unfortunately, the fact that they are difficult to carry
out limits its scope. Therefore, theoretical runtime analy-
sis is not meant to replace empirical studies. However, for
the problems for which theoretical analyses can be done,
we get stronger and more reliable results than any obtained
with empirical studies.

For the future, we want to analyse other search algo-
rithms, in particular Genetic Algorithms. Considering other
implementation of TC would be interesting to see if there
is any difference in the overall runtimes of the analysed al-
gorithms. In the long term, it will be interesting to analyse
more complex software to get more insight on how search
algorithms work.
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