
AQUA: An Automated Tool for
Quantifying Leakage in C Programs

Jonathan Heusser

Pasquale Malacaria

{jonathanh,pm}@dcs.qmul.ac.uk

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 1/22

Where we aim to be

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 2/22

Secure Programs – Non-Interference

A program is secure iff output observations do not depend
on any confidential inputs to the program P .

Such a program is said to be non-interfering.

Joshi and Leino gave a semantic definition of secure
information flow for a program P :

HH; P; HH = P; HH

where HH assigns arbitrary value to high h. Thus: only
observing the low variables the program should evaluate to
the same result no matter what h is assigned to.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 3/22

Violating Non-Interference→ Leakage

Almost every program violates non-interference the
question is just by how much?

HH; P; HH = P; HH

Violation of NI is a distinction you can make on the output
for different high inputs.

For example if P(h) = h % 4 then

P(16) = 0 6= P(15) = 3

Our aim: quantify the amount of violations of NI – i.e. the
inference of the input given the outputs

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 4/22

Expanded Example

Assume h is 4 bit (1 . . . 16). P(h) = h % 4

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

0 1 2 3

4 distinctions in the output for 16 input values.
For output 0 what can be learned about the input? It is one
of {4, 8, 12, 16} out of 16 possible values, i.e. 1

4
.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 5/22

Expanded Example

Assume h is 4 bit (1 . . . 16). P(h) = h % 4

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

0 1 2 3

A sensible measure for the information content of an
outcome is

I(p) = log2(
1

p
)

Intuitively, the smaller the probability p the larger the
information content. In this case: I(1

4
) = log2(4) = 2 bit

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 5/22

Expanded Example

Assume h is 4 bit (1 . . . 16). P(h) = h % 4

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

0 1 2 3

The information content over all outputs is expressed as
expected value E[I(P)]

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 5/22

Expanded Example

Assume h is 4 bit (1 . . . 16). P(h) = h % 4

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

0 1 2 3

The information content over all outputs is expressed as
expected value E[I(P)]

E[I(P)] =
∑

p I(
1

p
) =

∑

p log2(
1

p
)

Weighted information content, what is called Shannon
Entropy.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 5/22

Expanded Example

Assume h is 4 bit (1 . . . 16). P(h) = h % 4

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

0 1 2 3

The information content over all outputs is expressed as
expected value E[I(P)]

∑

p log2(
1

p
) = 4

1

4
log2(4) = 2 bit

Characterisation of preimage of P(H) which partitions the
high inputs.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 5/22

Quantifying Leakage and Partitions

Leakage: uncertainty about the inputs after observing the
outputs of a program

Measured using Shannon Entropy using the following steps

1. Take some code P(h) = h % 4

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 6/22

Quantifying Leakage and Partitions

Leakage: uncertainty about the inputs after observing the
outputs of a program

Measured using Shannon Entropy using the following steps

1. Take some code P(h) = h % 4

2. Find partition on high inputs

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 6/22

Quantifying Leakage and Partitions

Leakage: uncertainty about the inputs after observing the
outputs of a program

Measured using Shannon Entropy using the following steps

1. Take some code P(h) = h % 4

2. Find partition on high inputs

4,8,12,16 1,5,9,13 2,6,10,14 3,7,11,15

3. Quantify using Entropy

∑

p log2(
1

p
)

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 6/22

From Programs to Partitions

Given a partition and input probability distribution,
quantification is simple. Just plug-in your measure.

More difficult is to get the partition for a program:
Π : Program→ Partition

Tool to calculate Π(P) for subset of ANSI-C programs.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 7/22

Automatically Calculating Π(P)

With 2 bit pin,
P ≡ if(pin==4) ok else ko

4 1 2 3

Partition defined by number and sizes of equivalence
classes

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 8/22

Automatically Calculating Π(P)

With 2 bit pin,
P ≡ if(pin==4) ok else ko

4 1 2 3

Partition defined by number and sizes of equivalence
classes

Two step approach:

Find a representative input for each possible output

For each found input, count how many other inputs lead
to the same output

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 8/22

Self-Composition and Reachability

The original NI check:

HH; P; HH = P; HH

Program P appears twice, i.e. NI violation is detected by
observing two execution paths in P.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 9/22

Self-Composition and Reachability

The original NI check:

HH; P; HH = P; HH

Program P appears twice, i.e. NI violation is detected by
observing two execution paths in P.

NI definition is a 2-safety property: can be refuted
observing two finite program runs, can be checked using
reachability analysis

h=α; h’=β; P; P’; if(l 6= l’) { NI ERROR }

Approach called self-composition by Barthe et al.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 9/22

Automatically Calculating Π(P)

Create two instances P6= and P= out of P applying
self-composition, inputs are h, h′ and ouputs l, l′

P6=(i) ≡ h = i;P ;P ′; assert(l 6= l
′)

P=(i) ≡ h = i;P ;P ′; assert(l = l
′)

translated to SAT queries for SAT solving and model
counting.

P6= responsible for finding set of representative inputs Sinput

with unique outputs (l 6= l′)

P= model counts every element of Sinput

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 10/22

Algorithm for P6= by example

P ≡ if(h==4) 0 else 1
Input: P6=

Output: Sinput

Sinput ← ∅
h← random

Sinput ← Sinput ∪ {h}

while P6=(h) not unsat do
(l, h′)← Run SAT solver on P6=(h)

Sinput ← Sinput ∪ {h
′}

h← h′

P6= ← P6= ∧ l′ 6= l

end

Sinput = {0, 4} thus P has two equivalence classes

Sinput is input to the algorithm for P=

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 11/22

Algorithm for P= by example

P ≡ if(h==4) 0 else 1
Sinput = {0, 4}

Input: P=, Sinput

Output: M

M = ∅
while Sinput 6= ∅ do

h← s ∈ Sinput

#models← Run allSAT solver on P=(h)
M = M ∪ {#models}
Sinput ← Sinput \ {s}

end

Partition for program P is M = {1 model}{3 models}

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 12/22

Demo

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 13/22

Implementation: AQUA

Constr
aints

Self-
Comp

Spear
Format

C

SAT

S_input

#SAT

Partition

CBMC

Optimisations

Language
translation

P!= P
=

Main features & constraints

runs on subset of ANSI-C,
without memory alloc, only
integer secrets, no interactive
input

no annotations needed except
cmdline options

supports non-linear arithmetic
and integer overflows

Tool chain: CBMC, Spear,
RelSat, C2D

Computation easily distributed

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 14/22

Loops and Soundness

Bounded loop unrolling is a source of unsoundness: not all
possible behaviours are considered.

l=0; while(l < h) { l++; }
⇓

l=0; if(l < h) { l++; if(l < h) { l++; . . .

All untreated inputs end up in a “sink state”.
Program above with 4 bit variables and 2 unrollings
generates partition: {1}{1}{14}

Entropy can be over-approximated by distributing the sink
state into singletons: {1}{1} {1} . . . {1}

︸ ︷︷ ︸

14x

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 15/22

From C to SPEAR

int main() {
int h1,h2,h3,l;
l = h1+h2+h3;

}

CBMC translates C to SSA constraints
tmp11 == (h110 + h210)
l11 == (h310 + tmp11)

For loops are unrolled completely, while loops up to user
defined iteration.
CBMC is not used for model checking here!

Generate P6= by translating intermediate language above

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 16/22

P6= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 0:i12 # secret initialisations
p = h210 0:i12
p = h110 0:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p /= l11__ l11

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 17/22

P6= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 0:i12 # secret initialisations
p = h210 0:i12
p = h110 0:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p /= l11__ l11
model found:
h110__=5, h210__=5, h310__=5, l11__=15

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 18/22

P6= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 5:i12 # secret initialisations
p = h210 5:i12
p = h110 5:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p /= l11__ l11
blocking clauses to not find same solutions again
p /= l11__ 15:i12

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 19/22

P= in SPEAR Format

d l11__:i12 tmp11__:i12 l11:i12 tmp11:i12 ...
p = h310 ?:i12 # secret initialisations
p = h210 ?:i12
p = h110 ?:i12
p ule h310 5:i12 # constraining domain
p ule h310__ 5:i12
..
c tmp11 + h110 h210 # self composed program
c l11 + h310 tmp11
c tmp11__ + h110__ h210__
c l11__ + h310__ tmp11__
p = l11__ l11

translated to CNF and fed to model counters (relsat, c2d)

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 20/22

Estimating Entropy

Complete enumeration via P6= is not needed to calculate the
entropy approximatively

Idea: only “sample" n equivalence classes through P6=. Use
the partial representation of partition to estimate entropy of
the whole secret space.

Normal sampling: {. . . 1 . . . }{. . . 1 . . . }{. . . 2 . . . } · · ·

Sampling equivalence classes: {5}{5}{6}

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 21/22

Estimating Entropy

Example: Sample S with 3 equivalence classes to get the
partition on an input space of 7 bit (128 unique inputs).

{5}{5}{6} (
5

128
,

5

128
,

6

128
)

Intuition: Estimate remaining number of equivalence
classes proportional to the sample S and distribute
remaining inputs equally.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 21/22

Estimating Entropy

Example: Sample S with 3 equivalence classes to get the
partition on an input space of 7 bit (128 unique inputs).

{5}{5}{6} (
5

128
,

5

128
,

6

128
)

Intuition: Estimate remaining number of equivalence
classes proportional to the sample S and distribute
remaining inputs equally.

3 eq. classes sampled with coverage 5+5+6

128
= 1

8

Remaining 7

8
of inputs (112) will be split in 7 ∗ 3 = 21

equivalence classes→ CRC8 demo.

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 21/22

Conclusions

Automated tool built on SAT solving and model counting
to calculate entropy

Entropy estimators can improve performance
significantly for certain programs

AQUA: An Automated Tool for Quantifying Leakage in C Programs – p. 22/22

	Where we aim to be
	Secure Programs -- Non-Interference
	large Violating Non-Interference $ightarrow $ Leakage
	Expanded Example
	Expanded Example
	Expanded Example
	Expanded Example
	Expanded Example

	Quantifying Leakage and Partitions
	Quantifying Leakage and Partitions
	Quantifying Leakage and Partitions

		extbf {From Programs to Partitions}
		extbf {Automatically Calculating $Pi (P)$}
		extbf {Automatically Calculating $Pi (P)$}

	Self-Composition and Reachability
	Self-Composition and Reachability

		extbf {Automatically Calculating $Pi (P)$}
		extbf {Algorithm for $P_{
ot =}$ by example}
		extbf {Algorithm for $P_{=}$ by example}
		extbf {Demo}
		extbf {Implementation: {sc AQuA}}
	Loops and Soundness
		extbf {From C to {sc Spear}}
		extbf {$P_{
ot =}$ in {sc Spear} Format}
		extbf {$P_{
ot =}$ in {sc Spear} Format}
		extbf {$P_{
ot =}$ in {sc Spear} Format}
		extbf {$P_{=}$ in {sc Spear} Format}
	{large 	extbf {Estimating Entropy}}
	{large 	extbf {Estimating Entropy}}
	{large 	extbf {Estimating Entropy}}

		extbf {Conclusions}

