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Question

* What happensin no_vehicle in_frontif brake
and level=increase?
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Another question

* What happensin no_vehicle in_frontif a
vehicle is detected and level=increase?
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The problem

* Traditional mutation operators introduce
changes similar to ‘slips’.

* Sometimes a developer/user will make
semantic mistakes:

— They will misunderstand the semantics of part of
the language they are using



Semantic Mutation

* Adeveloper has been using language X with
semantics L and moves to X with semantics L.

e How do we find test data to find resultant
faults?



An alternative: switching between
programming languages

* Developer moves between two languages at
the same level of abstraction that have
different semantics for a common construct.

 Example:

— Logical connectives in C and Ada.
e Cuses short-circuit evaluation;

* Ada has alternatives (with and without short-circuit
evaluation)



Scenario: refinement/retrenchment

 Similar constructs can have different
semantics.

* Examples:

— integer division in Z and Ada

— retrenching infinite types (issues with precision,
bounds on the types)



A simple framework

We have a syntactic entity N in a language
with semantics L.

Traditional mutation operators transform (N, L)
to some (N’,L)

Semantic mutation operators transform (N, L)
to some (N,L’) [or maybe even (N’,U)]

They aim to find a different type of mistake.



Current status and future work

* Prototype tool being developed for C

* Some experiments being conducted to explore
nature of semantic mutants:

— How many are produced?

— How do they relate to traditional syntactic
mutants?

— What are good operators?
— Are there many trivial or equivalent mutants?

* More experiments



A Semantic Mutation Tool for C



GUI of SMT-C*
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GUI of Test Runner*
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*Running results of test suites and testcases: statistics
and the result for each test suite and testcase with
graphical highlight;

*Progress bar;

*Test error traces.



Mutant generation™

Mutant generation =
Select mutation elements and operators:
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Mutantgeneration -- support three different scopes
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Implementation Overview

* The tool is developed using Java and as Eclipse
plug-ins.
* [t also can be published as an independent

testing tool based on Rich Client Platform
(RCP) of Eclipse.

 For current version, TXL is used to drive the
semantic mutation and Check is used to
support mutant compilationand running
tests.




TXL — as a prototyping mutation
engine
It is a generalized source-to-source translation

system.

It takes as input an piece of source code, and a
set of transformation.

It produces as output the transformed source
code.

Example:
— txl sourcel.c tranform_rule.txl



Semantic Mutation Operators

* Thirteen semantic mutation operators have
been implemented.

— ASD, MFC_R, FTA_F...

* 6 traditional mutation operators were also
implemented for conducting experiments to
compare traditional and semantic mutation
operators.

— SCRB, SSWM, SSDL ...



CHECK

* A unit testing framework for C.
* Checkis based on Autotools.

* Many advanced features: run in fork mode
(allow signal and early exit), test fixture,
multiple suites in one runner, looping tests,
test timeouts, determining test coverage, xml
logging etc.



Future work of SMT-C

Implement more semantic mutation operators.

Improve the GUI, better integration with C development
process.

Enhance mutant generation function: mutant management,
function scope mutation and efficiency.

Accelerate the mutation generation and testing processes.






