A Semiring-based Trace Semantics for Processes

David Clark

26 May 2010

David Clark A Semiring-based Trace Semantics for Processes

- Motivated by a desire to find a syntax directed leakage analysis for process languages
- Joint work with Michele Boreale (Florence) and Daniele Gorla (Rome)

A B > A B >

Consider a discrete-time, non-deterministic system

High events

- updates of high variables under the control of a secret scheduler
- not directly observable from outside

Low events

- other events are observable
- e,g, certain variables, input/output actions, file accesses
- not under control of the secret scheduler
- may have prescribed or known non-deterministic or probabilistic behaviour

∃ ▶ ∢

Attacker

- An attacker has constraints and abilities
- able to observe only at prescribed times, e.g. at termination
- can repeatedly execute the system and make more observations
- high scheduler remains the same between executions

∃ ▶ ∢

- Combine a sequence of consecutive observations
 - e.g. o_1, o_2, o_3 , results into a combined observation,

 $o = o_1 \star o_2 \star o_3$

- only o may be available to the attacker
- Combine observations arising from repeated executions of the system into a global observation
 - e.g. $o_1 \star o_2$ and $o_3 \star o_4$, into a global observation $(o_1 \star o_2) + (o_3 \star o_4)$

→ □ → → □ →

- sequence of high events, π , corresponds to a global observation o
- we call this mapping $\mathcal{L}(P)$
- $\mathcal{L}(P)$ can be deduced from P's specification
- from o and $\mathcal{L}(P)$ attacker can deduce information about π
- e.g. does $\pi \in (\mathcal{L}(P))^{-1}(o)$?

An example of $\mathcal{L}(P)$

$\mathcal{L}(P)$ as a mapping $\mathcal{L}(P)(h) = [I \mapsto 1]$ and $\mathcal{L}(P)(h') = [I'I'' \mapsto \frac{3}{4}, I \mapsto \frac{1}{4}]$

≣ ▶

- designer constructs system specification, assesses the security
- central object of interest is $\mathcal{L}(P)$
- system is secure if $\mathcal{L}(P)$ is a constant function
- related to non-deducibility on strategies [Wittbold and Johnson 1990]
- at least minimise the number of partitions of high sequences induced by $(\mathcal{L}(P))^{-1}$
- may want to perform quantitative measures relating to tolerable flow quantity thresholds
- designer must be able to generate L(P) and reason about it, preferably in a compositional, syntax-driven way

御 と く ほ と く ほ と

- observable events are elements of a semiring S, whose product and sum correspond to the ★ and + operations
- a set of unobservable, high-events H is assumed
- the security significant behaviour of the system, $\mathcal{L}(P)$, is then a mapping from H^* to \mathbb{S}
- this is called a formal power series (FPS) on H and \mathbb{S}

- provide a simple process calculus to specify systems
- give the language a semantics in terms of Moore Automata
- characterise the semantic mapping L(·) in terms of the unique homomorphism from this calculus into the set of formal power series seen as a final coalgebra [c.f. Rutten]
- provide a compositional semantics of the calculus in terms of rational operators on FPS's, defined via behavioural differential equations (BDE's) [Rutten again]
- show that the final and the compositional semantics coincide

• • = • • = •

- the final semantics allows for reasoning proving equivalences – on systems by co-induction
- the compositional semantics, the BDE's, can be used for step-wise, syntax-driven generation of the behaviours L(P), for any P

4 B K 4 B K

Definition of a Semiring

a semiring S is a tuple $(S, +, \times, 0, 1)$ such that (S, +, 0) is a commutative monoid, $(S, \times, 1)$ is a monoid, \times distributes over + both on the left and on the right, and 0 annihilates both on the left and on the right (i.e., $0 \times o = o \times 0 = 0$ for each $o \in S$)

- A semiring is a ring without additive inverses
- \bullet examples include natural numbers, $\mathbb N,$ the nonnegative reals $\mathbb R^+$
- simplest possible semiring is \mathbb{B} , obtained by taking $S = \{0, 1\}$ and + and \times to be the sum and product of booleans, that is or and and

同 ト イ ヨ ト イ ヨ ト

Elements of this semiring are low observations in our process algebra

Definition of \mathbb{WL}

- fix a finite, non-empty alphabet L, ranged over by I, I', ...
- let λ, λ', \dots range over L^*
- elements of \mathbb{WL} are functions $o: L^* \to \mathbb{R}^+$

•
$$(o_1+o_2)(\lambda)=o_1(\lambda)+o_2(\lambda)$$

• $(o_1 \times o_2)(\lambda) = \sum_{\lambda',\lambda'':\lambda'\lambda''=\lambda} o_1(\lambda') \times o_2(\lambda'')$

Image: A Image: A

$\mathbb{WL} \text{ includes}$

- all functions $o: L^* \to [0, 1]$ such that $\sum_{\lambda \in L^*} o(\lambda) = 1$, that is, all probability distributions on low traces
- all functions o such that ∑_{λ∈L*} o(λ) ≤ 1, that is, all probability sub-distributions on low traces
- neither of these form a semiring

伺 ト イヨト イヨト

A Process Calculus

- fix a finite, non-empty alphabet H, ranged over by h, h', \ldots
- let π, π', \ldots range over H^*
- fix a semiring \mathbb{S}

The set of all processes

$$P ::= o \mid h \mid P + P \mid P; P \mid P \langle f \rangle \mid P^*$$

where

- $o \in \mathbb{S}$, $h \in H$ and $f : \mathbb{S} \to \mathbb{S}$ is a semiring morphism
- +, ; and * denote nondeterministic choice, sequential composition and iteration respectively

BDE's	
Initial condition	Condition on derivatives
$o(\epsilon) \triangleq o$	$(o)_h \triangleq 0_{\mathbb{F}}$
$h(\epsilon) riangleq 0$	$(h)_{h'} riangleq egin{cases} 1_{\mathbb F} & ext{if } h = h' \ 0_{\mathbb F} & ext{otherwise} \end{cases}$
$(\sigma + \sigma')(\epsilon) \triangleq \sigma(\epsilon) + \sigma'(\epsilon)$	$(\sigma + \sigma')_h \triangleq \sigma_h + \sigma'_h$
$(\sigma; \sigma')(\epsilon) \triangleq \sigma(\epsilon) \times \sigma'(\epsilon)$	$(\sigma; \sigma')_h \triangleq \sigma_h; \sigma' + \sigma(\epsilon) \times \sigma'_h$
$(\sigma\langle f angle)(\epsilon) \triangleq f(\sigma(\epsilon))$	$(\sigma \langle f \rangle)_h \triangleq (\sigma_h) \langle f \rangle$
$(\sigma^*)(\epsilon) riangleq egin{cases} 1 & ext{if } \sigma(\epsilon) = 0 \ 0 & ext{otherwise} \end{cases}$	$(\sigma^*)_h \triangleq \sigma_h; \sigma^*$

Result of BDE analysis

where

$$o_1 \triangleq l_1 \mapsto 1$$

 $l_2 \mapsto 2$
 $o_2 \triangleq l_3 \mapsto 3$
 $l_4 \mapsto 4$
 $o_3 \triangleq l_3 \mapsto 1$

Image: Image:

- Compositional construction of dependency matrices
- excludes parallel operator at present (difficult but not impossible)
- iterator and filter and sequential composition allow imperative update modelling as well as protocols
- \bullet underlying theory works for any semiring so not limited to \mathbb{WL}
- future work: expand language, expand instantiations of semiring

Image: A Image: A