Overfitting in Program Repair

Abhik Roychoudhury
Professor, National University of Singapore

Director, National Satellite of Excellence in Trustworthy Software, Singapore

National University
of Singapore

Why?

‘Security

Productivity

(3)
Education

4)
Automated Program Repair

Claire Le Goues, Michael Pradel, Abhik Roychoudhury
Communications of the ACM (CACM),

\62(12), December 2019.

)

CREST Workshop London, 2020 2

Program Correctness

* “Behind every large program * Behind every large program
there is a small program waiting there is an algorithm waiting to
to get out” get out

* “Free your mind with
 C.A.R. Tony Hoare mathematics

* Leslie Lamport

Formal Specification

 Manual Formal Specification * Automated Specification inference
* Specify the requirements * Only what is “wrong” in the program
* Challenges: * Challenges:
e Developer education (non CS * Requires specifying what is correct
backgrounds) e Limited notions of correctness
e Developer reluctance available e.g. Tests
* Third party code and non * Generalizes beyond tests but subject

monolithic assembly to overfitting.

=BAINUS
National University
of Singapore

Automated Program Repair

Buggy program
~ — Tests
. A 1=sl 2
y % ,‘ ¢

Candidate | _, gearch algorithm

v

patches

.
Program Program Ef;;r:ri Transformation schemas: —
— Repair X=y+1,9x=y—-1; RS
stmt, — if (x > 0) stmt, Plausible patch

(passes all tests)

Can we generate a program
1f inputl return outputl
else 1f input2 return output?

else ..

Generate and Validate

CREST Workshop London, 2020

The “right” patch

o U A W N

N W N N -

w N W NN -

H NN N W

INVALID
EQUILATERAL
ISOSCELES
ISOSCELES
ISOSCELES
SCALANE

National University
of Singapore

TN US
kel

int triangle(int a, int b, int c){<\\\

if (a <=0 || b<=0 |] ¢ <= 0)
return INVALID;
if (a == b && b == c)

return EQUILATERAL;
if|(a ==Db || b !'= ¢c)|// bug!
return ISOSCELES;
return SCALENE;
}

KO(I)\]O\U'I-&(A)NI—\

Correct fix

(a::b”b::C”a::C)

Traverse all mutations of line 6 ??

XXX < <<«

Hard to generate fix since (a ==c) or (c ==a) never
appear anywhere else in the program!

CREST Workshop London, 2020 6

National University
of Singapore

ZINUS
1. Combat Overfitting: Antipatterns

Prevalence of Anti-patterns in Automatically Generated Patches (%)
mGenProg mSPR

> Search-Based Repair Tools Final Patch
S .
X (

XN '
> & & N & N ® 2
F & & FE \\0 & Q&b PP R
AN S SEENG 2 S RN VPSS S S
] () N, 4
N N & Ny N S &) & & @ &
¥ KX d & P @6‘ 0 P & & & \& S \
o & &> g & > & & o &8 o _—
> ¥ S 2 S & & & S . —
9 & N O K 2\ A $ gor
v 6@'% v@»\o ¥ Patch Tests Fail
> é*\e Generation All Tests
¥ © Pass

Tests
* contains at least one failing test

CREST Workshop London, 2020 7

National University

of Singapore

Generate and Validate over Partitions

| for candidate ¢ €.5do
' validate(c)

———————————————————————————————

for partition p €5 do
. validate(p)
i end

Test-equivalent partitioning

The patch candidates can be evaluated more efficiently.

NUS

National University
of Singapore

Test Equivalence on Patches

scanf ("%d" ,8&x);

for (i = 0; i < 10; i++)
if (x -1 > 9)
printf ("1");

else

Consider all inequalities

ax [+] Bi [>=>=+#]y

printf ("e");

Sequence of values:

{v,7,7,7T,T,T,T,T,T,T}
{T,T,T,T,T,T,T,T,T, F}
{r,T,T,T,T,T,T,T,F, T}
{r,T,T,T,T,T,T,T,F, F}
{T,T,T,T, T, T, T,F, T, T}
{T,T, T, T, T, T,T,F, T,F}
{t,T,T,T,T,T,T,F,F, T}

Equivalence class (x = 4):
{x>09.}

{x -1i> -5,.}
EMPTY
x-1>-4,.}
EMPTY

EMPTY

EMPTY

ax+ Li>y

TTT

ITI TI FI;FI Fl FI F

if (tif->tif_rawcc > 0 && tif->tif rawcc !=orig_rawcc
&& (tif->tif_flags & TIFF_BEENWRITING) != @
&& ! TIFFFlushDatal (tif)) {
TIFFErrorExt (tif -> tif_clientdata, module,
"Error flushing data before directory write");
return (0);

}

112487
modifications

((tif -> tif_rawcc > @) && (tif -> tif_rawcc != orig rawcc))
|| (tif -> tif_flags & TIFF_BEENWRITING))

((tif -> tif _rawcc > @) || (tif -> tif rawcc != orig rawcc))
&& (tif -> tif flags & TIFF_BEENWRITING)) 5 eq.
classes
((tif -> tif_rawcc == 0) && (tif -> tif_rawcc != orig rawcc))
>—

&& (tif -> tif_flags & TIFF_BEENWRITING))

((tif -> tif_rawcc > ©) && (tif -> tif_rawcc != orig rawcc))
&& (tif -> tif flags & TIFF_BEENWRITING)) || (imagedone >= orig rawcc)

((tif -> tif_rawcc > ©) && (tif -> tif_rawcc != orig rawcc))
&& (tif -> tif flags & TIFF_BEENWRITING)) || (tif->tif flags >= 74)

CREST Workshop London, 2020 9

National University

of Singapore

2. Combat Overfitting: Fuzz Testing

' | Auto-generate |
tests

— |
[Testeases J— X_Repar_|J= =
¢ .

Buggy P Patched program,
. program | W ,’I

__

The given test suite can be enhanced by
test generation (random, evolutionary
algorithm and etc.).

Problems:

1. The oracles of newly generated tests are usually unknown.

2. Test generation for program repair is inefficient because it has no knowledge about patch candidates.

Test generation to alleviate over-fitting

Crashing patches

= -

generation

Correct patches

Search space Crash-free patches

Distinguish crashing and crash-free patches (practical)

=ENUS
ﬁ National University
of Singapore

E Mutated files

Crashing patches may (1) partially fix the crash or (2) unexpectedly introduce new crash 7 7 ; @
Test suite
(Seeds)
Dequeue @ Enqueue
(power schedule) |nput Queue (isInteresting)

CREST Workshop London, 2020

11

Crash-avoiding Program Repair :

Mutated files @—\ Pool of Patches

=M
= L
1EE 4 _J
1 ‘ ;—.! Refine
patch pool
Test suite
(Seeds) Input Queue _
Assign
B energy
Dequeue) (IsInteresting)
Enqueue

---- the boundary of patch partitions

Retain inputs
with non-zero
separability

Separability formulates the ability of a test to find semantic discrepancies
between plausible patches (break equivalent partition).

Patches are generated with the objective of passing existing tests.

New tests are generated with the objective of breaking equivalent partitions.

CREST Workshop London, 2020 12

National University
of Singapore

Default Oracles and Additional Oracles

'/ \
|:> E Compile-time Run-time |:>
! | instrumentation check
1
\

Vulnerab|||ty S mm oo ’ Normal crash
Sanitizer
UndefinedBehaviorSanitizer: null-pointer, integer overflow and so on ;' ------------------- b - -h = -F F- S————— _I
o Proj.4 Libarchive mpe
AddressSanitizer: buffer/stack overflow, memory leak, use-after-free... | 105) 1500 1000 Peg I
wv
I_ch 99\ 1200 800 1
1S o 900 600 1
. - 1 © I
Patches are not only checked for crashes, but are also checked against the sanitizers. I Q. g7 600 400 !
| % 81 Tte————— 300 \ 200 I
- — x
15 75 0 0 1
| © 012345678910 0123456782910 012345678910
o
o Openjpe Libssh Libchewin :
| © 600 penipeg 1000 150 g I
— \
I_g 480 | 800 120 |
I'E 360 | 600 %0 '
1.5 : 1
IZ 240 400 60 sedunipe |
| 120 2 200 . 30 |
I 0 0 0 I
I 012345678910 0123456780910 012345678 910l
| I
I Number of oracles I

CREST Workshop London, 2020 13

3. Combat Over-fitting:

Spec. Inference

of programs repaired

lﬁk Very old result on small programs!

45

o o o o o
40 A 4 v v v A 4

o ._.\.v

30

25 \ ==Total

20 “#Semfix -
TCAS

s \\\‘ =#-GenPro g

10

5

10 20 30 40 50 Number of tests

Overall 90 programs from SIR

SemFix repaired 48/90, GenProg repaired 16/90 for 50 tests.
GenProg running time is >3 times of SemFix

National University
of Singapore

TN US
ko7

Tests with
oracles

Buggy

Program

Symbolic
Formulae

Program
Repair

Patched
Program

CREST Workshop London, 2020

14

Example

o U A W N B

N W N N -

w N W NN -

H NN N W

INVALID
EQUILATERAL
ISOSCELES
ISOSCELES
ISOSCELES
SCALANE

National University
of Singapore

TN US
ke

H\
'_l.
]
3

triangle (int a, int b, int c){<\\\

if (a <=0 || b<=0 1] ¢c <= 0)
return INVALID;
if (a == b && b == ¢)

return EQUILATERAL;
if|(a ==Db || b !'=c)|// bug!
return ISOSCELES;
return SCALENE;

| ,/

Correct fix

O J oy O b WD

/o

(a::b”b::C”a::C)

Automatically generate the constraint

f(zl 2/3) Af(2/3/ 2) Af(3/ 2, 2) A _'f(2/3/4)

XXX < <<«

Solution
fla,b,c)= (a==b||b==c||a==¢)

CREST Workshop London, 2020 15

National University
of Singapore

T NUS
L 95
Specification Inference

Program

Concrete Execution

Concrete , Output:
var = f(live_vars) /[X :
values (live_vars) /f Value-set or Constraint
Bugay Symbolic
Program) execution
Program
- Repair Oracle (expected output)

Tests with Symbolic
oracles Formulae

Ef;;raeri [v (pg A out; == expected_out(t)) h
j € Paths
A
[ICSEa13, SemFix] () ==
\ J
Repair constraint

CREST Workshop London, 2020 16

So, far

Syntax-based Schematic
for e in Search-space{
Validate e against Tests

}

Semantics-based Schematic
for tin Tests {
generate repair constra

}

ynthesize e from A W,

. Where to fix, which line?
. Generate patches in the candidate line

. Validate the candidate patches against

correctness criterion.

. Where to fix, which line(s)?

. What values should be returned by those lines,

e.g. <inp ==1, ret== 0>

. What are the expressions which will return such

values?

CREST Workshop London, 2020

of Singapore

National University

17

Shift of outlook: Vulnerability repair

Identified Vulnerabilities
in 2018

Number of identified vulnerabilities ~ ©"¢"
Vulnerabilities:

in 2018: 81915 36,706

High or Critical

Vulnerabilities:
50,489

69 DAYS

CRITICAL RISK 77.5

"""""""""" AVERAGE .

83 DAYS TIME TO CLOSE A On average, it took developer

HIGH RISK : VULNERABILITY . L.

.................... APPLICATION IN NUMBER 69 dayS to fix the critical

(DAYS) OF DAYS

74 DAYS

MEDIUM RISK

84 DAYS

LOW RISK/INFO

vulnerabilities.

CREST Workshop London, 2020

TN US
ke

National University
of Singapore

18

National University

of Singapore

4. Combat Overfitting: Constraint Extraction

* Program vulnerability can be formalized as violations of constraints, e.g.
buffer overflow

access(buffer) < base(buffer) + size(buffer)

* These constraints can be automatically extracted when a vulnerability/crash is
witnessed on a given test

* The constraints serve as additional specifications for Automated program
repair (APR) to fix the bug for all tests.

-

Solution

“Dependency analysis”
Fix locator

[Test case]— [LLVM pass]

Fix Iocsl Ingredienti

Crash info
Ve 3 ,, .
Sanitizer o i KLEE : CFC,: 73 E
LowFat, . LA :__>: L A :
UBSan 1Controller, iSecond-order,
/ I;Fo-p-ééé- tTc; n \ f !nf hef'z_ef)

engine
Buggy

program

“The C and C++ programming languages are notoriously insecure
yet remain indispensable. Developers therefore resort to a multi-
pronged approach to find security issues before adversaries. These
include manual, static, and dynamic program analysis. Dynamic bug
finding tools or "sanitizers" --- can find bugs that elude other
types of analysis because they observe the actual execution of a
program, and can therefore directly observe incorrect program

behavior as it happens.” Song et al 2018.
CREST Workshop London, 2020

of Singapore

ERANUS
National University

Buggy program

. ..
Constraint
Extraction

Y
Fix
(_Localization)

Y

Constraint
Propagation

Patch

generated
patches

Synthesis

~— -

20

National University
of Singapore

NUS
Constraint Extraction

Fix locator

l Test case I

Sanitizer

char getValue(char[] arr, int index){
int len = size(arr);
if (index <= len)
return arr[index];
return O;

Constraint

_——F e

Extraction

Fix
Localization

Constraint
Propagation

Buggy
program

Detect buggy program state on concrete input
* input->arr:{1, 2, 3}; index: 3
* Buggy state -> arr[3]
* Concrete constraint violation: 3 (index) >= 3 (len)

Patch
[Synthesis] Generalize crash-free constraints ¢ to cover the whole
. input space
* Using template-based approach
* Map concrete states to symbolic states
* Symbolic constraint violation: index >= len

CREST Workshop London, 2020 21

National University
of Singapore

| | SINUS
Constraint Propagation

* Spectrum-base Fault localization depends a number of
high-quality test cases.

* In a common scenario when security vulnerabilities are
found, only one failing test (exploit) is available.

J

Dependency-based fix localization

Constraint
Extraction

Fix
Localization

Constraint
Propagation J . Constraint

Potential fix node 1: ! . ,) .
[Patch j | control dependencies | Extraction QD {P} QD (Constralnt-propagatlon)
Synthesis ' with crashing node | v \

Lo : fix location . .
Q Q\ [S Fix crashing location

SEees U data dependencies | Localization
' with crashing node !

@: the crash-free constraint at crashing location

Constraint :
Propagation P: the program statements between fix and crashing location.
@ " the least restrictive (weakest) precondition that will
Patch -
| uarantee the postcondition
[Synthesis] | g P @

CREST Workshop London, 2020 22

Synthesis

Constraint
Extraction

Fix
Localization

Constraint
Propagation

Patch
Synthesis

[e > e’]ga’ {P} @ (repair)

To ensure @’ is satisfied after applying the patch, solve
second-order formula.

LT
Ne'=r)ape = o,
j=1
We are synthesizing a second-order expression f, which takes as
inputs the live variables V.
After applying f, all the ¢’; is guaranteed to be satisfied.
@’; is generated by backward propagating ¢ along path i.

CREST Workshop London, 2020

B &

National University
of Singapore

NUS
%

23

Data-set and Results on CVEs

The correct/total patches generated by Prophet, Angelix, Fix2Fit and ExtractFix

C N T T

Libtiff
Binutils
LibxmI2
Libjpeg
FFmpeg
Jasper
Coreutil

Total

A~ NN B N

30

1/7
0/3
1/3
0/2
0/2
2/17

0/7 1/7 6/9
- 0/1 1/2
0/0 1/4 2/4
- - 2/3
- 1/2 1/2
0/2 0/2 1/2
- 1/3 2/2

0/9 4/19 16 / 24

CREST Workshop London, 2020

%éNUS

$755%/ National University
¥/ of Singapore

Prophet: Uses enumerative
search and machine learning
for ranking patches.

Angelix: scalable version of
symbolic execution plus
synthesis based approach.

Fix2Fit: combination of repair
and test generation using

fuzzing

ExtractFix: Extract constraints
using sanitizers

24

Over-fitting in Program Repair

Search-Based Repair Tools Final Patch
Patch Tests Fail
Generation All Tests
Pass

I
[
Tests
Candidate Patches « contains at least one failing tesfj

& Is Anti-pattern? Patch Evaluation
YESJP-Q N0

FSE 2016

Tests with
oracles

Symbolic
Formulae

Can choose smallest patch

Program

Patched
Program

ICSE 2013, ICSE 2015

Test suite
(Seeds)

energy
Dequeue (IsInteresting)

Vo @
. %

Input Queue

Refine
patch pool

Assign

Enqueue
-- the boundary of patch partitions

TOSEM 2018, ISSTA 2019

]

Test case

Sanitizer

Buggy
program

Fix locator

—_—— e ———

-

Propagation
engine

Recent Unpublished

CREST Workshop London, 2020

National University
of Singapore

TN US
ke

25

