Semantic Mutation Testing

John A. Clark, Haitao Dan, Robert M Hierons

The 8th CREST Open Workshop, 27-10-2010



An example: cruise control

'y !
ON lever = reduce/ lever = increase/
reduce speed increase speed

()

[ no_vehicle in_front j

. break .
no vehicle i
_ N vehicle qu'mh = OFF
S educe speed y T i

C[ vehicle_in_front ]
) )

lever = reducel/ lever = increase/
reduce speed increase speedf.




Question

* What happensin no_vehicle in_frontif brake
and level=increase?

Iy )
ON lever = reduce/ lever = increase/
reduce speed increase speed

() ()

[ no_vehicle_in_front j

break .
no vehicle i
| N vehicle fwnch = OFF
reduce speed g 1 Jswiohof

SN,

lever = reduce/ lever = increase/
reduce speed increase Speed“,




Another question

* What happensin no_vehicle in_frontif a
vehicle is detected and level=increase?

reduce speed

()

p
ON lever = reduce/ lever = increase/

~

increase speed

()

[ no_vehicle_in_front j

no vehicle

[distance < critical)/
reduce speed

break _
. switch on
vehicle %
detected

switch off

L

C[ vehicle_in_front j

()

reduce speed

(L

lever = reduce/ lever = increase/

increase SpEEdJ_.

OFF



The problem

* Traditional mutation operators introduce
changes similar to ‘slips’.

* Sometimes a developer/user will make
semantic mistakes:

— They will misunderstand the semantics of part of
the language they are using



Semantic Mutation

* Adeveloper has been using language X with
semantics L and moves to X with semantics L.

e How do we find test data to find resultant
faults?



An alternative: switching between
programming languages

* Developer moves between two languages at
the same level of abstraction that have
different semantics for a common construct.

 Example:

— Logical connectives in C and Ada.
e Cuses short-circuit evaluation;

* Ada has alternatives (with and without short-circuit
evaluation)



Scenario: refinement/retrenchment

 Similar constructs can have different
semantics.

* Examples:

— integer division in Z and Ada

— retrenching infinite types (issues with precision,
bounds on the types)



A simple framework

We have a syntactic entity N in a language
with semantics L.

Traditional mutation operators transform (N, L)
to some (N’,L)

Semantic mutation operators transform (N, L)
to some (N,L’) [or maybe even (N’,U)]

They aim to find a different type of mistake.



Current status and future work

* Prototype tool being developed for C

* Some experiments being conducted to explore
nature of semantic mutants:

— How many are produced?

— How do they relate to traditional syntactic
mutants?

— What are good operators?
— Are there many trivial or equivalent mutants?

* More experiments



A Semantic Mutation Tool for C



GUI of SMT-C*

SMT - C =] [@][z2
File SMT Search
|- |¢-i- =B S
25 SMT Navigator 22 = O [u config.h  |&" Compare ('print_tokens2/mutants/LBC_|_1/print_tokens... 2| = 8| Mk SMT Mutant 23 =B
& - & C Compare & -
b "¢ print_tokens v € Translation Unit b "¢ print_tokens
< ¢ print_tokens2 |: O open_character_stream b "¢ print_tokens2 I:
I 4% Binaries I ®¢replace
b EH Archives P ®¢schedule
P = autométe.cache iE C Compare Viewer A Gk &3 B ||| b "cschedule2
P (= build-aux print_tokens2/muta...rc/print_tokensz2.c print_tokens2/muta...rc/print_tokens2.c | P " ¢ space
¥ [= mutants 38 if (fname == NULL) fp = s 38 if (fname == NULL) fp| b ®¢spacel
v =1BC | 1 39 else if ((fp = fopen (fna 39 else { | - BCiras
. 40 fprintf (stdout, "The 408 fprintf (stdout, [ 8
~ (= print_tokens?2 41 exit (0); 41 exit (0); < = mutants
P = autom4te.cache 42 } 42 } ~ = 0AAN_1
b = build-aux 43 else { 43 return (fp); v (=tcas
. 44 abort (); 44%
P = smtlib 45 } 45 = [ 5IC
¥ [=SIC 46 return (fp); 46char get char (fp) & tcas.c
b = .deps 3;} 3;{ character stream fp; b = OAAN 2
P = .libs a9rchar net rhar (fn) 49 rhar rh- E P (= OAAN_3 E
' B print_tokens2.q [>] (I » )
P lmb print_tokens2-f| | $aTest | =l Console = Properties R Result Analysis &2 & =0
Makefile
L& , Project: Live mutants: Killed mutants: Killed by:
[ Makefile.am 3
o 3 print_tokens SBRC 4 test_print_tokens.c:152:33
|y Makefile.in = - .
. ssDL 11 IMB 10 test_pnnt_tokens.c:152:9.
pﬂnt_tokensz SSDL_12 |MB_11 tect nrint ftnkanc £1572-11
b = tests ™ - - [ 2]
) || Mutant total: 484 Alive total: 38 Killed total: 446 Mutant score: 0.92

l¢| fprint_tokens2/mutants/LBC_|_1/print_tokens2/src/print_tokens2.c




GUI of Test Runner*

§4Test 82 El Console [ Properties R Result Analysis 4 ¢ Q@ R =
Runs: 12345/12345 8 Errors: 0 B Failures: 2200 |
< & Test Session [Runner: test kind??7] (| = Failure Trace 8
b &ic test_print_tokens2 H Q'../../..]..]../print_tokens2/tests/test_print_tokens2.c(153

v @ LBC | 1 test print_tokens2 Test output is not equal.
¢ test_print_tokens2
¢ test_print_tokens2
e=) test_print_tokens2

ei=] test_print_tokens2

‘E: [ UL ] [)l

*Running results of test suites and testcases: statistics
and the result for each test suite and testcase with
graphical highlight;

*Progress bar;

*Test error traces.



Mutant generation™

Mutant generation =
Select mutation elements and operators:
= ™€ print_tokens OP Name OP Description | 2
v = src [ ASD Additional semicolon delet
[ print_tokens.c [ LBC I Logic branch completion fi
< []™¢ print_tokens2 [] LBC C Logic branch completion f¢
< [J= src ] LEM_I Logic branch modification
] LBM_C Logic branch modification
b [1™C replace ] MFC_E Modification of float-point
b [1™¢ schedule [J MFC_R Modification of float-point
b [1™¢ schedule2 [] FTA_F Float-point truncating adju
b [I™¢ space [ FTA_T Float-point truncating adju
b []™¢ spacel [] DIA_F Division/modulus of interg
b ™€ tcas [ DAT Division/modulus of interg
b []™€ tot_info O MB Insert missing break
[ SBRC Break to continue
[1 SCRR Confinue to break ]
Select All l [ Deselect All l [ Select All l [ Deselect All l
-Please choose the scope for generate mutants:
[J Generate mutants for selected projects.
[] Generate mutants for selected files.
Generate mutants for each match expression of selected files.
[ Cancel l [ oK l

Mutantgeneration -- support three different scopes



N

sjuauoduwon
UoRoun 4

SJEUOS
Aued-payL

Tool Architecture

SMT
Console
Viewer

Mutant Mutant
generator Manager
a a

SMT
Test

Viewer

Test
unner

L L L] L

Autotools

Plug-ins

Mutant Result
Builder Analyser

L] L L] & L L] L

a o



Implementation Overview

* The tool is developed using Java and as Eclipse
plug-ins.
* [t also can be published as an independent

testing tool based on Rich Client Platform
(RCP) of Eclipse.

 For current version, TXL is used to drive the
semantic mutation and Check is used to
support mutant compilationand running
tests.




TXL — as a prototyping mutation
engine
It is a generalized source-to-source translation

system.

It takes as input an piece of source code, and a
set of transformation.

It produces as output the transformed source
code.

Example:
— txl sourcel.c tranform_rule.txl



Semantic Mutation Operators

* Thirteen semantic mutation operators have
been implemented.

— ASD, MFC_R, FTA_F...

* 6 traditional mutation operators were also
implemented for conducting experiments to
compare traditional and semantic mutation
operators.

— SCRB, SSWM, SSDL ...



CHECK

* A unit testing framework for C.
* Checkis based on Autotools.

* Many advanced features: run in fork mode
(allow signal and early exit), test fixture,
multiple suites in one runner, looping tests,
test timeouts, determining test coverage, xml
logging etc.



Future work of SMT-C

Implement more semantic mutation operators.

Improve the GUI, better integration with C development
process.

Enhance mutant generation function: mutant management,
function scope mutation and efficiency.

Accelerate the mutation generation and testing processes.






