Software Bertillonage

Finding the Provenance of Software Entities

Mike Godfrey
Software Architecture Group (SWAG)
University of Waterloo

University of

Waterloo

Work with ...

 Daniel German
e Julius Davies™**
e Abram Hindle

** Did most of the hard work

Wei Wang
lan Davis
Cory Kapser
Lijie Zou
Qiang Tu

Who are you?

Alphonse Bertillon
(1853-1914)

The nose, as it cannot be disguised, is extremely important in identification, The types above, taking them from the
left, show a low, narrow nose, a hooked nose, a straight nose, a snub noce, and a high, wide nose,

RELEVE

bu

SIG#ALEMENT ANTHROPOMETRIQUE B e r'l_—| I I O N a ge m et r| CS

Height

Stretch: Length of body from left
shoulder to right middle finger
when arm is raised

Bust: Length of torso from head to
seat, taken when seated

Length of head: Crown to forehead
Width of head: Temple to temple
Length of right ear

Length of left foot

Length of left middle finger

Length of left cubit: Elbow to tip of
middle finger

Width of cheeks

1. Taille. — 3. Envergurc. — 3, Buste. --
4. Longueur de la téte. 5, Largeur de la tite. — 6. Oceille droite. —
7. Pied gauche. — 8. Médius gauche, — 9. Coudée gauche,

Forensic Bertillonage

* Quick and dirty, and a huge leap forward

— Some training and tools required but could be performed with
technology of late 1800s

— If done accurately, could quickly narrow down a very large pool of
mugshots to only a handful

* Problems:
— Equipment was cumbersome, expensive, required training
— Measurement error, consistency
— The metrics were not independent!
— Adoption (and later abandonment)

Software Bertillonage

 We want quick and dirty ways of looking at a
function (file, library, binary, etc) and asking:

— Who are you, really?
* Entity and relationship analysis

— Where did you come from?
* Evolutionary history

— Does your mother know you’re here?
* Licensing

Related ideas

e Software clone detection
— Why?

* Just “understand” where/why duplication has occurred

» Possible refactoring to reduce inconsistent maintenance, binary footprint
size, to improve design, ...

* Tracking software licensing compatibilities, esp. included libraries and
cross-product entity “adoption”

— Many techniques for this ©

Related ideas

e “Origin analysis” + sw genealogy
— Why?

* Program comprehension

* Name / location change of sw entity within
a system can break longitudinal studies

— Use entity and relationship analysis

to look for likely suspects

[IWPC-02, WCRE-03, TSE-05]

Related ideas

 MSR, bug predictors, and SE recommender systems
— Why?

* Given info about similar situations, what might be helpful / informative in
this situation?

— Many techniques (Al, LSI, LDA, data mining, plus ad hoc
specializations + combinations)

e ...andsoon...

Bertillonage desiderata

* A good Bertillonage metric should:

— be computationally inexpensive

— be applicable to the desired level of granularity and programming
language

— catch most of the bad guys (recall)

— significantly reduce the search space (precision)

* Bertillonage is not fingerprinting or DNA analysis!
— Often there just is not enough info (or too much noise) to make
conclusive identification
— So we hope to reduce the candidate set so that manual examination is
feasible

Bertillonage meta-techniques

Count based
e.g., size, LOC, fan-in, McCabe
Set based

e.g., contained string literals, method names

Relationship based

e.g., call sets, throws sets, libraries included / used
Sequence based

e.g., methods in order, tokens-based clone detection

Graph based
e.g., AST and PDG clone detection

A problem

* Software packages often bundle in third-party libraries to
avoid “DLL-hell” [Di Penta-10]
— In Java world, jars may include library source code or just byte code
— Included libs may include other libs too!

 Payment Card Industry Data Security Std (PCI-DSS), Req #6:

— “All critical systems must have the most recently released, appropriate
software patches to protect against exploitation and compromise of
cardholder data.”

What if a financial software package doesn’t
explicitly list the version IDs of its included libraries?

ldentifying included libraries

The version ID may be embedded in the name of the
component!

e.g., commons—-codec-1.1.jar

— ... but often the version info is simply not there!

Use fully qualified name of each class plus a code search
engine [Di Penta 10]
— Won’t work if we don’t have library source code

Compare against all known compiled binaries

— But compilers, build-time compilation options may differ

Anchored class signatures

ldea: Compile / acquire all known lib versions but extract
only the signatures, then compare against target binary
— Shouldn’t vary by compiler/build settings

For a class C with methods M, ..., M_, we define its
anchored class signature as:

0(C) = (o(C), <a(M,), ..., o(M_)»

For an archive A composed of classes C,,...,C,, we define its
anchored class signature as

O(A) =18(Cy), ..., B(C)}

// This is **decompiled** source!!
package a.b;

public class C extends java.lang.Object
implements g.h.I {

public C() {
// default constructor is inserted by javac

synchronized static int a (java.lang.String s)
throws a.b.E {
// decompiled byte code omitted

o(C) = public class a.b.C extends Object implements I
o(M;) = public C()
o(M,)= default synchronized static int a(String) throws E

B8(C) = (o(C), <a(M,), a(M,)>>

Archive similarity

* We define the similarity index of two archives as their Jaccard
coefficient:

16(A) N O(B) |

sim(AB) = o A UeB)

e We define the inclusion index of two archives as:

16(A)NO(B)|
16(A)|

inclusion(A,B) =

Implementation

e Created byte code (bcel5) and source code signature extractors

 Used SHA1 hash for class signatures to improve performance
— We don’t care about near misses at the method or class level!

e Built corpus from Maven2 jar repository
— Maven is unversioned + volatile!
— 150 GB of jars, zips, tarballs, etc.,
— 130,000 binary jars (75,000 unique)
— 26M .class files, 4M .java source files (incl. duplicates)
— Archives contain archives: 75,000 classes are nested 4 levels deep!

Investigation

An industrial e-commerce application containing
84 jars.

RQ1: How useful is the archive signature similarity index at
finding the original binary archive for a given binary archive?

RQ2: How useful is the archive signature similarity index at
finding the original sources for a given binary archive?

RQ3: How reliable is the version information stored in a jar file’s
name?

Investigation

RQ1: How useful is the archive signature similarity index at
finding the original binary archive for a given binary archive?

e 51 /84 binary jars (60.7%), we found a single (correct)
candidate from the corpus with similarity index of 1.0.

e 20/ 84 we found multiple matches with simindex = 1.0

12 /84 we found no matches with simindex =1.0
— But 10/ 12 we found correct product

e 1 /84 we found no match (product was not in Maven)

More data here: http://juliusdavies.ca/uvic/jarchive/

Summary

Who are you?

— Determining the provenance of software entities is a growing and
important problem

Software Bertillonage:

— Quick and dirty techniques applied widely, then expensive techniques
applied narrowly

Identifying version IDs of included Java libraries is an example
of the software provenance problem

— And our solution is an example of software Bertillonage

Non-CS References

* Fingerprints: The Origins of Crime Detection and the Murder

Case that Launched Forensic Science, Colin Beavan, Hyperion
Publishing, 2001.

* http://en.wikipedia.org/wiki/Alphonse Bertillon

Software Bertillonage

Finding the Provenance of Software Entities

Mike Godfrey
Software Architecture Group (SWAG)
University of Waterloo

University of

Waterloo

