
Automatic Abstraction for Congruences
A Story of Beauty and the Beast

Andy King and Harald Søndergaard

Portcullis Computer Security University of Melbourne

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Structure of this talk

I Related work:
I Philippe Granger: Static Analysis of Linear Congruence

Equalities among Variables of a Program, TAPSOFT, 1991!
I Markus Müller-Olm and Helmut Seidl: Analysis of Modular

Arithmetic, TOPLAS, 2007
I David Monniaux: Automatic Modular Abstractions for Linear

Constraints, POPL, 2009
I Björn Wachter and Lijun Zhang: Best Probabilistic

Transformers, VMCAI, 2010?

I Heart of the technique:

I describe (abstract) a Boolean function with a system of
congruences

I technique interleaves SAT solving and merge for congruences

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Describing a function with congruence constraints

I Consider the function f = (c ′0 ⊕ c0) ∧ (c ′1 ↔ (c1 ⊕ c0)) where
⊕ denotes exclusive or.

I Observe that f is described by the congruence constraints:

s =

{
c0 + c ′0≡4 1

2c1 + 2c ′0 + 2c ′1≡4 2

}
=

{
c0 + c ′0≡4 1

c0 + 2c1 + 1≡4 c ′0 + 2c ′1

}
I s describes f since every solution of f is a solution of s:

c0 c1 c ′0 c ′1 c0 + c ′0 ≡4 1 2c1 + 2c ′0 + 2c ′1 ≡4 2 s f

0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0
0 0 1 0 1 1 1 1
0 0 1 1 1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0
0 1 1 0 1 0 0 0
...

...
...

...
...

...
...

...

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Finding a congruence system s that describes f

1.1 Find a solution to f , namely, the satisfying assignment:

m1 = {c0 7→ 1, c1 7→ 0, c ′0 7→ 0, c ′1 7→ 1}

1.2 Represent m1 as a triangular system of congruences:

s1 =


c0 ≡4 1

c1 ≡4 0
c ′0 ≡4 0

c ′1≡4 1←


1.3 Construct a function g1 that holds iff c ′1 ≡4 1 does not hold:

g1 = (c ′1 ⊕ 1)

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Finding a congruence system s that describes f (cont’)

2.1 Find a solution to f ∧ g1, namely, the satisfying assignment:

m2 = {c0 7→ 1, c1 7→ 1, c ′0 7→ 0, c ′1 7→ 0}

2.2 Represent m2 as a system of congruence constraints s ′2:

s ′2 =


c0≡4 1
c1≡4 1
c ′0≡4 0
c ′1≡4 0

 and recall s1 =


c0≡4 1
c1≡4 0
c ′0≡4 0
c ′1≡4 1


2.3 Merge s ′2 and s1 to obtain s2 =


c0 ≡4 1

c1 + c ′1≡4 1
c ′0 ≡4 0←


2.4 Construct a function g2 that holds iff c ′0 ≡4 0 does not hold:

g2 = (c ′0 ⊕ 0)

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Finding a congruence system s that describes f (cont’)

3.1 Find a solution to f ∧ g2, namely, the satisfying assignment:

m3 = {c0 7→ 0, c1 7→ 0, c ′0 7→ 1, c ′1 7→ 0}
3.2 Represent m3 as a system of congruence constraints s ′3:

s ′3 =


c0≡4 0
c1≡4 0
c ′0≡4 1
c ′1≡4 0

 and recall s2 =


c0≡4 1

c1 + c ′1≡4 1
c ′0≡4 0


3.3 Merge s ′3 and s2 to obtain

s3 =

{
c0 + c ′0 ≡4 1

c1 + c ′0 + c ′1≡4 1←

}
3.4 Construct g3 that holds iff c1 + c ′0 + c ′1 ≡4 1 does not hold:

g3 = (t0 ↔ c1 ⊕ c ′0) ∧ (t1 ↔ c1 ∧ c ′0) ∧
(t ′0 ↔ c ′1 ⊕ t0) ∧ (t ′1 ↔ (c ′1 ∧ t0)⊕ t1) ∧
(¬t ′0 ∨ t ′1)

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Finding a congruence system s that describes f (cont’)

4.1 Find a solution to f ∧ g3, namely, the satisfying assignment:

m4 = {c0 7→ 0, c1 7→ 1, c ′0 7→ 1, c ′1 7→ 1}

4.2 Represent m4 as a system of congruence constraints s ′4:

s ′4 =


c0≡4 0
c1≡4 0
c ′0≡4 1
c ′1≡4 0


4.3 Merge s3 and s ′4 to obtain s4:

s4 =

{
c0 + c ′0 ≡4 1

2c1 + 2c ′0 + 2c ′1≡4 2←

}
4.4 Construct g4 that holds iff c1 + c ′0 + c ′1 ≡2 1 does not hold:

g4 = (c1 ⊕ c ′0 ⊕ c ′1)⊕ 1

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Finding a congruence system s that describes f (cont’)

5.1 Detect that f ∧ g4 does not have a solution

s4 =

{
c0 + c ′0 ≡4 1 ←

2c1 + 2c ′0 + 2c ′1≡4 2
√
}

5.2 Construct g5 that holds iff c0 + c ′0 ≡4 1 does not hold:

g5 = (t0 ↔ c1 ⊕ c ′0) ∧ (t1 ↔ c1 ∧ c ′0) ∧ (¬t0 ∨ t1)

5.3 Detect that f ∧ g5 does not have a solution

s4 =

{
c0 + c ′0 ≡4 1

√

2c1 + 2c ′0 + 2c ′1≡4 2
√
}

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Summary of story so far

I The systems s1, s2, s3, s4 constitute an increasing chain of
congruence constraints:

I The system si+1 has strictly more solutions than si ;
I The maximal number of systems in chain is pn + 1 where

2p = 4 is the modulo [TOPLAS, 2007]

I But does it scale?

I Depends on hardness of the SAT/SMT instance
I Depends on the join algorithm (needs to be inplace)

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Parity example

`0: p := 0; y := x ;
`1: while (y 6= 0)

y := y & (y − 1);
p := 1 - p;

`2: skip

Then t ′1 = 〈`0, `1, c1〉, t ′2 = 〈`1, `1, c2〉 and t ′3 = 〈`1, `2, c3〉 where

c1 =


(∧15

i=0p
′
i ≡2 0) ∧

(∧15
i=0y

′
i ≡2 xi )∧

(∧15
i=0x

′
i ≡2 xi )

c2 =


p0 + p′0 ≡2 1 ∧
(∧15

i=1pi ≡2 p′i )∧
(∧15

i=0xi ≡2 x ′i ) ∧
y ′0 ≡2 0 ∧
1 +

∑15
i=1 y ′i ≡2

∑15
i=0 yi

c3 =


(∧15

i=0p
′
i ≡2 pi )∧

(∧15
i=0x

′
i ≡2 xi ) ∧

(∧15
i=0yi ≡2 0) ∧

(∧15
i=0y

′
i ≡2 0)

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Bit reversal example

`0: y := x ;
y := ((y � 1) & 0x5555) | ((y & 0x5555) � 1);
y := ((y � 2) & 0x3333) | ((y & 0x3333) � 2);
y := ((y � 4) & 0x0F0F) | ((y & 0x0F0F) � 4);
y := (y � 8) | (y � 8);

`1: skip

Then t ′ = 〈`0, `1, c〉 where c =
∧15

i=0(x ′i ≡216 xi ∧ y ′15−i ≡216 xi )

Andy King and Harald Søndergaard Automatic Abstraction for Congruences



Bonus tracks

I Presented a new algorithm for congruence closure;

I Show how inequalities can be traced (see paper);

`0: assume(0 < n);
x := 0; y := 0;

`1: while (x < n)
y := y + 2; ⇒
x := x + 1;

`2: skip

`0: assume(0 < n);
x := 0; y := 0; δ := n − x ;

`1: while (0 < δ)
y := y + 2;
x := x + 1;
δ := n − x ;

`2: skip

I Formulate the ideas with an unrestricted flowchart language
with non-linear, bit-manipulating operations (see paper)

Andy King and Harald Søndergaard Automatic Abstraction for Congruences


