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Software Performance

One of the most important aspects of software quality

e Efficiency

® Responsiveness
® Scaling

® Throughput

® User satisfaction



Software Performance

One of the most important aspects of software quality

¢ EfﬂCIency “1 second of load lag time

. would cost Amazon $1.6

® Responsiveness uid cost Ameazon $1.8
billion in sales per year

¢ Scaling - Amazon

® Throughput

e User satisfaction

1 http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-1.6-billion-sales



Software Performance

One of the most important aspects of software quality

® iCi |
EfﬂCIency “1 second of load lag time “A lag time of 400ms
. would cost Amazon $1.6 results in a decrease of
® Responsiveness ,
billion in sales per year” 0.44% traffic - In real
® Scalin ) terms this amounts to
g s 440 million abandoned
e Th rough pUt sessions/month and a
massive loss in
e User satisfaction advertising revenue for
Google”
- Google

1 http://www.fastcompany.com/1825005/how-one-second-could-cost-amazon-1.6-billion-sales
2 http://www.cedexis.com/blog/for-google-400ms-of-increased-page-load-time-results-in-044-lost-search-sessions/
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Actionable Performance Analyses

® Suggest concrete code changes
® Demonstrate the impact of applying optimizations
® Optimizations that are:

m exploitable - easy to understand and apply

m effective - lead to significant performance
Improvements

m recurring - applicable across multiple projects



This Talk

® Reordering opportunities [1]

e Method inlining in Big Data system [2]
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ABSTRACT

The eficiency of programs often can be improved by applying rel
atvely simple changes. To find such optimization opportuites,
developers either rely on manual performance tuning, which is
time-consuming and requires expert knowledge, or on traditional
profilers, which show where resources are spent but not how to
optimize the program. This paper presents  profle that provides

responsiveness and usr satifcton. Evenrelativel smll perfor
mance d in milliseconds)
such as web sites o search engines can positively o o
page traffic and user experience.

However, detecting and exploiting optimization opportunities
is @ cumbersome task that often requires significant human effort.
Fortunately,

only opportunities

bt by sl sggeing o taeerationstak cpll o

Specifically s on optimization opportunities related to the

orde of eveluting Subespresions tht ape pat of & decson made
progra

t DecisionProf,

significantly more efficient (19, 4]. The challenge i to find and
explit such easy to use optimization opportunitis.

Curtently,there are three kinds of approaches to optmize per-
formance. it compic ptmsations auomticly o
program . quivalent et more

ties,
identifies the optimal order, for a given input, of checks in logical
expressions and in switch statements. The key idea i to assess
the computational costs of all possible orders, to find the optimal
order, and to suggest a code transformation to the developer only
if reordering yields a tatisticall significant performance improve-
ment. Applying DecisionProf to 43 real-world JavaSeript projects
reveas 5 beoeal reodering opprtunies. Optiniing he code
as proposed by DecisionProf reduces the execution time of indi-
Vidua funtions btween .57 and 59% and leads o statistealy
geifant pplicaion e petomanc et tht e
tween 25%

CCS CONCEPTS.

ent progeam.
Dt bein vy powerit o pacs cscs of opons.
‘many other promising optimization opportunities are beyond the
capabiltis of a typical compiler. The main reason i that the com-
piler cannot ensure that a ransformation preserves the semantics
a problem that is especialy relevant for hard-to-analyze languages.
e et Seond o compenent compler ptimatons

ol Tncuions hat e o esoree, Mor recent approaches
identify performance bottlenccks based on their symptoms, such
as memory bloat (42], inefficient loops [29], and JIT unfriendi-
ness [11]. While useful to understand why code is slow, these
spposchesdo ot show devlopes bow toapiise thecode. P

elopers often fall back on manual performance
hich o b it bt s e consuming and often requires

Software testing and ddmmnp,
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1 INTRODUCTION
Optimisin the performance of sftware i mportat n various
domains, e.g. for achieving high throughp

Miciency,

P :

pape
opers in optimizing their programs, called actionable performance
profiling. The key idea is to not only pinpoint where and why time
is spent, but to also suggest concrete code transformations that
speed up the code. A profilr folowing this idea is actionable in the
sense that the developer can take immediate action based on the
prflessgsestions, by decding wheer o ppy s sgetd
transformation. The reason why the profiler does not fully auto-
matcal optimie the program. 22 Compiler would, s that 1 does
not guarantee 1o prese intics, cnabling it to address
optimsations aut-of reach for compilrs.
Figure 1

but casy Ja
projects. The code in Figure 1 checks three conditions: whethes

o the st page. Copyrightsfor components ofthis work owned by thers han ACM
e honored. Tocopy alh i

I st permsons fom e r.
AT S Brbr A U5
ey

7..51500

in match(3] is defined and whether the value of arg is higher or
equal to zero. This code can be optimized by swapping the first
the first condit

expensive than checking the second condition. After this change,
when match(3) evaluates to false, the overall execution time of
evaluating the logical expression is reduced by the time needed
to perform the regular expression matching. The second example,

msclakovicso@gmailcom

ABSTRACT
Bulding scalable b d

Microsoft Research

‘mbarnett, madanm, toddm@microsoft.com

The relatior
llelization for efficiently scaling out to arbitrary amounts of

 aspect is crucial it is what enables the automatic

elational (SQL)

C#, Scala) ol cote s dedamie a program describes

data. Big d that the non-relational part is writ-
Len carelly enough so tht i docs not vilae the ssumptions
needed for

what sputation is and the
{he program. SOL query opimization has enjoyed a rich and fruit
ful history, however, most research and commercial optimization

to optimize i,
“This paper empirically studies over 3 million SCOPE programs
across five data centers within Microsoft and finds programs with
lational code take between 45-70% of data center CPU time.

their non-relational logic to be deterministic and insensitive to the
ording of the gt
these systems are known to lag far behind traditional
datbase sysems nroime e 21,25), primarily because of
the fleibilty of the programming model they support. For instance,
a key bottleneck in Spark is neither the disk nor the network, but
the e spent by the CPU o comeeslnidacompresonof
the input ntolfrom Java objects, and

for SCOPE optimization by gen
erating more native code from the non-relational part. Finally,we
present 6 case studies showing that triggering more generation of
mativecode nthes o ields sgnifcnt peformanceprov

provement fo an entir program
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1 INTRODUCTION
Large-scale data-processing frameworks, such as MapReduce (10],
SCOPE [4], Hadoop [12], Spark [34], have become an integral part
of computing today. One reason for their immense popularity is
that they provide a programming model that greatly simplifies the
distribution and fault-tolerance of big-data processing. For instance,
frameworks like SCOPE and Spark provide a SQL
inteface frspciingthe relationa skleton of dt-prcesin
jobs oy by

e declarative

functons witen i gencral-purpose languages ke C#, Java, or
Scala

et Bt pog, Copyrights for companents o tis work owned by athrs t ACM
st e horored. Almeactng wihcret s ermtied. To cop otberwise, ot repabishy
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the JVM garbage collection 127 SCOPE. descbed more fly n
ion 2, supports a hybrid native (C-++) and C# runtime partly

to alleviate this overhead. Like SCOPE, Hadoop Streaming lets
programmers write programs ina mix of languages(2). Our analysis
shows that this cross-language interaction (in SCOPE, between the
runtimes) is a significant cost in the overall system

the presence of non-relational code blocks
implemented in these data-

optimizations
processing runtimes, e.g. [16],
“The goal of this work i to study and better understand the key
performance bottlenecks in modern dat
tential for
this paper s primarily about SCOPE, we believe our resuls and
dize to other OPE.
is the key data-processing system used at Microsoft running at least
halfa million jobs daily on several Microsoft data centers. Figure 1
shows a simple example of a SCOPE program (hereafter referred to
s a seript) that interleaves relational logic with C expressions
In Figure 1a, the predicate in the WHERE clause is subject to two
potential optimizations:

ta-processing systems, and
While

(1) The optimizer may choose to promte one (or both) of the
conjunets to an earlier part of the script, especally if either A
or B are columns used for partitioning the data. This can dra-

across the network.

‘The SCOPE compiler has a set of methods that it considers
to be intrinsics. An intrinsic is a NET method for which
the SCOPE runtime has a semantically equivalent native
function, .., implemented in C++. For instance, the method
String. 1sNul10rEnpty checks whether its argument is ci
ther null o else the empty string. The corresponding native
method is able to execute on the native data encoding which

[1] Selakovic et al. An Actionable Performance Profiler for Optimizing the Order of Evaluations (ISSTA'17)
[2] Selakovic et al. Cross-Language Optimizations in Big Data Systems: A Case Study of SCOPE (ICSE-SEIP'18)



Inefficient Order of Evaluations

expensiveAndUnlikely() && cheapAndLikely()
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Inefficient Order of Evaluations

expensiveAndUnlikely() && cheapAndLikely()

® Analysis of all conditions in in logical expressions
or switch statements

® Assessment of the computational cost

e Safe to apply and beneficial optimizations



DecisionProf: An Analysis for
Optimizing Orders of Evaluations

Program + input
» Static preprocessing

Profiler ™. |

..

! -, Dynamic analysis
Optimization candidates

!
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Dynamic Analysis

® Collecting runtime data:

m Cost - number of branching point
m Value - true/false

® Assessing the optimal order
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a() && b()



Dynamic Analysis

® Collecting runtime data:

m Cost - number of branching point
m Value - true/false

® Assessing the optimal order

var x; a() && b()
cost value cost value
a() && b()
¢ al v al ¢ b1 v b1
¢ a2 v a2 ¢ b2 v b2
C a3 Va3 Ch3 Vb3




Dynamic Analysis: Example

Execution 1

Execution 2

Execution 3

_.isNumber(input) && isNaN(input)

cost value
3 true
2 true
4 true

cost value
1 false
1 false
1 true

10



Dynamic Analysis: Example

Execution 1

Execution 2

Execution 3

_.isNumber(input) && isNaN(input)

cost value
3 true
2 true
4 true

Overall cost =12

cost value
1 false
1 false
1 true

10



Dynamic Analysis: Example

Execution 1

Execution 2

Execution 3

_.isNumber(input) && isNaN(input)

cost value
3 true
2 true
4 true

Overall cost =12

cost value
1 false
1 false
1 true

10



Dynamic Analysis: Example

Execution 1
Execution 2
Execution 3

1
isNaN(input) && _.isNumber(input)

Cost Value Cost Value
1 false 3 true
1 false 2 true
1 true 4 true

11



Dynamic Analysis: Example

Execution 1
Execution 2
Execution 3

1
isNaN(input) && _.isNumber(input)

Cost Value Cost Value
1 false 3 true
1 false 2 true
1 true 4 true

Overall cost=7

1 See pull request #2496 of Underscore.js

UNDERSCORE.JS




Pruning Non-Commutative
Conditions

Non-commutative conditions: change program semantics

Two approaches:

Static: known patterns

Dynamic: write to the same _
function a(){

memory location X++
}

if (a() && x) {..

-}

12



Performance Evaluation

e Program transformation for each optimization candidate
e Methodology by Georges et al. [1]

Original program + input Optimized program + input
" VM instances :

Warm up

t-test

[1] Georges et al. Statistically rigorous Java performance evaluation (OOPSLA 07)

13



DecisonProf: Evaluation

® Subject programs:
m O JavaScript libraries and test suites
®m 34 benchmarks from JetStream suite
® Results:
m 23 opportunities across libraries
m 29 opportunities across benchmarks

m Performance improvements: 2.5% - 59% (function level)
and 2.5% - 6.5% (application level)

14



Examples of Reordering
Opportunities

Cheerio library:

//code before
isTag (elem) && elems.indexOf (elem) === -

tests: 26%, 34%

//code after
elems.indexOf (elem) === -1 && isTag (elem)

Gbemu benchmark;

//code before
numberType != "float32" && GameBoyWindow.opera

&& this.checkForOperaMathBug () app“caﬁon:
5.8%

//code after
GameBoyWindow.opera && numberType != "float32"
&& this.checkForOperaMathBug ()

15




DecisionProf: Summary

The first profiler to detect inefficient orders of evaluations
Simple and easy to exploit optimizations
Suggests program refactorings

Guaranteed improvements for given inputs

16



Cross-language Optimizations
in Big Data Systems

® SCOPE - Structured Computations Stream
Optimized for Parallel Executions l

e Relational (SQL) + non-relational (C#)

V1
® SCOPE job is DAG where: /\
m \ertices - processes Vo Va
= Edges - data flows \/

V4

l

Output

17



Performance Problem in SCOPE

® Cross runtime interaction

® |ntrinsics vs non-intrinsics

data
data = l
SELECT *
FROM inputStream; vertex

C++

18



Performance Problem in SCOPE

® Cross runtime interaction

® Intrinsics vs non-intrinsics

data =
SELECT *
FROM inputStream;

data =
SELECT *
FROM inputStream
WHERE !String.IsNullOrEmpty(A);

data

vertex

l

data

Intrinsic
(has c++ impl.)

C++

19



Performance Problem in SCOPE

® (Cross runtime interaction

s L data
® |[ntrinsics vs non-intrinsics l
deserialize

data = ‘l'

SELECT *

FROM inputStream vertex C#

WHERE A.Equals('ColumnA'); non-

INtrinsic
serialize

data

20



Method Inlining: Example

® Replacing function call with the body of a function

data =
SELECT *
FROM inputStream
WHERE filter (JobID);

#CS

bool filter (string s) {
return (!string.IsNullOrEmpty(s)
&& s.StartsWith("07"));

21



Method Inlining: Example

® Replacing function call with the body of a function

SELECT *

FROM inputStream

WHERE !string.IsNullOrEmpty(JobID)
&& JobID.StartsWith("07");

22



Method Inlining: Example

® Replacing function call with the body of a function

SELECT *

FROM inputStream

WHERE !string.IsNullOrEmpty(JobID)
&& JobID.StartsWith("07");

~ 4X faster

22



Static Analysis

Goal:; C# to C++ translation for a vertex

Inlineable methods:

® Only calls to intrinsics

® No loops

® No try-catch blocks

® No new and cast operations

® No arguments passed by reference

data

deseyialize

l

vertex

l

serialize

l

data

23



Static Analysis: Evaluation

Optimizable vertices:

Proportion (%)

0.3
0.25
0.2
0.15
0.1

0.05

C C
S, 98, ©Os, Cs, Os, Y%
’770& ’770& ’77% ’7708 070& 4
S 89 7, S1g Sis

Data center

24
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Optimizable vertices:

Proportion (%)

0.3
0.25 — |
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Static Analysis: Evaluation

Optimizable vertices: Case studies:
0.3
005 L | Job |CPU Time Throughput
T o2l | A 23% 30%
S o5l 0.13 _ B no change no change
g o1 - C 25% 38%
0.05 = . I l m E 4.7% 5%
0 T F no change |115%
OO@ Osy,  Cs Oos Cs, folé/
"0g,, M0, 0g ,7”’0@ ,q%s s

Data center

0.13% ~ 40,000 hours
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Case Study in SCOPE: Example

//optimization opportunity

SELECT url id, url, t url id,
CommonMethod.GetTargetUrl(url,t url) AS t url

FROM SSTREAM @VLPMapSS;

//optimized code

SELECT url id, url, t url id,
string.isNullOrEmpty(t url)?url:t url AS t url
FROM SSTREAM QVLPMapSS;

Vertex level improvement: 42%

Job level improvement: 25%

26



Cross-language Optimizations in Big
Data Systems: Summary

e Static analysis for method inlining opportunities
® Only optimizations that reduce cross-runtime interactions

® |Large scale evaluation

27



Conclusions

® Actionable performance analyses
® Easy to exploit classes of optimizations

® Future work: automatically inferring optimization patterns
across and within different domains

data

serialize
expensiveAndUnlikely() && cheapAndLikely() a

desei."ialize
J
data

28



Huawei Dresden Research Center

Research topics:

® Design and development of embedded systems
® Program analysis and formal verification
e Software testing: fuzzing and automated test case generation
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Questions?

30



DecisionProf: Static Preprocessing

startDecision;

startCheck: a(); endCheck();
startCheck: b(); endCheck();
startCheck: c(); endCheck();

endDecision;

if (a() && b() && c()) {

® Hoists leaf expressions
® Beginning and end of each decision

® Beginning and end of each checks

31



DecisionProf: Safe Check Evaluation

Collect and undo all writes to variables and object properties
that may affect code after check evaluation

var X = 0;

function a () {
X++;

startCheck: a();
startCheck: b();

if (a () && b()) ...

32



DecisionProf: Safe Check Evaluation

Collect and undo all writes to variables and object properties
that may affect code after check evaluation

var X = 0;

function a () { ) write to x affects
++ ; ..................
v program state

startCheck: a();
startCheck: b();

if (a () && b()) ...
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Collect and undo all writes to variables and object properties
that may affect code after check evaluation
var X = 0;

function a () ) write to x affects
++;
* program state

program state is changed
startCheck: a(); , ,
e outside normal execution

if (a () && b())

DecisionProf: Safe Check Evaluation

32



DecisionProf: Safe Check Evaluation

Collect and undo all writes to variables and object properties
that may affect code after check evaluation

var X = 0;

function a () { ) write to x affects
++ ; ..................
v program state

program state is changed
StartCheCk: a(); < ................. . .
e outside normal execution

Y S— dynamica/ly execute x = 0;

if (a () && b())

32



DecisionProf: Finding Optimal Order

a && b && c

(2 Cost

4
1
1

a && b

Value / \ Cost
true
false
false
a b

Cost

Value @

o

—_ =

true
false
false

C

Value @

true
true
true

(1) Cost Value Cost  Value (1)
3 true 1 true
3 false 1 false
3 false 1 false

33



DecisionProf: Actual vs
Estimated Cost

50000
45000 |- o
% 40000 —~
=H=
E 35000 | Lt -
€ 30000 - R —
= +
- 25000 + + —
S -
S 20000 |- i —
S 15000 [~ 4 + —
i 10000 | W:# —
5000 = + —
0 | | | | |
0O 8 2 e Q. % @
(9 % % % % %

Estimated cost



Job Artifacts

Job Algebra

m Vertices - processes

m Edges - data flow
Runtime statistics
Script source code
Generated C# and C++ code

Stream
l
V1
/\
V2 V3
\V /
4

l

Output

35



Profiling Infrastructure

Job algebra

N

Vi1 V2 V3

o~

Analysis of C++ code e NET framework methods

! o
Class names User-written methods

l ® Processors and reduces
Analysis of C# code

l

Sources of C# code +
Inlinealbe methods

36



Native vs Non-Native Time

Proportions rel. to data center time(%)

Non-Native s
Native s

| | Grey
Q 2
O@,)) O/é/

(o)
$
s

80 |-
60 |-
40 |-
20 |-
0
%6‘0) %6‘0) 00) 6}))

100 — —
@, @
@) @) @) @
S W 8, e,

Data center

37



