
What happened to my clone?

Jens Krinke
Centre for Research on Evolution, Search and Testing (CREST)

University College London

COW 9, 23/11/2010

Duplicated Code

Number one in the stink
parade is duplicated code.
If you see the same code
structure in more than
one place, you can be sure
that your program will be
better if you find a way to
unify them.

Overview

Research Questions:

1. Is Clone Code more stable?

2. Are Clones changed consistently?

3. Can Originals and Copies be identified?

RQ #1:
Is Clone Code more stable?

• If cloned code is changed often, it requires
more attention and is more expensive

• If cloned code is more stable,
its maintenance costs will be lower

• No data on stability exist

Empirical Study

• 5 open source systems

• 200 weeks of evolution:
200 snapshots

• Clones:
200 sets (using simian)

• Changes (addition, deletions, changes):
200 diffs to the next week

• Changes are mapped to clones

ArgoUML 118.316 12%
jdt.core 192.624 15%
Emacs 227.919 10%
FileZilla 90.302 16%
SQuirreL 69.981 8%

Results

squirrel

filezilla

emacs

corejdt

argouml

0.00% 0.20% 0.40% 0.60% 0.80% 1.00%

AC%

AN%

DC%

DN%

CC%

CN%

ArgoUML

ArgoUML

Deletions Dominate

Cleaner Results

RQ #1:
Is Clone Code more stable?

• The average percentage of additions,
deletions, or other changes to
cloned code is lower than the
average percentage for non-cloned code

• More often a higher percentage of non-
cloned code is added, deleted, or changed
in comparison to cloned code

•Cloned code is more stable
than Non-Cloned Code

RQ #2:
Are Clones changed

consistently?

• If cloned code is changed consistently,
it evolves together

• If cloned code is changed consistently,
inconsistent changes may be bugs

Hypothesis #1

During the evolution of a system,
code clones of a clone group
are changed consistently

• Two studies suggest that consistent changes
do not appear as often as expected
[Kim et al, Aversano et al]

• Both studies analyzed small Java systems

Hypothesis #2

During the evolution of a system,
if code clones of a clone group
are not changed consistently,
missing changes will appear in a later version

Changes in Clones

• A clone is identified by file, start & end line

• A change is identified by file, start line,
number of deleted line and added lines

• match changes to clones

➡ if all changes to the clones of a group are
the same, the group has consistent changes

Analyzed Systems

Source Changes Clones

System LOC LOC LOC Groups

ArgoUML 118366 2816 14862 13% 313

CAROL 9824 248 601 6% 17

jdt.core 192930 2478 29438 15% 644

Emacs 227964 578 22966 10% 528

FileZilla 90138 698 14362 16% 210

Results

|GC| |GI| |GC|
|GI|+|GC|

ArgoUML 1049 1050 50%

CAROL 66 69 49%

jdt.core 1375 1124 55%

Emacs 440 543 45%

FileZilla 246 204 55%

ArgoUML

 0

 20

 40

 60

 80

 100

 120

 0 50 100 150 200

inconsistent
consistent

Influence of Parameters

• Impact of change detection (diff):
whitespace and indentation is ignored

➡ Manual inspection

• Most changes are similar

• Changes in arguments and predicates

Influence of Parameters

Transformed Original

|GC| |GI| |GI|
|GD| |GC| |GI| |GI|

|GD|
ArgoUML 1049 1050 50% 1266 2988 30%

CAROL 66 69 49% 77 170 31%

jdt.core 1375 1124 55% 1416 2194 39%

Emacs 440 543 45% 480 1006 32%

FileZilla 246 204 55% 270 316 46%

Hypothesis #1
(invalidated)

During the evolution of a system,
code clones of a clone group

are changed consistently

✘ is only valid half of the time

Hypothesis #2

During the evolution of a system,
if code clones of a clone group
are not changed consistently,

missing changes will appear in a later version

• the rate of consistently changed groups
will increase for longer durations

✘ no significant change observed!

Hypothesis #2

During the evolution of a system,
if code clones of a clone group
are not changed consistently,

missing changes will appear in a later version

• compute the probability that inconsistent
changes turn into consistent changes

• if group is changed inconsistently in week w

Hypothesis #2

3%

6%

9%

12%

15%

 2 3 4 5 6 7 8 9 10

ArgoUML
CAROL
jdt.core
Emacs
FileZilla

• half of changed clone groups are
inconsistently changed

• if a clone group is inconsistently changed,
there is an increasing probability
that it is consistently changed later

RQ #2:
Are Clones changed

consistently?

Do Clones lead to
Bugs?

• Rahman et al., “Clones: What is that Smell”
MSR 2010

• most bugs have very little to do with clones

• cloned code contains less buggy code

• larger clone groups don’t have more bugs
than smaller clone groups

• making more copies of code
doesn’t introduce more defects

RQ #3:
Can Originals and

Copies be identified?

• Where is my code coming from?

• Who is the original author?

• Are licenses violated by external code?

Version Controls Systems
can ‘blame’

ModeContract.java:92,102

1: 15154 int startOffset = layer.getNodeIndex(startY);

2: 15147 int endOffset;

3: 15147 if (startY > endY) {

4: 15147 endOffset = startOffset;

5: 15154 startOffset = layer.getNodeIndex(endY);

6: 15147 } else {

7: 15154 endOffset = layer.getNodeIndex(endY);

8: 15147 }

9: 15147 int diff = endOffset - startOffset;

10: 15147 if (diff > 0) {

11: 15154 layer.contractDiagram(startOffset, diff);

ModeChangeHeight.java:95,105

1: 15154 int startOffset = layer.getNodeIndex(startY);

2: 8186 int endOffset;

3: 8533 if (startY > endY) {

4: 8533 endOffset = startOffset;

5: 15154 startOffset = layer.getNodeIndex(endY);

6: 8533 } else {

7: 15154 endOffset = layer.getNodeIndex(endY);

8: 8533 }

9: 8533 int diff = endOffset - startOffset;

10: 8533 if (diff > 0) {

11: 15154 layer.contractDiagram(startOffset, diff);

Classification

• A clone pair is identical if all corresponding
lines have the same version.

• A clone pair is copied if the versions of all
lines are either larger or smaller than the
corresponding lines’ versions.

• A clone pair is unclassifiable if it is neither
identical nor copied.

Tolerance

• The clones of a clone pair are said to be
classifiable with a tolerance of t if after
removing t source lines the resulting pair
can be classified as copied or identical.

• Compute the Levenshtein Distance
between the strings of versions.

Classification Results

0

150

300

450

600

t:0 t:1 t:2 t:3

Copied Unclassifiable Identical

0

75

150

225

300

t:0 t:1 t:2 t:3

Copied Unclassifiable Identical

ArgoUML Apache

RQ #3:
Can Originals and

Copies be identified?

• When comments are ignored and a small
tolerance is accepted, the majority of clone
pairs can automatically be distinguished
between the original and the copy.

Flow between Projects

• The GNOME Desktop Suite
consists of 68 projects, written in C.

• 4494 source files (*.c)

• 2.6 MLOC

Flow between Projects

Conclusions

• Cloned code is more stable

• Clone groups are inconsistently changed
half of the time

• If a clone group is inconsistently changed,
it may consistently changed later

• For the majority of clone pairs, the original can
automatically be distinguished from the copy.

