
Southern University of Science and Technology

Accepted in ICSE2020 with Ziqiang Li

Collaborative bug finding and bug-fixing for

Android Apps

Shin Hwei Tan

How do Developers Test Android Applications?
2

“I have not found any easy-to-use testing solutions for Android”

“it’s hard to write the useful test case for current project, because
the requirement is changed very often, and the schedule is very

tiny. So we still prefer hire some tester to do manually testing. In
the other hand, the android test framework is not good enough yet,

I tried study roboeletric, it’s a little bit hard to understand.”

“A lot of what I do is related to how the app looks and feels. Therefore a lot
of my testing is done manually...

Developers mostly rely on manual testing and unit testing.

Developers prefer automatically generated test cases in natural language

from “How do Developers Test Android Applications?” [ICSME’17]

Many bug reports exist in repositories like GitHub
3

Bug report’s title in CameraColorPicker Bug report’s title in Gnucash

How do I get left top color. When an account is edited, its color is lost.

publish to F-Droid Publishing on F-Droid

Make gradlew executable Make gradlew executable

App developers who developed PocketHub and ForkHub found similar bugs across two apps

There exists one-to-one correspondence for the bug report’s title in

apps of different categories!

Crafting test scenario from bug report

4

 A test scenario includes:

 steps to reproduce

 test data (e.g., an image for image

processing app)

 the expected behavior

 Could solve the test oracle problem

How does collaborative bug finding works?

5

 Emulate the role of a

competent pair programmer

via developers of other similar

applications

My Android App Other android Apps

 Designed 3 settings to model
different interactions between
coders
 Coders-vs-Coders

 Coder-vs-Manual-Issues

 Coder-vs-Auto-Issues (Bugine)

Setup of the study for the first 2 settings

6

 Use GitHub Classroom for assignments
 All students for a class belongs to the

same organization

• Each student selects 1 app

• <3 teams could select the same app

 Selected 20 apps based on:
 Ease of use

 Contains existing tests

 Popularity on GitHub/Google Play

 Actively Maintained

 Likelihood of finding new bugs (# existing bug reports)29 students

Software Testing

cs409

3

1

Setting 1: Coders-vs-Coders

Members of xyz2

I found similar

bugs as A

NAVIGATOR j

DRIVER i
pair sharing:

i: original shared issue

j: derived issue.

Motivating Example
8

View are not immediately update, will only update the view after restarting the app

 Prevalent problems for many apps

 5 pair sharings

i: original shared issue
j: derived issue.

Developer for

NewPipe

Setting 2: Coder-vs-Manual-Issues

 Coder A needs to manually

perform the steps below:

1. Select the relevant issue i

GitHub Issues for Omni-Notes

(Different Category:

Personalization)

GitHub Issues for AntennaPod

(Same Category: Multi-Media)

2. Reproduce the steps in i

3. Check if the same bug

described in i applies for the

app by Coder A

DRIVER DRIVER

NAVIGATORS

Effectiveness of these two settings

10

2 2

3

5

17

0

2

4

6

8

10

12

14

16

18

monkey graph idm manual collaborative
bug finding

Testing approaches  Collaborative bug finding

finds 17 new bugs

 Automatic testing tool like

Monkey only find 2 bugs

 Crashes found are hard to

reproduce

Types of Bugs found

11

 Our approach finds:

 Prevalent problems (outdated

view, certain names, certain

mode, change of language)

 Specific problems (29%)

 Types of bugs are mostly

non-crash related

 Our approach complements

existing automated testing

approaches (mostly focus on

finding crashes).

Not Update
immediately

29%

Certain
mode

(Unsilent,
Pop Up)

12%

Certain
names

(folder with
similar
names)

18%

Changing
language

12%

Other
29%

TYPES OF BUGS FOUND THROUGH
COLLABORATIVE BUG FINDING

What do students think about collaborative bug finding?
12

“Because many functions in the app in the same category are similar even
totally same ... and others’ report will also inspire the mind to find

bugs which I never considered.”

“Collaborative bug finding takes more time to review different apps
and search useful issues…but is more likely to find new bug”

Searching for issues could be time-consuming

Need automation for collaborative bug finding!

Setting 3: Coder-vs-Auto-Issues (Bugine)

13

 Given an 𝐴𝑝𝑝𝑞𝑢𝑒𝑟𝑦,

1. Extracts its UI components to

get its app description file

2. Use similarities between app

description file for 𝐴𝑝𝑝𝑞𝑢𝑒𝑟𝑦
and app description files for

apps in database to search for

similar apps

 GitHub issues pre-processsing

3. Rank issues based on quality

Finding the similarities between apps

14

Are these two apps similar?

Android App 1
My Android App

Shares similar

GUI components

Bug

Reports

Has some bug reports that mentioned the

“shared” GUI components, recommend these

bug reports to my app

share

Bug

Reports

Android App 1

Background: What defines Android UI?

15

From： https://abhiandroid.com/ui/xml

 UI elements is usually declared in XML files

 Android UI is defined via the hierarchy of View and

ViewGroup objects

 Names of Android resource following certain conventions

https://abhiandroid.com/ui/xml

Naming information for extracting description files

16

Component Description Example Extracted Names

Resource Name Resource Name android:id="@+id/my_btn" my_btn

View Name Name for the

type of UI

component

<Button android:id="@+id/my_btn" /> Button

XML File Names Layout name main_layout.xml main_layout

For each XML file, convert each view and each resource in 𝐴𝑝𝑝𝑞𝑢𝑒𝑟𝑦 to the query of the

form:

XML file name ∧ View Name ∧ Resource name

Ranking GitHub Issues

17

Factors Description Rationale

Issue length Word count of issue body (int) Longer issue is better

Issue Status Closed or opened (binary) Issue is more important if it is :

 Closed

 Fixed

 has more replies (comments)

Ref Commit SHA Commit SHA referenced by issue (binary)

Issue Reply Number The number of replies that an issue received (int)

Hit_all Find all search keywords in the corpus (binary) Search for shared UI components:

 Match all keywords (better)

 Has some shared components
Hit_overlap Overlap coefficient between search keywords and

corpus (float)

Hit_Hot_Words Word count of descriptive hot words like reproduce,

defect (int)

Issues that meet the criteria for

good bug reports is better

Evaluation of Bugine

18

Evaluate the ranking performance of Bugine

19

Use two metrics commonly used in prior recommendation systems:

1 Prec@k =
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑜𝑝 𝑘

𝑘

Retrieval precision over the top k documents in the ranked list

(2) Mean Reciprocal Rank (MRR) =
1

|𝑄|
෍

𝑞=1

|𝑄|
1

𝑓𝑖𝑟𝑠𝑡𝑞

For each query q, the MRR measures the position 𝑓𝑖𝑟𝑠𝑡𝑞of the

first relevant document in the ranked list

Ranking performance of Bugine

20

 Prec@10: 0.10.7
 Among the top 10 issues recommended by Bugine, there is  1 relevant

issue

 MRR values: 0.340.75
 Ranking for the first relevant document is btw 3rd (0.34) and 1st (0.75)

Bugine could recommend relevant issues for all evaluated apps

Bugs found by Bugine

21

App Name #Bugs Found (new, old)

Camera-Roll (11, 0)

PocketHub (12, 2)

Simple File Manager (6, 2)

Zapp (2, 7)

Simpletask (3, 2)

 Found 34 new bugs and 13

old bugs

 In first two settings, 29

students find 17 new bugs in

20 apps

Bugine could discover more

bugs despite being evaluated

only on five apps.

Feedbacks from the ICSE 2020 Reviewers

22

“I thought the idea of collaborative testing was intriguing and thought provoking... I
really liked the effort by the authors to think creatively about this and present an

out of the box idea for test generation”

“This is one of those simple but great ideas that make a lot of sense…”

“The idea of collaborative bug finding is refreshing and interesting”

Interesting Research Questions:

• Can the authors provide any insights on how to automate collaborative bug
finding?

• Can we extract fix patterns from these common issues?

Could we make sure of the fixes of similar bugs

for Automated Program Repair?

23

 Could provide high-level fix suggestion

 Use Observable vs. Background Service for handling asynchronous
events for fixing the outdated view problem

Future Work: Collaborative Testing and Repair

24

 How about recommendation systems for bug fix commits?

Program My Program
Similar bugs &

Similar code

Bug fixes

Has bug fix commits, recommend these

commits to another Program

Bug fix

commits

Program

Summary
25

 Reusing bug reports from different apps
Exploit the redundancies of bug reports in open-source repositories
Use similarities between apps

 New way of testing Android Apps
 Instead of test input generation, we re-formulate the test generation problem

as bug report recommendation problem
 Bugine recommends relevant bug reports automatically

Developer could read reports written in Natural Language
 Do not need to learn a new testing framework nor API

 Found 51 new bugs, 5 confirmed, 7 fixed

 3 settings:

 Coders-vs-Coders

 Coder-vs-Manual-Issues

 Coder-vs-Auto-Issues (Bugine)

