
On Search Based Software Evolution

Andrea Arcuri
School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

email: a.arcuri@cs.bham.ac.uk

Abstract

Writing software is a difficult and expensive task. Its au-
tomation is hence very valuable. Search algorithms have
been successfully used to tackle many software engineer-
ing problems. Unfortunately, for some problems the tra-
ditional techniques have been of only limited scope, and
search algorithms have not been used yet. We hence pro-
pose a novel framework that is based on a co-evolution of
programs and test cases to tackle these difficult problems.
This framework can be used to tackle software engineer-
ing tasks such as Automatic Refinement, Fault Correction,
Improving Non-functional Criteria and Reverse Engineer-
ing. While the programs evolve to accomplish one of these
tasks, test cases are co-evolved at the the same time to find
new faults in the evolving programs.

1 Introduction

In software engineering there are many tasks that are
very expensive, like for example testing the developed soft-
ware [15]. It is hence important to try to automate these
tasks, because it would have a direct impact on software
industries.

Re-formulating software engineer as an optimisation
problem has led to promising results in the recent years
[10, 9]. Many tasks have been addressed by the research
community, but some are mainly unexplored. We hence
want to feel this gap.

We have designed a novel framework that, with little
changes, can be easily applied to automate at least these
following software engineering problems:

• Automatic Refinement: given as input a formal specifi-
cation, we want to obtain a correct implementation in
an automatic way.

• Fault Correction: given as input a program implemen-
tation and a set of test cases in which at least one test
case is failed, we want to automatically evolve the in-

put program to make it able to pass all the given test
cases.

• Improving Non-functional Criteria: given as input a
program, we want to evolve it to optimise some of its
non-functional criteria (e.g., execution time and power
consumption) without changing its semantics.

• Reverse Engineering: given as input the assembler
code or byte-code of a program, we want to automati-
cally derive its source code.

The novel framework we propose is based on co-
evolution of programs (evolved for example with Genetic
Programing [17]) and test cases (evolved for example with
Search Based Software Testing [14]). Programs are re-
warded by how many tests they do not fail, whereas the
unit tests are rewarded by how many programs they make
to fail. This type of co-evolution is similar to what happens
in nature between predators and prey.

Preliminary results confirm that this approach is feasible
[4, 2, 5, 3]. However, given the novelty of this approach and
the difficulty of these tasks, more research is still required.
In particular, we need to analyse whether the proposed ap-
proach would scale to real-world software.

The paper is organised as follows. Section 2 briefly gives
background information of Genetic Programming and Co-
evolution. Section 3 describes the novel co-evolutionary
framework. The addressed software engineering problems
are discussed in section 4. Finally, Section 5 concludes the
paper.

2 Background

2.1 Genetic Programming

Genetic Programming (GP) [17] is a paradigm to evolve
programs. A genetic program can often be seen as a tree, in
which each node is a function whose inputs are the children
of that node. A population of programs is held at each gen-
eration, where individuals are chosen to fill the next pop-
ulation accordingly to a problem specific fitness function.

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.12

39

2009 International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.12

39

1st International Symposium on Search Based Software Engineering

978-0-7695-3675-0/09 $25.00 © 2009 IEEE

DOI 10.1109/SSBSE.2009.12

39

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

Crossover and mutation operators are applied to the pro-
grams to generate new offspring.

2.2 Co-evolution

In co-evolutionary algorithms, one or more populations
co-evolve influencing each other. There are two types of in-
fluences: cooperative co-evolution in which the populations
work together to accomplish the same task, and competitive
co-evolution as predators and prey in nature. In our frame-
work we use competitive co-evolution.

Co-evolutionary algorithms are affected by the Red
Queen effect [16], because the fitness value of an individual
depends on the interactions with other individuals. Because
other individuals evolve as well, the fitness function is not
static. For example, exactly the same individual can ob-
tain different fitness values in different generations. One
consequence is that it is difficult to keep trace of whether a
population is actually “improving” or not [7].

One of the first applications of competitive co-
evolutionary algorithms was the work of Hillis on generat-
ing sorting networks [11]. He modelled the task as an opti-
misation problem, in which the goal is to find a correct sort-
ing network that does as few comparisons of the elements
as possible. He used evolutionary techniques to search the
space of sorting networks, where the fitness function was
based on a finite set of tests (i.e., sequences of elements to
sort): the more tests a network was able to correctly pass,
the higher fitness value it got. For the first time, Hillis in-
vestigated the idea of co-evolving such tests with the net-
works. The reason for doing so was that random test cases
might be too easy, and the networks can learn how to sort
a particular set of elements without being able of generalis-
ing. The experiments of Hillis showed that shorter networks
were found when co-evolution was used.

Ronge and Nordahl used co-evolution of genetic pro-
grams and test cases to evolve controllers for a simple
“robot-like” simulated vehicle [20]. Similar work has been
successively done by Ashlock et al. [6]. In such work,
the test cases are instances of the environment in which the
robot moves.

Note that the application area of such work was restricted
(i.e., sorting networks and robot controllers), whereas we
use co-evolution in a more general and complex framework.

In software engineering, a co-evolutionary algorithm has
been used in Mutation Testing [1]. The goal is to find test
cases that can recognise faulty mutants of the tested soft-
ware, because such a test suite would be good for asserting
the reliability of the software. Mutants (generated with a
precise set of rules) co-evolve with the test cases, and they
are rewarded on how many tests they pass, whereas the test
cases are rewarded on how many mutants they identify as
semantically different from the original program.

3 Co-evolutionary Framework

In our novel framework, programs co-evolve with test
cases. Programs are rewarded by how many tests they do
not fail, whereas the unit tests are rewarded by how many
programs they make to fail. For example, a program can
obtain a value 0 if it passes a test case and 1 otherwise.
The fitness function to minimise would hence be the sum
of these values given by the execution of the program on
all the given test cases. For the fitness function of the test
cases, it would be a maximisation problem.

Depending on which software engineering problem is
addressed, there are the following components of the frame-
work that needs to be specialised:

• Input of the framework.

• Initialisation of the genetic programs.

• Oracle used for evaluating the expected outputs of the
test cases.

• Generation of new test cases.

• Other objectives for the fitness function.

These specific points will be discussed in the next sec-
tion.

4 Software Engineering Problems

4.1 Automatic Refinement

Since the 1970s the goal of generating programs in an au-
tomatic way has been sought [12]. A user would just define
what he expects from the program (i.e., the requirements),
and it should be automatically generated by the computer
without the help of any programmer.

Unfortunately, this task is much harder than expected
[19]. Transformation methods are usually employed to ad-
dress this problem. The requirements need to be written in a
formal specification, and sequences of transformations are
used to transform these high-level constructs into low-level
implementations. Unfortunately, this process can rarely be
automated completely, because the gap between the high-
level specification and the target implementation language
might be too wide.

We analysed the application of our framework to this
problem [4]. The presence of a gap does not preclude the
application of our framework. The specifications we used
were written in first order logic. Other formal specification
languages could be used (e.g., Z [21]), but we would need
to implement a fitness function for them.

The input to the framework is a formal specification of
the program we seek. The genetic programs are initialised

404040

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

at random, and the formal specification is used as an ora-
cle. The formal specification can also be used to guide the
evolution of more challenging test cases.

4.2 Fault Correction

A lot of research has been done on software testing.
However, if the presence of a fault is discovered, it is still
duty of the programmers to fix the software. We hence seek
to also automate this expensive task. In this research field,
the very few proposed techniques (e.g., [23]) have many
limitations. Only very restricted types of modifications are
allowed, that because these techniques are mainly doing an
exhaustive search. The types of modifications they consider
do not guarantee that between any two programs there is a
sequence of transformations to obtain the second program
from the first. So given any faulty program, it could be
impossible to fix it. On the other hand, our approach can
potentially fix any code level fault. This because we are
searching in the entire space of possible programs.

The input of the framework would be a faulty program
and a set of test cases in which at least one is failed. The
test cases need to be provided (e.g., by a software tester). A
formal specification can be given as input as well although
it is not essential. The genetic programs are initialised with
heuristics based on the input program (e.g., they can simply
be copies of it). New test cases can be evaluated against
a formal specification, otherwise no new test case can be
generated. In that case, the programs are executed only on
a subset of the given test cases. The co-evolution will be
hence used to choose which subset of test cases to use at
each generation. More details can be found in our prelimi-
nary work [2, 5].

We can consider fault correction as a special case of au-
tomatic refinement, in which the faulty input program is a
solution structurally close to a global optimum. The input
faulty program is hence heuristically exploited to help the
search for a correct refinement. Because programmers do
not write code at random [8], we would expect that fault
correction would be much easier than automatic refinement.
We can hence speculate that it could scale to real-world soft-
ware, that because software can be often fixed with only few
code changes [18].

4.3 Improving Non-functional Criteria

Optimising non-functional properties of software is an
important part of the implementation process. One such
property is execution time, and compilers target a reduction
in execution time using a variety of optimisation techniques.
Compiler optimisation is not always able to produce seman-
tically equivalent alternatives that improve execution times,

even if such alternatives are known to exist. Often, this is
due to the local nature of such optimisations.

The input to the framework is a program we want to op-
timise. That program is also used as an oracle for the test
cases. The co-evolved test cases are used to test the preser-
vation of the original semantics. The initialisation of the
genetic programs is not trivial. On one hand, doing that at
random will make the evolution of correct programs very
difficult to achieve. On the other hand, using copies might
constrain the search in a particular sub-optimal area of the
search space. The non-functional criteria needs to be eval-
uated by executing the programs on a separated set of test
cases that does not co-evolve. Because there is more than
one objective to optimise, multi-objective algorithms can
be used. More details can be found in our preliminary work
[3].

4.4 Reverse Engineering

One application of Reverse Engineering [22] is that,
given as input the assembler or byte-code of a program, we
want to obtain the original source code. We can use our
framework to tackle this problem.

The execution of the input assembler can be used as an
oracle for the test cases. Initialising the genetic programs
at random is possible, but likely it will make the search too
difficult. Therefore, smart seeding strategies that exploit the
assembler code should be designed.

We have not carried out yet any experiment with our
framework on this problem. However, GP often generate
code that is difficult to understand by humans. So the read-
ability needs to be carefully taken in account in the search,
but that is a common problem in GP that is not specific to
only our application. At any rate, there are cases of obfus-
cating techniques that make difficult to obtain even a compi-
lable source code (e.g.,[13]). In those cases, our technique
would be useful even if the evolved code would be difficult
to read.

5 Conclusions and Future Work

In this paper we have described the application of a
novel co-evolutionary framework to solve some software
engineering problems. Co-evolutionary algorithms are not
novel, but our contribution is to show how to apply co-
evolution of software and test cases in software engineer-
ing.

Each software engineering problem has its own specific
properties, and care needs to be spent to adapt the frame-
work to solve them. In other words, different types of opti-
misations of the framework can be done, and each of them is
specific to the addressed problem. However, the conceptual
co-evolutionary framework would still be the same.

414141

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

In this paper we briefly discussed the application of our
framework to four different software engineering problems:
Automatic Refinement, Fault Correction, Improving Non-
functional Criteria and Reverse Engineering. Other soft-
ware engineering problems might be addressed with our
framework as well.

We have already obtained preliminary results in some of
these tasks, and more specific details can be found in our
previous papers [4, 2, 5, 3]. These software engineering
tasks are very important, and we believe that our work will
help the community to setup the bases from which more
research can be built on.

For future work, we want to study in more details some
of these problems, like for example Fault Correction. We in
fact believe there is large space left for improvements and
for designing more sophisticated and tailored algorithms to
improve the performance. That would be a compulsory step
if we want our technique to scale to real-world software.
Other important point to investigate is how to improve the
co-evolution in general (e.g., reward diversity in the test
cases based on code coverage criteria).

6 Acknowledgements

The author is grateful to Xin Yao, David White and Rami
Bahsoon for insightful discussions. This work is supported
by EPSRC grant EP/D052785/1.

References

[1] K. Adamopoulos, M. Harman, and R. M. Hierons. How
to overcome the equivalent mutant problem and achieve
tailored selective mutation using co-evolution. In Ge-
netic and Evolutionary Computation Conference (GECCO),
pages 1338–1349, 2004.

[2] A. Arcuri. On the automation of fixing software bugs. In
In the Doctoral Symposium of the IEEE International Con-
ference on Software Engineering (ICSE), pages 1003–1006,
2008.

[3] A. Arcuri, D. R. White, J. Clark, and X. Yao. Multi-objective
improvement of software using co-evolution and smart seed-
ing. In International Conference on Simulated Evolution
And Learning (SEAL), pages 61–70, 2008.

[4] A. Arcuri and X. Yao. Coevolving programs and unit tests
from their specification. In IEEE International Conference
on Automated Software Engineering (ASE), pages 397–400,
2007.

[5] A. Arcuri and X. Yao. A novel co-evolutionary approach to
automatic software bug fixing. In IEEE Congress on Evolu-
tionary Computation (CEC), pages 162–168, 2008.

[6] D. Ashlockand, S. Willson, and N. Leahy. Coevolution and
tartarus. In IEEE Congress on Evolutionary Computation
(CEC), pages 1618–624, 2004.

[7] D. Cliff and G. F. Miller. Tracking the red queen: Measure-
ments of adaptive progress in co-evolutionary simulations.

In European Conference on Artificial Life, pages 200–218,
1995.

[8] R. A. DeMillo, R. J. Lipton, and F. Sayward. Hints on test
data selection: Help for the practicing programmer. Com-
puter, 11(4):34–41, 1978.

[9] M. Harman. The current state and future of search based
software engineering. In Future of Software Engineering
(FOSE), pages 342–357, 2007.

[10] M. Harman and B. F. Jones. Search-based software engi-
neering. Journal of Information & Software Technology,
43(14):833–839, 2001.

[11] W. D. Hillis. Co-evolving parasites improve simulated evo-
lution as an optimization procedure. Physica D, 42(1-
3):228–234, 1990.

[12] M. Jazayeri. Formal specification and automatic program-
ming. In IEEE International Conference on Software Engi-
neering (ICSE), pages 293–296, 1976.

[13] C. Linn and S. Debray. Obfuscation of executable code to
improve resistance to static disassembly. In Proceedings of
the ACM conference on Computer and Communications Se-
curity, pages 290–299, 2003.

[14] P. McMinn. Search-based software test data generation:
A survey. Software Testing, Verification and Reliability,
14(2):105–156, June 2004.

[15] G. Myers. The Art of Software Testing. Wiley, New York,
1979.

[16] J. Paredis. Coevolving cellular automata: Be aware of the
red queen. In Proceedings of the International Conference
on Genetic Algorithms (ICGA), pages 393–400, 1997.

[17] R. Poli, W. B. Langdon, and N. F. McPhee. A
field guide to genetic programming. Published
via http://lulu.com and freely available at
http://www.gp-field-guide.org.uk, 2008.

[18] R. Purushothaman and D. Perry. Toward understanding the
rhetoric of small source code changes. IEEE Transactions
on Software Engineering, 31(6):511– 526, 2005.

[19] C. Rich and R. C. Waters. Automatic programming: myths
and prospects. Computer, 21(8):40–51, 1988.

[20] A. Ronge and M. G. Nordahl. Genetic programs and co-
evolution. developing robust general purpose controllers us-
ing local mating in two dimensional populations. In Parallel
Problem Solving from Nature IV, Proceedings of the Interna-
tional Conference on Evolutionary Computation, pages 81–
90, 1996.

[21] J. M. Spivey. The Z Notation, A Reference Manual. Second
Edition. Prentice Hall, 1992.

[22] P. Tonella, M. Torchiano, B. D. Bois, and T. Systä. Em-
pirical studies in reverse engineering: state of the art and
future trends. Empirical Software Engineering, 12(5):551–
571, 2007.

[23] W. Weimer. Patches as better bug reports. In International
conference on Generative programming and component en-
gineering, pages 181–190, 2006.

424242

Authorized licensed use limited to: KINGS COLLEGE LONDON. Downloaded on August 7, 2009 at 10:50 from IEEE Xplore. Restrictions apply.

