THE UNIVERSITY OF ADELAIDE

OPTIMISING ENERGY CONSUMPTION USING GI

https://cs.adelaide.edu.au/~markus/

markus.wagner@adelaide.edu.au

https://cs.adelaide.edu.au/~optlog/research/software.php

adelaide.edu.au

Optimising energy consumption using GI

Project 1/2

Project 2/2

→ Two world-first presentations!!

The University of Adelaide

GI to combat sidechannel attacks

Project 1/2

ROSITA: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers

Madura A. Shelton University of Adelaide madura.shelton@adelaide.edu.au

> Francesco Regazzoni ALaRI – USI regazzoni@alari.ch

Niels Samwel Radboud University nsamwel@cs.ru.nl

Markus Wagner University of Adelaide markus.wagner@adelaide.edu.au Lejla Batina Radboud University lejla@cs.ru.nl

Yuval Yarom University of Adelaide and Data61 yval@cs.adelaide.edu.au

https://arxiv.org/abs/1912.05183

Side Channel Attacks

Our Goal

A Computer Program

Power consumption of a register

Typical: the power depends on the Hamming weight of the value 11

Power consumption of a register - Ideally

Masking

Note: the lines are horizontal to indicate the average over many repetitions

Intermediate values are independent of key

$$A \oplus R \rightarrow A'$$

Memory Bus

Measuring Power Consumption

Experimental setup

Evaluation - Test Vector Leakage Assessment (TVLA)

Can you spot the major difference at 4000-4500 samples?

Evaluation - Test Vector Leakage Assessment (TVLA)

Time (Samples)

Applying Countermeasures (industry standard)

Rule-based code rewrite

At the moment: highly problem-specific.

But to begin with: when to apply which rule? \rightarrow We have extended the simulator to tell us where the leak occurs and due to which interaction.

Rules (very different from the GI-usual *swap/copy/delete* operators):

1. Operand interaction via the bus \rightarrow movs r7, r7 (we initialised the register r7 with a random value and the cipher is not allowed to use it)

- 2. Register reuse \rightarrow overwrite the register with a random value first, e.g. movs r3, r4 leaks \rightarrow inserts movs r3, r7 before this leaking instruction
- 3. Rotations: word masks and partial rotations
- 4. Memory interaction: complex, requires push/pop and other operations

Results

Part of an AES implementation

Leakage as trace count increases (now: validated on hardware)

ROSITA: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers <u>https://arxiv.org/abs/1912.05183</u> (Section 5)

GI to combat sidechannel attacks

Improve target code performance Replacement code synthesis Adapt to multiple architectures Generalize limitations of code synthesis

Expand ELMO*'s simulation using ML

Project 1/2

ROSITA: Towards Automatic Elimination of Power-Analysis Leakage in Ciphers <u>https://arxiv.org/abs/1912.05183</u> (Section 5)

GI to combat the energy hunger of apps

Project 2/2

What to do so that you can use GI to combat the energy hunger of apps

Project 2/2

What to do so that you can use GI to combat the energy hunger of apps and <u>how to make sure</u> that your results hold up

This is Why You Should Rigorously Validate Non-functional Property/Energy Optimisation Experiments

Mahmoud A. Bokhari Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia Computer Science Department, Taibah University, Kingdom of Saudi Arabia mahmoud.bokhari@adelaide.edu.au Brad Alexander, Markus Wagner Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia bradley.alexander@adelaide.edu.au markus.wagner@adelaide.edu.au

To be submitted...

Why optimise the energyconsumption of apps?

Number of smartphone users >3 billion

Users expect

Reality

Why optimis consumptior

Number of smartph

Users expect

Seen on 31/12/19 in a China Unicom store, Xi'dan, Beijing

Challenges for developers

Typical challenges

- 1. Developers lack understanding of the energy consumption
- 2. Different strategies for mobile devices and PCs
- 3. Balancing the trade-off between energy and performance for designers

Bonus challenges

- 1. Internal vs external sensors (noise)
- 2. Temperature sensitivity (noise)
- 3. Android debug bridge
- 4. An OS that keeps developing (read: it's fighting us) + l envy those of you who work in a (noise)
- 5. Models are incomplete and quickly outdate noise-free environment!
- 6. ... more noise.

Challenges for developers

Why all this lamenting?

Typic

5.

6.

- 1. Our observations and conjectures: There is little knowledge distributed across 2. different domains on how to deal with these 3. problems in isolation (read: one paper observing/mentioning/dealing with one Bonu aspect at a time, making it difficult to get a 1. general overview) 2. People avoid super-noisy problems. 3. Phones 5 years ago were more deterministic 4. platforms than they are now... and it's just
 - going to get a lot worse still (read: devices get more complex/efficient/dynamic/...)

'gy

PCs d

hting us) + f you who work in a f you ment!

How do we validate our experimental results?

aka

How to know that your claims will hold up?

Fragmented Ecosystems

Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of noise, drift, and statistical insignificance

Mahmoud A. Bokhari ¹ Optimisation and Logistics University of Adelaide, Australia ² Computer Science Department Taibah University Kingdom of Saudi Arabia mahmoud.bokhari@adelaide.edu.au Lujun Weng, Markus Wagner, Bradley Alexander Optimisation and Logistics University of Adelaide, Australia lujunweng@outlook.com markus.wagner@adelaide.edu.au bradley.alexander@adelaide.edu.au

Below: four different phone-OS combinations, orange/blue are two different test loads (but identical across all samples):

Fragmented Ecosystems

Mind the gap – a distributed framework for enabling energy optimisation on modern smart-phones in the presence of noise, drift, and statistical insignificance

Mahmoud A. Bokhari ¹ Optimisation and Logistics University of Adelaide, Australia ² Computer Science Department Taibah University Kingdom of Saudi Arabia mahmoud.bokhari@adelaide.edu.au Lujun Weng, Markus Wagner, Bradley Alexander Optimisation and Logistics University of Adelaide, Australia lujunweng@outlook.com markus.wagner@adelaide.edu.au bradley.alexander@adelaide.edu.au

Wait, it is even worse !!!

Fragmented Ecosystems Same Ecosystem Same Variant

Uploaded by: Mike Dancy @ Youtube

Individual runs of Rebound library (original configuration) in two experiments. The device was rebooted and recharged between the two experiments

Issue: System States

Be fair and square

Be <u>fair</u> and square Run solutions in similar conditions, i.e. system state(s)

Be fair and square

Run solutions in similar conditions, i.e. system state(s)

Be fair and square

Be fair and round

Be fair and <u>round</u> Run solutions in a round robin fashion

Be fair and <u>round</u> Run solutions in a round robin fashion till a termination condition. e.g.: battery level = 20%, or 10 runs per solution.

sol 1 *	sol 2 *	sol 3 *	sol 1 *	sol 2 *	sol 3 *	sol 1 *	sol 2 *	sol 3 *	

Be fair and round

Run solutions in a round robin fashion till a termination condition.

e.g.: battery level = 20%, or 10 runs per solution. Maintenance: recharge/clean up

Be fair and round

Run solutions in a round robin fashion till a termination condition. e.g.: battery level = 20%, or 10 runs per solution. Maintenance: recharge/clean

up Alternate between solution order

 $\underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 2 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{*}{\operatorname{sol}} 1 \quad \underset{*}{\operatorname{sol}} 3 \quad \underset{s$

Be fair and round

Let's try it on

In-vivo and offline optimisation of energy use in the presence of small energy signals – A case study on a popular Android library

Mahmoud A. Bokhari Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia Computer Science Department, Taibah University, Kingdom of Saudi Arabia mahmoud.bokhari@adelaide.edu.au Brad Alexander Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia bradley.alexander@adelaide.edu.au Markus Wagner Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia markus.wagner@adelaide.edu.au

... let's discredit ourselves!

The box contains 13 violins:

- 1 original configuration's energy consumption
- 12 solutions forming a Pareto front (Mobiquitous'18 paper)

Solution

Conventional way: energy results

Expected: violins get lower and lower (as the energy consumption *should* drop)

Conventional way: system behaviour

The box contains 13 violins:

- 1 original configuration's energy consumption
- 12 solutions forming a Pareto front (Mobiquitous'18 paper)

Solution

Round Robin + rotate: energy results

➔ It's not perfect yet, but at least we are trying harder.

Conjecture: maybe the Pareto front contained some dominated solutions after all. (e.g., purple/loc10 is higher in both setups)

Round Robin + rotate: system behaviour

...make sure that your results hold up

Do you have a noisy system? Do you have states?

→ Be fair and square round-robin + rotate your way!

While cute, it's not perfect yet.

Project 2/2

Todo: Find cheap, non-intrusive ways to incorporate the system state into the optimisation process.

This is Why You Should Rigorously Validate Non-functional **Property/Energy Optimisation Experiments**

Mahmoud A. Bokhari Optimisation and Logistics, School of Computer Science, The University of Adelaide, Australia Computer Science Department, Taibah University, Kingdom of Saudi Arabia mahmoud.bokhari@adelaide.edu.au

I'm here today and tomorrow wanna chat over a cup of tea? Optimisation and Logistics

To be

THE UNIVERSITY OF ADELAIDE

OPTIMISING ENERGY CONSUMPTION USING GI

https://cs.adelaide.edu.au/~markus/

markus.wagner@adelaide.edu.au

https://cs.adelaide.edu.au/~optlog/research/software.php

adelaide.edu.au

THE UNIVERSITY of ADELAIDE

CRICOS PROVIDER NUMBER 00123M