Slicing of Extended Finite State Machines

Kelly Androutsopoulos¹, David Clark¹, Nicolas Gold¹,

Mark Harman¹, Rob Hierons², Zheng Li¹ and Laurence Tratt³

Centre for Research in Evolution, Search & Testing

¹CREST, King's College London ²Brunel University ³Bournemouth University

which other lines affect the selected line?

we only care about this line

which other lines affect the selected line?

we only care about this line

which other lines affect the selected line?

we only care about this line

Can slicing be applied to model level?

Model

Model

Model

If the model like this?

Motivation

• Models tend to be larger and more complex.

Motivation

- Models tend to be larger and more complex.
- Slicing has provided a valuable suite of maintenance techniques at the implementation level, but little at model level.

An Extended Finite State Machine (EFSM) M is a tuple (S, T, E, V) where S is a set of states, T is a set of transitions, E is a set of events, and V is a store represented by a set of variables. Transitions have a source state $source(t) \in S$, a target state $target(t) \in S$ and a label lbl(t). Transition labels are of the form $e_1[c]/a$ where $e_1 \in E$, *c* is a condition and *a* a sequence of actions.

An EFSM example:DoorControl

Definition (Slicing Criterion)

A slicing criterion for an EFSM is a pair (t, V) where transition $t \in T$ and variable set $V \subseteq Var$. It designates the point in the exaluation immediately after the execution of the action contain in transition t.

Definition (Slice)

An EFSM slice M' is a reduced machine, where for all inputs *i* it contains at least one execution where the value of $v \in V$ at *t* is equal to the value of v at *t* in the original EFSM *M*.

Difference

• Transition in EFSM VS Node in CFG

Slicing of EFSMs Zh

Difference

- Transition in EFSM VS Node in CFG
- Self-looping edge and multi-edges between two nodes

Difference

- Transition in EFSM VS Node in CFG
- Self-looping edge and multi-edges between two nodes
- Non-termination (Exit node)

- Data Dependence
- Control Dependence

- Data Dependence
- Control Dependence
 - Traditional Control Dependence [Korel et al, ICSM 2003]

- Data Dependence
- Control Dependence
 - Traditional Control Dependence [Korel et al, ICSM 2003]
 - Non-Termination Insensitive Control Dependence (NTICD) [Ranganath et al. ESOP 2005]
 - Non-Termination Sensitive Control Dependence (NTSCD) [Ranganath et al. ESOP 2005]

- Data Dependence
- Control Dependence
 - Traditional Control Dependence [Korel et al, ICSM 2003]
 - Non-Termination Insensitive Control Dependence (NTICD) [Ranganath et al. ESOP 2005]
 - Non-Termination Sensitive Control Dependence (NTSCD) [Ranganath et al. ESOP 2005]
 - Unfair Non-Termination Insensitive Control Dependence (UNTICD) [Androutsopoulos et al. FASE 2009]

 $T_i \xrightarrow{\text{DD}} T_j$ means that transitions T_i and T_j are data dependent with respect to a variable *v* if:

• $v \in D(T_i)$, where $D(T_i)$ is a set of variables defined by transition T_i , i.e. variables defined by actions and by the event of T_i ;

 $T_i \xrightarrow{\text{DD}} T_j$ means that transitions T_i and T_j are data dependent with respect to a variable *v* if:

- $v \in D(T_i)$, where $D(T_i)$ is a set of variables defined by transition T_i , i.e. variables defined by actions and by the event of T_i ;
- $v \in U(T_j)$, where $U(T_j)$ is a set of variables used in a condition and actions of transition T_j ;

 $T_i \xrightarrow{\text{DD}} T_j$ means that transitions T_i and T_j are data dependent with respect to a variable *v* if:

- $v \in D(T_i)$, where $D(T_i)$ is a set of variables defined by transition T_i , i.e. variables defined by actions and by the event of T_i ;
- $v \in U(T_j)$, where $U(T_j)$ is a set of variables used in a condition and actions of transition T_j ;
- there exists a path in an EFSM from the $source(T_i)$ to the $target(T_j)$ whereby v is not modified by any of the intermediate transitions.

Name		Path type
NTSCD	\rightarrow	Maximal Path
NTICD	\longrightarrow	Sink-bounded Path
UNTICD	\longrightarrow	Unfair Sink-bounded Path

Definition (Control Sink)

A control sink in an EFSM is a set of transitions \mathcal{K} that form a strongly connected component (SCC) such that, for each transition *t* in \mathcal{K} each successor of *t* is also in \mathcal{K} .

Definition (Control Sink)

A control sink in an EFSM is a set of transitions \mathcal{K} that form a strongly connected component (SCC) such that, for each transition *t* in \mathcal{K} each successor of *t* is also in \mathcal{K} .

Definition (Sink-bounded Paths)

A maximal path π is sink-bounded iff there exists a control sink \mathcal{K} such that:

- π contains a transition from \mathcal{K}
- if π is infinite, then all transitions in \mathcal{K} occur infinitely often.

Definition (Sink-bounded Paths)

A maximal path π is sink-bounded iff there exists a control sink \mathcal{K} such that:

- π contains a transition from \mathcal{K}
- if π is infinite, then all transitions in \mathcal{K} occur infinitely often.

Definition (Unfair Sink-bounded Paths)

A maximal path π is unfair sink-bounded iff there exists a control sink $\mathcal K$ such that

- π contains a transition from \mathcal{K}
- if π is infinite, then all transitions in \mathcal{K} occur infinitely often.

Definition (Unfair Sink-bounded Paths)

A maximal path π is unfair sink-bounded iff there exists a control sink $\mathcal K$ such that

- π contains a transition from \mathcal{K}
- if π is infinite, then all transitions in \mathcal{K} occur infinitely often.

Definition (Unfair Sink-bounded Paths)

A maximal path π is unfair sink-bounded iff there exists a control sink $\mathcal K$ such that

- π contains a transition from \mathcal{K}
- if π is infinite, then all transitions in \mathcal{K} occur infinitely often.

Definition (Control Dependence)

 $T_i \xrightarrow{\text{CD}} T_j$ means that a transition T_j is control dependent on a transition T_i iff T_i has at least one sibling T_k such that:

• for all paths $\pi \in \mathsf{PATHs}(target(T_i))$, the $source(T_j)$ belongs to π ;

● there exists a path $\pi \in \mathsf{PATHs}(source(T_k))$ such that the $source(T_j)$ does not belong to π .

Definition (Control Dependence)

 $T_i \xrightarrow{CD} T_j$ means that a transition T_j is control dependent on a transition T_i iff T_i has at least one sibling T_k such that:

• for all paths $\pi \in \mathsf{PATHs}(target(T_i))$, the $source(T_i)$ belongs to π ; **2** there exists a path $\pi \in \mathsf{PATHs}(source(T_k))$ such that the source(T_i) does not belong to π .

CD		PATH type
NTSCD	\longrightarrow	Maximal Path
NTICD	\longrightarrow	Sink-bounded Path
UNTICD	\longrightarrow	Unfair Sink-bounded Path

Example (NTSCD)

•
$$T_3 \xrightarrow{\text{NTSCD}} T_4, T_5, T_6$$

• $T_5 \xrightarrow{\text{NTSCD}} T_9, T_{10}$

Example (NTSCD)

• $T_3 \xrightarrow{\text{NTSCD}} T_4, T_5, T_6$ • $T_5 \xrightarrow{\text{NTSCD}} T_9, T_{10}$

Example (NTICD)

NO NTICD in this example

Example (UNTICD)

• $T_3 \xrightarrow{\text{UNTICD}}$

Example (UNTICD)

Metrics

Definition (Slice Size)

For a model *M*, *t'* is a transition dependent on *t* (i.e., $t' \in T \land t \rightarrow t'$), the size of slice with respect to *t* is:

$$|\mathcal{S}(M,t)| = rac{\sum t'}{|M|}$$

Metrics

Definition (Slice Size)

For a model *M*, *t'* is a transition dependent on *t* (i.e., $t' \in T \land t \rightarrow t'$), the size of slice with respect to *t* is:

$$\mathcal{S}(M,t)| = \frac{\sum t'}{|M|}$$

Definition (Average Slice Size)

For a model M, NT is subset of transitions of M with non-zero slice size (i.e., $NT \subseteq T$ and $\forall t \in NT$, |S(M, t)| > 0). Thus, the average slice size of M is:

$$\mathsf{Avg}(M) = \frac{\displaystyle\sum_{t \in NT} |\mathcal{S}(M, t)|}{|NT|}$$

Models	#S	#T	#V	EXIT	Description
ATM	9	23	8	Yes	Automated Teller Machine
Cashier	12	21	10	Yes	Cashier Machine
CruiseControl	5	17	18	Yes	Cruise Control System
FuelPump	13	25	12	Yes	Fuel Pump System
PrinTok	11	89	5	Yes	Print Token
VendingMachine	7	28	7	Yes	Vending Machine system
INRES	8	18	8	No	INRES protocol
TCP	12	57	31	No	TCP Standard(RFC793)
TCSbin	24	65	61	No	Telephony Control Protocol
Lift	6	12	1	No	Lift System
Total	107	355	161		

	Forwa	rd Slices	Backwa	ard Slices
Dependence	# T	Avg	# T	Avg
DD+NTSCD				
DD+NTICD				
DD+UNTICD				
DD				
NTSCD				
NTICD				
UNTICD				

	Forwar	d Slices	Backwa	ard Slices
Dependence	# T	Avg	# T	Avg
DD+NTSCD	276	87.45%		
DD+NTICD	220	61.99%		
DD+UNTICD	267	83.20%		
DD	161	35.67%		
NTSCD	205	86.10%		
NTICD	92	78.67%		
UNTICD	190	82.21%		

	Forwar	d Slices	Backward Slices		
Dependence	# T	Avg	# T	Avg	
DD+NTSCD	276	87.45%	345	70.46%	
DD+NTICD	220	61.99%	278	49.48%	
DD+UNTICD	267	83.20%	335	66.83%	
DD	161	35.67%	174	33.15%	
NTSCD	205	86.10%	336	53.63%	
NTICD	92	78.67%	167	44.59%	
UNTICD	190	82.21%	313	51.00%	

Correlation of Slice Size

			Forward			Backward	
Model	Dependence	NTICD	UNTICD	NTSCD	NTICD	UNTICD	NTSCD
	NTICD	-	1.000	.652	-	1.000	.941
ATM	UNTICD	1.000	-	.652	1.000	-	.941
	NTSCD	.652	652.	-	.941	.941	-
	NTICD	-	1.000	.898	-	1.000	1.000
Cashier	UNTICD	1.000	-	.898	1.000	-	1.000
	NTSCD	.898	.898	-	1.000	1.000	-
	NTICD	-	1.000	1.000	-	1.000	1.000
CruiseControl	UNTICD	1.000	-	1.000	1.000	-	1.000
	NTSCD	1.000	1.000	-	1.000	1.000	-
	NTICD	-	1.000	.786	-	1.000	509
FuelPump	UNTICD	1.000	-	.786	1.000	-	509
	NTSCD	.786	.786	-	509	509	-
	NTICD	-	1.000	1.000	-	1.000	1.000
PrinTok	UNTICD	1.000	-	1.000	1.000	-	1.000
	NTSCD	1.000	1.000	-	1.000	1.000	-
	NTICD	-	1.000	.360	-	1.000	.224
VendingMachine	UNTICD	1.000	-	.360	1.000	-	.224
-	NTSCD	.360	.360	-	.224	.224	-
	NTICD	-	х	х	-	х	х
INRES	UNTICD	x	-	1.000	x	-	1.000
	NTSCD	x	1.000	-	x	1.000	-
	NTICD	-	х	х	-	х	х
Lift	UNTICD	x	-	.813	x	-	1.000
	NTSCD	x	.813	-	x	1.000	-
TCP	NTICD	-	х	х	-	х	х
	UNTICD	x	-	1.000	x	-	1.000
	NTSCD	x		-	x	1.000	-
	NTICD	-	х	х	-	х	х
TCSbin	UNTICD	x	-	1.000	x	-	1.000
	NTSCD	x	1.000	-	x	1.000	-

Slicing of EFSMs

Correlation of Slice Size

			Forward			Backward	
Model	Dependence	NTICD	UNTICD	NTSCD	NTICD	UNTICD	NTSCD
	NTICD	-	1.000	.652	-	1.000	.941
ATM	UNTICD	1.000	-	.652	1.000	-	.941
	NTSCD	.652	652.	-	.941	.941	-
	NTICD	-	1.000	.898	-	1.000	1.000
Cashier	UNTICD	1.000	-	.898	1.000	-	1.000
	NTSCD	.898	.898	-	1.000	1.000	-
·	NTICD	-	1.000	1.000	-	1.000	1.000
CruiseControl	UNTICD	1.000	-	1.000	1.000	-	1.000
	NTSCD	1.000	1.000	-	1.000	1.000	-
	NTICD	-	1.000	.786	-	1.000	509
FuelPump	UNTICD	1.000	-	.786	1.000	-	509
	NTSCD	.786	.786	-	509	509	-
	NTICD	-	1.000	1.000	-	1.000	1.000
PrinTok	UNTICD	1.000	-	1.000	1.000	-	1.000
	NTSCD	1.000	1.000	-	1.000	1.000	-
	NTICD	-	1.000	.360	-	1.000	.224
VendingMachine	UNTICD	1.000	-	.360	1.000	-	.224
-	NTSCD	.360	.360	-	.224	.224	-
	NTICD	-	х	х	-	х	х
INRES	UNTICD	x	-	1.000	x	-	1.000
	NTSCD	×	1.000	-	x	1.000	-
	NTICD	-	х	х	-	х	х
Lift	UNTICD	x	-	.813	x	-	1.000
	NTSCD	×	.813	-	x	1.000	-
	NTICD	-	х	х	-	х	х
TCP	UNTICD	х	-	1.000	х	-	1.000
	NTSCD	x		-	x	1.000	-
	NTICD	-	х	х	-	х	х
TCSbin	UNTICD	х	-	1.000	х	-	1.000
	NTSCD	х	1.000	-	х	1.000	-

Slicing of EFSMs

- UNTICD and NTSCD dependences for all transitions within control sinks are identical.
- UNTICD and NTICD dependences for all transitions outside of control sinks are identical.
- The transitive closure for NTICD is contained in the transitive closure for UNTICD.

Proposition

For an EFSM *M*, if $T_i \in M$ is a self-looping transition, then there is no transition T_j that is control dependent (NTSCD, NTICD or UNTICD) on T_i .

Proposition

For an EFSM *M*, if two transitions T_i and T_j have the same source and target states, and $T_i \xrightarrow{\text{CD}} T_l$ (using NTSCD, NTICD or UNTICD) then $T_j \xrightarrow{\text{CD}} T_l$ (using NTSCD, NTICD or UNTICD respectively).

Proposition

For an EFSM *M*, if all states $s \in M$ where $s \neq$ START have a transition T_i where $source(T_i) = s$ and $target(T_i) = EXIT$, then the set of transitions that are directly control dependent on T_i are the same for all types of control dependence, i.e. NTSCD, NTICD and UNTICD.

- NTSCD, NTICD and UNTICD are defined for EFSM
- The properties are formally proved
- Empirically studies on dependence size

Questions?

zheng.li@kcl.ac.uk

http://slim.dcs.kcl.ac.uk/