
Semantic Mutation Testing

John A. Clark, Haitao Dan, Robert M Hierons

The 8th CREST Open Workshop, 27-10-2010

An example: cruise control

Question

• What happens in no_vehicle_in_front if brake
and level=increase?

Another question

• What happens in no_vehicle_in_front if a
vehicle is detected and level=increase?

The problem

• Traditional mutation operators introduce
changes similar to ‘slips’.

• Sometimes a developer/user will make
semantic mistakes:

– They will misunderstand the semantics of part of
the language they are using

Semantic Mutation

• A developer has been using language X with
semantics L and moves to X with semantics L’.

• How do we find test data to find resultant
faults?

An alternative: switching between
programming languages

• Developer moves between two languages at
the same level of abstraction that have
different semantics for a common construct.

• Example:

– Logical connectives in C and Ada.

• C uses short-circuit evaluation;

• Ada has alternatives (with and without short-circuit
evaluation)

Scenario: refinement/retrenchment

• Similar constructs can have different
semantics.

• Examples:

– integer division in Z and Ada

– retrenching infinite types (issues with precision,
bounds on the types)

 A simple framework

• We have a syntactic entity N in a language
with semantics L.

• Traditional mutation operators transform (N,L)
to some (N’,L)

• Semantic mutation operators transform (N,L)
to some (N,L’) *or maybe even (N’,L’)+

• They aim to find a different type of mistake.

Current status and future work

• Prototype tool being developed for C

• Some experiments being conducted to explore
nature of semantic mutants:
– How many are produced?

– How do they relate to traditional syntactic
mutants?

– What are good operators?

– Are there many trivial or equivalent mutants?

• More experiments

A Semantic Mutation Tool for C

GUI of SMT-C*

GUI of Test Runner*

•Running results of test suites and testcases: statistics
and the result for each test suite and testcase with
graphical highlight;
•Progress bar;
•Test error traces.

Mutant generation*

Mutant generation -- support three different scopes

Tool Architecture

Implementation Overview

• The tool is developed using Java and as Eclipse
plug-ins.

• It also can be published as an independent
testing tool based on Rich Client Platform
(RCP) of Eclipse.

• For current version, TXL is used to drive the
semantic mutation and Check is used to
support mutant compilation and running
tests.

TXL – as a prototyping mutation
engine

• It is a generalized source-to-source translation
system.

• It takes as input an piece of source code, and a
set of transformation.

• It produces as output the transformed source
code.

• Example:

– txl source1.c tranform_rule.txl

Semantic Mutation Operators

• Thirteen semantic mutation operators have
been implemented.

– ASD, MFC_R, FTA_F…

• 6 traditional mutation operators were also
implemented for conducting experiments to
compare traditional and semantic mutation
operators.

– SCRB, SSWM, SSDL …

CHECK

• A unit testing framework for C.

• Check is based on Autotools.

• Many advanced features: run in fork mode
(allow signal and early exit), test fixture,
multiple suites in one runner, looping tests,
test timeouts, determining test coverage, xml
logging etc.

Future work of SMT-C

• Implement more semantic mutation operators.

• Improve the GUI, better integration with C development
process.

• Enhance mutant generation function: mutant management,
function scope mutation and efficiency.

• Accelerate the mutation generation and testing processes.

?

