- -

AQUA: An Automated Tool for
Quantifying Leakage in C Programs

Jonathan Heusser
Pasquale Malacaria

{j onat hanh, pmt@ics. gqnul . ac. uk

-

ftatic int
authl_process_rhosts_rsa(Authctxt *authctxt, char *info, size_t infolen)

{

Where we aim to be

int keybits, authenticated = 0;
u_int bits;

Key fclient_host_key|

u_int ulen;

/*
* Get client user name. Note that we just have to
* trust the client; root on the client machine can
* claim to be any user.

client_user = packet_get_string(&ulen);

/* Get the client host key. */
client_host_key = key_new(KEY_RSAL);

bits

= packet_get_int();

packet_get_bignum(client_host_key->rsa->e);
packet_get_bignum(client_host_key->rsa->n);

keybits = BN_num_bits(client_host_key->rsa->n);
. © (keybits < @ || bits != (u_int)keybits) {

}

verbose("Warning: keysize mismatch for client_host_key:

"actual %d, announced %d",
BN_num_bits(client_host_key->rsa->n), bits);

packet_check_eom();

-

-

AOUA: An Automated Tool for OQuantifvina Leakaade in C Proarams — n. 2/2

Secure Programs — Non-Interference

N .

A program is secure iff output observations do not depend
on any confidential inputs to the program P.

Such a program is said to be non-interfering.

Joshi and Leino gave a semantic definition of secure
iInformation flow for a program P:

HH, P, HH = P; HH

where HH assigns arbitrary value to high h. Thus: only
observing the low variables the program should evaluate to
the same result no matter what & Is assignhed to.

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 3/2

Violating Non-Interference — Leakage

-

Almost every program violates non-interference the
guestion Is just by how much?

=

HH P, HH = P; HH

Violation of NI is a distinction you can make on the output
for different high inputs.

For example if P(h) = h % 4 then
P(16) = 0 # P(15) = 3

Our aim: quantify the amount of violations of NI — i.e. the
Inference of the input given the outputs

o -

AOUA: An Automated Tool for Ouantifvina Leakaae in C Proarams — p. 4/2

Expanded Example

-

Assume his4 bit(1...16). P(h) = h % 4

4 distinctions in the output for 16 input values.
For output 0 what can be learned about the input? It is one

of {4,8,12,16} out of 16 possible values, i.e. 1.

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — nD. 5/2

Expanded Example

-

Assume his4 bit(1...16). P(h) = h % 4

A sensible measure for the information content of an

outcome Is

I(p) = 1og2<]%>

Intuitively, the smaller the probability p the larger the
Linformation content. In this case: (1) = log,(4) = 2 bit J

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 5/2

Expanded Example

-

Assume his4 bit(1...16). P(h) = h % 4

NG e

The information content over all outputs is expressed as
expected value E[I(P)]

o

Expanded Example

-

Assume his4 bit(1...16). P(h) = h % 4

The information content over all outputs is expressed as
expected value E[I(P)]

Zpl Zplogz

Welighted information content, what IS called Shannon

LEntropy J

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 5/2

Expanded Example

-

Assume his4 bit(1...16). P(h) = h % 4

The information content over all outputs is expressed as
expected value E[I(P)]

1 1 :
ZplogQ(];) =4 7 logy(4) = 2 bit

Characterisation of preimage of P(H which partitions the
high inputs. J

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — nD. 5/2

Quantifying Leakage and Partitions

-

Leakage: uncertainty about the inputs after observing the
outputs of a program

=

Measured using Shannon Entropy using the following steps
1. Take some code P(h) = h %4

o -

AOUA: An Automated Tool for Ouantifvina Leakaae in C Proarams — p. 6/2

Quantifying Leakage and Partitions

-

Leakage: uncertainty about the inputs after observing the
outputs of a program

=

Measured using Shannon Entropy using the following steps
1. Take some code P(h) = h %4
2. Find partition on high inputs

o -

AOUA: An Automated Tool for Ouantifvina Leakaae in C Proarams — p. 6/2

Quantifying Leakage and Partitions

-

Leakage: uncertainty about the inputs after observing the
outputs of a program

=

Measured using Shannon Entropy using the following steps
1. Take some code P(h) = h %4
2. Find partition on high inputs

3. Quantify using Entropy

ZPIOQ;Q(%)
o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 6/2

From Programs to Partitions

s .

Iven a partition and input probability distribution,
guantification is simple. Just plug-in your measure.

More difficult is to get the partition for a program:
11 : Program — Partition

Tool to calculate TI(P) for subset of ANSI-C programs.

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 7/2

Automatically Calculating I1(P)

W .

ith 2 bit pi n,
P=i1f(pin==4) ok else ko

Partition defined by number and sizes of equivalence
classes

o -

Automatically Calculating I1(P)

W .

ith 2 bit pi n,
P=i1f(pin==4) ok else ko

Partition defined by number and sizes of equivalence
classes

Two step approach:
Find a representative input for each possible output
For each found input, count how many other inputs lead

L to the same output J

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 8/2

Self-Composition and Reachabillity

. .

he original NI check:
HH, P, HH = P; HH

Program P appears twice, i.e. NI violation is detected by
observing two execution paths in P.

Self-Composition and Reachabillity
- o

he original NI check:
HH, P, HH = P; HH

Program P appears twice, i.e. NI violation is detected by
observing two execution paths in P.

NI definition is a 2-safety property: can be refuted
observing two finite program runs, can be checked using

reachability analysis
h=a; h'=g; P, P; if(l #1) { Nl _ERROR }

Approach called self-composition by Barthe et al.

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 9/2

Automatically Calculating I1(P)
-

Create two instances P, and P- out of P applying
self-composition, inputs are h, »’ and ouputs [, !’

=

P.(i) = h=i;P;P';assert(l #1)
P_(i) = h=1;P;P;assert(l1=1")

translated to SAT queries for SAT solving and model
counting.

P responsible for finding set of representative inputs S;,,us
with unique outputs (I # ')

P— model counts every element of S;,pu:

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 10/2

Algorithm for P, by example
f P=i1f(h==4) 0 else 1 T

Input: P

Output: Sinput

Sinput — 0

h < random

Sinput — Sinput U {h}
while P.(h) notunsat do
(I,h') < Run SAT solver on P,(h)
Sinput — Sz'nput U {h/}
h«— R

P;,g — P7,g NI #1

end

Sinput = 10,4} thus P has two equivalence classes

Sinput 1S INPUt to the algorithm for P

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 11/2

Algorithm for P_ by example
f P=i1f(h==4) 0 else 1 T

znput {O 4}

Input: P—, Sinput

Output: M

M=

while Sipput 7 0 do

h+« se¢ Smput

#models < Run allSAT solver on P_(h)
M = M U {#models}

Sinput — Sz'nput \ {3}

end

Partition for program P is M = {1 model}{3 models}

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — n. 12/

Demo

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 13/

Implementation: AQuA

Main features & constraints

CBMC

Const ® runs on subset of ANSI-C,

aints

<5

- without memory alloc, only
integer secrets, no interactive
- input
' # no annotations needed except

cmdline options

#® supports non-linear arithmetic
and integer overflows

partiion # Tool chain: CBMC, Spear,
RelSat, C2D

Computation easily distributed J

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 14/

Loops and Soundness

=

fBounded loop unrolling is a source of unsoundness: not all
possible behaviours are considered.

| =0; while(l <h) {I|++ }

Y
1=0; if(l <h) {1I++ if(l <h) {1+

All untreated inputs end up in a “sink state”.
Program above with 4 bit variables and 2 unrollings

generates partition: {1}{1}{14}

Entropy can be over-approximated by distributing the sink
state into singletons: {1}{1}{1}...{1}

N

14x

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 15/

From C to SPEAR

fint mai n() { T
I nt hl, h2, h3,1;
| = hl+h2+h3;
}

CBMC translates C to SSA constraints
tnmpll == (h110 + h210)
| 11 == (h310 + tnpll)

For loops are unrolled completely, while loops up to user
defined iteration.

CBMC Is not used for model checking here!

LGenerate P by translating intermediate language above J

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 16/2

© ©O ©C OO

o O 0O 0O O -

P, In Spear Format

11 :i12 tnpll :i12 111:i12 tnpll:i12 ...

I

= h310 0:112 # secret Initialisations
= h210 0:1 12

= h110 0:1 12

ule h310 5:112 # constrai ning domain
ule h310_ 5:112

tmpll + h110 h210 # self conposed program
| 11 + h310 tnpll

tnmpll + h110__ h210

|11+ h310_ tnpll

/=111 111

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proaral

ms —

=

-

D. 17/2

P, In Spear Format

11 :i12 tnpll :i12 111:i12 tnpll:i12 ..:_T

I
P = h310 0:112 # secret initialisations
p = h210 0:112
p = h11l0 0:112
p ule h310 5:112 # constrai ni ng domai n
p ule h310 5:112
c tnpll + hl1ll0 h210 # self conposed program
c 111 + h310 tnpll
c tnmpll + h110_ h210
c 111+ h310 tnpll
p /=111 111

model found:
h110 =5, h210 =5, h310_ =5, 111 =15

. -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — n. 18/

P, In Spear Format

11 :i12 tnpll :i12 111:i12 tnpll:i12 ..:_T

I
P = h310 5:112 # secret initialisations
p = h210 5:112
p = h11l0 5:112
p ule h310 5:112 # constrai ni ng domai n
p ule h310 5:112
c tnpll + hl1l1l0 h210 # self conposed program
c 111 + h310 tnpll
c tnmpll + h110_ h210
c 111+ h310 tnpll
p /=111 111

blocking clauses to not find same solutions again
p /=111 15:i112

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — n. 19/

P_ In Spear Format

11 :i12 tnpll :i12 111:i12 tnpll:i12 ..:_T

I
P = h310 ?:112 # secret initialisations
p = h210 ?7:112
p = h11l0 ?7:112
p ule h310 5:112 # constrai ni ng domai n
p ule h310 5:112
c tnpll + hl1l1l0 h210 # self conposed program
c 111 + h310 tnpll
c tnmpll + h110_ h210
c 111+ h310 tnpll
p =111 |11

translated to CNF and fed to model counters (relsat, c2d)

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — n. 20/2

Estimating Entropy

. -

omplete enumeration via P, is not needed to calculate the
entropy approximatively

Idea: only “sample” n equivalence classes through P.. Use

the partial representation of partition to estimate entropy of
the whole secret space.

Normal sampling: {...1...}{...1...}{...2... }---

Sampling equivalence classes: {5}{5}{6}

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 21/

Estimating Entropy

- .

Example: Sample S with 3 equivalence classes to get the
partition on an input space of 7 bit (128 unigque inputs).

5 o 6
128 1287 128

19115116} ()

Intuition: Estimate remaining number of equivalence
classes proportional to the sample S and distribute
remaining inputs equally.

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — p. 21/

Estimating Entropy

- .

Example: Sample S with 3 equivalence classes to get the
partition on an input space of 7 bit (128 unigque inputs).

CHHO (i T T

Intuition: Estimate remaining number of equivalence
classes proportional to the sample S and distribute

remaining inputs equally.

9+95+6 __ 1
3 eq. classes sampled with coverage 5~ = g

Remaining £ ¢ of inputs (112) will be splitin 7+ 3 = 21
equivalence classes — CRC8 demo.

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — n. 21/

Conclusions

- .

Automated tool built on SAT solving and model counting
to calculate entropy

Entropy estimators can improve performance
significantly for certain programs

o -

AOUA: An Automated Tool for OQuantifvina Leakaae in C Proarams — n. 22/

	Where we aim to be
	Secure Programs -- Non-Interference
	large Violating Non-Interference $
ightarrow $ Leakage
	Expanded Example
	Expanded Example
	Expanded Example
	Expanded Example
	Expanded Example

	Quantifying Leakage and Partitions
	Quantifying Leakage and Partitions
	Quantifying Leakage and Partitions

		extbf {From Programs to Partitions}
		extbf {Automatically Calculating $Pi (P)$}
		extbf {Automatically Calculating $Pi (P)$}

	Self-Composition and Reachability
	Self-Composition and Reachability

		extbf {Automatically Calculating $Pi (P)$}
		extbf {Algorithm for $P_{
ot =}$ by example}
		extbf {Algorithm for $P_{=}$ by example}
		extbf {Demo}
		extbf {Implementation: {sc AQuA}}
	Loops and Soundness
		extbf {From C to {sc Spear}}
		extbf {$P_{
ot =}$ in {sc Spear} Format}
		extbf {$P_{
ot =}$ in {sc Spear} Format}
		extbf {$P_{
ot =}$ in {sc Spear} Format}
		extbf {$P_{=}$ in {sc Spear} Format}
	{large 	extbf {Estimating Entropy}}
	{large 	extbf {Estimating Entropy}}
	{large 	extbf {Estimating Entropy}}

		extbf {Conclusions}

