Milu: A Higher Order Mutation

Testing Tool
Yue Jia
University College London
Joint work with Mark Harman and William Langdon c R E S T

Agenda

Why Higher Order Mutation Testing?
Search for interesting HOMs

Milu mutation testing tool

Scalability and Extendability

Performance Study

Mutation Testing

First Order Mutants : A single change
Simple faults / FOMs

Higher Order Mutant : Multiple changes

Multiple faults / HOMs

Mutation Testing

Subset of First Order
Mutants are used

No Higher Order
Mutants at all!

Mutation Test

ing

)
-
O
s

(Vg
=
Ll
o

O
s

)

(Vg
@

-
V)

O
)
(Vg
=)
()
e
(qv]
(Vg
s
G
(q°]
=
-
>

e
U
=
u
O
-
)
(o
.90
2
O
Z

Mutants at all!

Higher Order Mutation Testing

The space of all mutants (first
and higher order) is a search
space,

We should apply search based
optimisation techniques to find
mutants that are fit for purpose.

Higher Order Mutation Testing

Search for a small set of highly fit mutants
within an enormous space, rather than to
enumerate a complete set.

Tabu Search Particle Swarm Optimization

Ant Colonies

Hill Climbing Genetic Algorithms
Genetic Programming
Simulated Annealing G L p Random

Estimation of Distribution Algorithms

Higher Order Mutation Testing

Search for a small set of highly fit mutants
within an enormous space, rather than to
enumerate a complete set.

Tabu Search Particle Swarm Optimization

Ant Colonies

Hill Climbing Genetic Algorithms
Genetic Programming
Simulated Annealing G P Random

Estimation of Distribution Algorithms

Higher Order Mutation Testing

Search for a small set of highly fit mutants
within an enormous space, rather than to
enumerate a complete set.

Tabu Search Particle Swarm Optimization

Ant Colonies

Hill Climbing Genetic Algorithms
Genetic Programming
Simulated Annealing G P Random

Estimation of Distribution Algorithms

Interesting HOMs

Most common case

FOM a is killed by Test set T
(1,2,3,4)

Interesting HOMs

Most common case

FOM a is killed by Test set T
{(1,2,3,4}

FOM b is killed by
{3,4,56}

Interesting HOMs

Most common case

FOM a is killed by Test set T
{1,2,3,4) Yo

FOM b is killed by (, | : ~
{3,4,56)

HOM ab is killed by J : °
{1,2,3,4,5, 6} - 6/

Interesting HOMs

Subsuming HOM

FOM a is killed by Test set T
{(1,2,3,4}

FOM b is killed by
{3,4,56}

HOM ab is killed by
{2, 3, 5}

Interesting HOMs

Strongly Subsuming HOM

FOM a is killed by © TestsetT
{1,2,3,4}

FOM b is killed by
{3,4,56}
HOM ab is killed by ‘

{3}

Interesting HOMs

Anti Coupling Effect HOM

FOM a is killed by © TestsetT
{1,2,3,4}

FOM b is killed by
{3,4,56}
HOM ab is killed by ‘

{7} 7

Interesting HOMs

Equivalent HOM

FOM a is killed by © TestsetT
{1,2,3,4}

FOM b is killed by
{3,4,56}
HOM ab is killed by ‘

{}

Milu

Strong mutation
First and Higher Order Mutants

For C program

[©]
©

@
0

©
@
B @@ @
O] @

Test harness

Milu

Data Representation

Index
Position

Milu

Data Representation

Index
Position

110l 0l0

Milu

Data Representation

Index
Position

Milu

Data Representation

Index
Position

Milu

Data Representation

Index
Position

1{ol2]o0 Mutation |d

Milu

Data Representation

Index
Position

1{ol2]o0 Mutation |d

Milu
Limitations

Cannot scale up

Hard to extend

Solutions

Implement the mutation component
as a pass into GCC

GCC Internal

Front End Middle End Back End

C

C++

GENERIC GIMPLE RTL Assembly
Java

Fortran

Gimple

SIMPLE IR of McCat compiler

3 address representation
Control flow lowering

Cleanups and simplification

Gimple
tl = a + b;
t2 = foo (El =)
i (fco (a + b, c)) 1f (2 !=0)
c = b++ /a ; {
return c t3 =b
e— b =Db+ 1
c = E3 /a

return c

Implementation

typedef void (*plugin callback func)
(void *gcc data, void *user data);

struct register pass info

struct opt pass *pass;

const char *reference pass name;
int ref pass instance number;
enum pass positionling Ops poOs Op;

}:

Advantages

Supports all major languages: C, C++, Java,
Fortran 95,Ada, Objective-C, Objective-C++,
Go, etc

Large number of platforms

Demo

Step 4: Check mutants

Name

| mut_0

‘mut_1

| mut_2
mut_3
mut_4
mut_5
mut_6
mut_7
mut_8
mut_9
mut_10
mut_11
mut_12
mut_13
mut_14
mut_15
mut_16
mut_17

Type
'STRP
'OAAN
' OAAN
OAAN
OAAN
OALN
OALN
OARN
OARN
OARN
OARN
OARN
OARN
STRP
OEBA
OEBA

File
tcas.c
tys.c
‘tcas.c.

tcas.c

tcas.c
tcas.c
tcas.c
‘tcas.c
tcas.c
tcas.c
tcas.c
tcas.c
tcas.c
tcas.c
tcas.c
tcas.c
OEBA ftcas.c
ORRN tcas.c

|

'Function

AUM
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Inhibit_Bia
Non_Cross
Non_Cross
Non_Cross
Non_Cross

2]

v]

Generated 181 mutants

Mutant

int
Inhibit_Biased Climb ()
{
return (Climb_Inhibit ? Up_Separation - 100 : Up_Separation);
}

bool
Non_Crossing_Biased _Climb ()
{

int upward_preferred;
e cumassedl _craccioe _cidasEion

L<]

Original

[2]

int
Inhibit_Biased Climb ()
{
retumn (Climb_Inhibit ? Up_Separation + 100 : Up_Separation);

}

bool
Non_Crossing_Biased _Climb ()

{

int upward_preferred,;
BTN ST PEERS B ST S,

] |
|

 Save &Exit Run Test

(e] T[]

B

*h__‘

u

Mutation Score: 0.303867 (11 test cases, 181 mutants)

Name | Type | KillingTcs ~ || Test :"ittf
- : ----tes
mut_142 OEBA 8 {{u
mut_143 OEBA '8 testl ()
mut 149 OEBA 3 { .

Cur_Vertical_Sep = 958;
mut_150 OEBA 3 High_Confidence = 1;
mut_151 OLLN 3 Two_of Three Reports Valid = 1;

Own_Tracked Alt = 2597;
m RRN - — '
. Ut-looz = ¢2 Own_Tracked_Alt_Rate = 574;
‘mut_102 ORRN 2 Other_Tracked Alt = 4253;
mut 116 ORRN 2 Alt_Layer Value = 0;
mut-117 ORRN B b LIn_Senaraftinn_ = _3949- E]
mut_154 OEBA 2 Mutant Original
mut_155 OEBA 2 bool [~}
mut 156 OLLN 2 Own_Above Threat ()
mut 24 OEBA 1 retum (Other Tracked Alt >= Own_Tracked_Alt);
mut 25 OEBA 1 }
mut 27 OLIN -1 i
mut_28 ORRN '1 a|t_sep_test () 3
mut_ 30 ORRN 1 { 1
mut 31 ORRN 1 bool enabled, tcas_equipped, intent_not_known; ©
| st 26 ncpA i3 [v] l Il [>]
55 mutants are killed and 126 mutants are surviving l s Quit H Save

Performance
Test set
Mutant]
Source N

\ 11 Mutant /
Source

Binary

Mutant Mutant

Source . Test set
Source || Binary

]00-300 Loc, 1000 mutants, 100 test

/L EEs | min 5-10mins
Binary Injection
Gimple —_—

MSG e

Test harness e

Conclusion

GCC Pass / Plugin

Mutating real world program
Multiple language mutation

Multiple platform

nttp://gcc.gnu.org/onlinedocs/gccint/Plugins.html

nttp://www.int.kcl.ac.uk/pg/jiayue/milu/

http://gcc.gnu.org/onlinedocs/gccint/Plugins.html
http://gcc.gnu.org/onlinedocs/gccint/Plugins.html
http://www.inf.kcl.ac.uk/pg/jiayue/milu/
http://www.inf.kcl.ac.uk/pg/jiayue/milu/

