
Challenges in Refactoring

Multi-Language Software Applications

59. CREST Open Workshop

Hagen Schink
Institute of Technical and Business Information Systems
Otto-von-Guericke-University of Magdeburg, Germany

2018-03-26



Introduction

Hagen Schink Challenges in Refactoring MLSA 2/34 2



Introduction I

• Polyglot Programming [Ford, 2008]

• Refactoring [Opdyke, 1992, Fowler, 1999]

Hagen Schink Challenges in Refactoring MLSA 3/34 3



Introduction II

Listing 1: SQL query in Java code.

1 S t r i n g stmt = "SELECT name FROM depar tments "
2 + "WHERE name LIKE ?" ;
3
4 PreparedStatement query ;
5 query = con . p r epa r eS ta t ement ( stmt ) ;
6
7 query . s e t S t r i n g (1 , "M%" ) ;
8 Re s u l t S e t r e s u l t = query . executeQuery ( ) ;

Hagen Schink Challenges in Refactoring MLSA 4/34 4



Introduction III

• Refactoring an MLSA can break the
application [Schink et al., 2011]

• Automated Multi-Language Refactorings (MLR):
• exist only for speci�c language interactions
• are di�cult to implement on a general
basis [Chen and Johnson, 2008]

• Test coverage is required to check language interaction

Hagen Schink Challenges in Refactoring MLSA 5/34 5



Questions

1. Why are MLRs hard to implement on a general basis?

2. How can we provide general refactoring support, though?

3. How could refactoring in Multi-Language Software

Applications (MLSA) look like in future?

Hagen Schink Challenges in Refactoring MLSA 6/34 6



Language Interaction in MLSAs

Hagen Schink Challenges in Refactoring MLSA 7/34 7



Types of Language Interaction

APIHost Guest

No relation

Host Guest

Platform

Platform

Host

Guest

Language

Run-time Compile-time

Figure: Relations between host and guest language.

Hagen Schink Challenges in Refactoring MLSA 8/34 8



Types of Language Interaction

APIHost Guest

No relation

Host Guest

Platform

Platform

Host

Guest

Language

Run-time Compile-time

Figure: Relations between host and guest language.

Hagen Schink Challenges in Refactoring MLSA 8/34 8



Challenges for Automated Refactoring in MLSAs

�While �nding a general solution for extending refactoring across
multiple languages is hard, it is simple and possible to support

automated refactorings for some common cases that programmers
already encounter in their programs today.�

[Chen and Johnson, 2008]

Hagen Schink Challenges in Refactoring MLSA 9/34 9



Challenges for Automated Refactoring in MLSAs

MLR

Language 1

...

Language x

...

Language n

R

R

R

R

R

Hagen Schink Challenges in Refactoring MLSA 9/34 9



Language Combinations - Example

Listing 2: De�nition of sum in Groovy in hello.groovy.

1 def sum(a , b ) { a + b }

Listing 3: Invocation of sum with GroovyClassLoader.

1 GroovyC la s sLoade r g c l = new GroovyC la s sLoade r ( ) ;
2 C l a s s c l a z z = g c l . p a r s eC l a s s (new F i l e ( " h e l l o . g roovy " ) ) ;
3
4 Method sum = c l a z z . getMethod ( "sum" ,
5 I n t e g e r . c l a s s ,
6 I n t e g e r . c l a s s ) ;
7 Object i n s t a n c e = c l a z z . new In s tance ( ) ;
8
9 System . out . p r i n t l n ( sum . i n voke ( i n s t an c e , 1 , 2) ) ;

Hagen Schink Challenges in Refactoring MLSA 10/3410



Language Combinations - Example

Listing 2: De�nition of sum in Groovy in hello.groovy.

1 def sum(a , b ) { a + b }

Listing 4: Invocation of sum with ScriptEngine (JSR-223).

1 Sc r ip tEng ineManage r f a c t o r y = new Scr ip tEng ineManage r ( ) ;
2 S c r i p tEng i n e eng i n e = f a c t o r y . getEngineByName ( " groovy " ) ;
3
4 eng i n e . e v a l (new F i l eR e ad e r (new F i l e ( " h e l l o . g roovy " ) ) ) ;
5 I n v o c a b l e i n v = ( I n v o c a b l e ) eng i n e ;
6 Object [ ] params = {1 , 2} ;
7
8 System . out . p r i n t l n ( i n v . i n vok eFunc t i on ( "sum" , params ) ) ;

Hagen Schink Challenges in Refactoring MLSA 10/3410



Language Combinations - Other Examples

• Java - Clojure (similar to Groovy)

• Java - C (JNI, JNA)

• Java - relational Database (JDBC, JPA etc.)

• .Net - relational Database (DataReader, DataTable etc.)

• ...

Hagen Schink Challenges in Refactoring MLSA 11/3411



Language Combinations - Summary

• Di�erent approaches for interaction between two languages

• Approach may provide di�erent options to establish interaction

Hagen Schink Challenges in Refactoring MLSA 12/3412



Di�ering Language Concepts - Example

Listing 5: Invoice item in database.

1 CREATE TABLE i n v o i c e (
2 i d INT ,
3 i n vo i c e_da t e DATE,
4 amount MONEY

5 ) ;

Listing 6: Read data from table.

1 va r query = "SELECT id , amount FROM i n v o i c e " ;
2 va r cmd = new SqlCommand ( query , cmd) ;
3 cmd . open ( ) ;
4 va r r e a d e r = cmd . ExecuteReader ( ) ;
5
6 va r i d = r e a d e r . Ge t I n t32 (0 ) ;
7 va r amount = r e ad e r . GetDecimal (1 ) ;

Hagen Schink Challenges in Refactoring MLSA 13/3413



Di�ering Language Concepts - Summary

• Languages may not share all concepts

• Languages may di�er in the implementation of a given concept

• Semantical changes may be necessary to adapt to a refactoring

Hagen Schink Challenges in Refactoring MLSA 14/3414



Summary of Challenges

...or why a general approach to refactoring MLSAs is hard.

• Number of languages and frameworks

• Di�ering language concepts

• Scaling a solution to 1 and 2

Hagen Schink Challenges in Refactoring MLSA 15/3415



Structure Graphs

Hagen Schink Challenges in Refactoring MLSA 16/3416



Challenges and Measures

Challenges to approach

• A refactoring may not exist for all interacting languages

• Automatic refactoring may not available for all languages

Means to address the challenges

• Developers need to detect language interaction

• Developers need to know the mechanics of language
interaction

A tool needs to enable developers

to complete refactorings manually.

Hagen Schink Challenges in Refactoring MLSA 17/3417



Challenges and Measures

Challenges to approach

• A refactoring may not exist for all interacting languages

• Automatic refactoring may not available for all languages

Means to address the challenges

• Developers need to detect language interaction

• Developers need to know the mechanics of language
interaction

A tool needs to enable developers

to complete refactorings manually.

Hagen Schink Challenges in Refactoring MLSA 17/3417



Challenges and Measures

Challenges to approach

• A refactoring may not exist for all interacting languages

• Automatic refactoring may not available for all languages

Means to address the challenges

• Developers need to detect language interaction

• Developers need to know the mechanics of language
interaction

A tool needs to enable developers

to complete refactorings manually.

Hagen Schink Challenges in Refactoring MLSA 17/3417



Concept
H
os
t

G
u
es
t

(SHost)

(SGuest)

Code

Extract

a

eb

z

y

(RSHost→SGuest )

a

eb

dc

z

x

w

y

(RSGuest )

References

Compare

Result

S ... Source code

R... Elements involved in language interaction

Hagen Schink Challenges in Refactoring MLSA 18/3418



Structure Graphs - An Example

ID NAME

1 IT

2 HR

3 Sales

ID NAME DEPARTMENT

1 John Doe 1

Table: Tables departments and employees.

Listing 7: Query for department names.

1 S t r i n g stmt = "SELECT name "
2 + "FROM depar tments "
3 + "WHERE name LIKE ?" ;
4 PreparedStatement query =
5 con . p r epa r eS ta t ement ( stmt ) ;
6 // s n i p

departments

nameid
employees

departmentnameid

departments

name

Hagen Schink Challenges in Refactoring MLSA 19/3419



Implementation - General

• Extraction of structure graphs of host and guest language

• Comparison of structure graphs

• Augmentation of results with language-speci�c information

Hagen Schink Challenges in Refactoring MLSA 20/3420



Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that

• may be hidden in string
• may be encapsulated in framework-speci�c functions
• may use di�erent type system

• Agreement on the structure graph

Hagen Schink Challenges in Refactoring MLSA 21/3421



Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string

• may be encapsulated in framework-speci�c functions
• may use di�erent type system

• Agreement on the structure graph

Listing 8: Invocation of sum with GroovyClassLoader.

1 i n v . i n vok eFunc t i on ( "sum" , params )

Hagen Schink Challenges in Refactoring MLSA 21/3421



Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string
• may be encapsulated in framework-speci�c functions

• may use di�erent type system

• Agreement on the structure graph

Listing 9: De�nition of column id.

1 va r i d = new DataColumn ( " i d " , typeof ( i n t ) ) ; // DataTable

Hagen Schink Challenges in Refactoring MLSA 21/3421



Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string
• may be encapsulated in framework-speci�c functions
• may use di�erent type system

• Agreement on the structure graph

Listing 10: Read of column amount.

1 va r amount = r e ad e r . GetDecimal (1 ) ; // DataReader

Hagen Schink Challenges in Refactoring MLSA 21/3421



Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string
• may be encapsulated in framework-speci�c functions
• may use di�erent type system

• Agreement on the structure graph

Hagen Schink Challenges in Refactoring MLSA 21/3421



Implementation - Preparation of Results

• The comparison returns missing and non-matching elements

• Additional information can be retrieved from the results

tab1

col12

type12

eCol2Type

col1

type1

eCol2Type

eTab2Col eTab2Col

tab2

col2

type2

eCol2Type

col21

type21

eCol2Type

eTab2Col eTab2Col

eFK

Figure: General database schema with a foreign-key relationship.

Hagen Schink Challenges in Refactoring MLSA 22/3422



Implementation - Preparation of Results

• The comparison returns missing and non-matching elements

• Additional information can be retrieved from the results

tab1

col12

type12

eCol2Type

col1

type1

eCol2Type

eTab2Col eTab2Col

tab2

col2

type2

eCol2Type

col21

type21

eCol2Type

eTab2Col eTab2Col

eFK

Figure: General database schema with a foreign-key relationship.

Hagen Schink Challenges in Refactoring MLSA 22/3422



Implementation - Preparation of Results

• The comparison returns missing and non-matching elements

• Additional information can be retrieved from the results

tab1

col12

type12

eCol2Type

col1

type1

eCol2Type

eTab2Col eTab2Col

tab2

col2

type2

eCol2Type

col21

type21

eCol2Type

eTab2Col eTab2Col

eFK

Figure: General database schema with a foreign-key relationship.

Hagen Schink Challenges in Refactoring MLSA 22/3422



Implementation - Scalability

Adding new languages scales because...

• ...structure graph comparison is language independent

• ...a structure graph for a given guest language can be reused
for new host language

• ...preparation of results can be reused for new host languages

The structure graph approach scales over the host languages.

Hagen Schink Challenges in Refactoring MLSA 23/3423



Related Approaches

• Common Meta Model [Strein et al., 2006]
• Interacting languages share common syntax elements
• A refactoring exists for all interacting languages
• Applicable only for certain types of language interaction

• Linking Model [Mayer and Schroeder, 2014]
• Basis is a model of all syntax elements
• Binding resolvers establish links between the model's elements
• Binding resolvers encapsulate the mechanics of language
interaction

Hagen Schink Challenges in Refactoring MLSA 24/3424



Conclusion and Discussion

Hagen Schink Challenges in Refactoring MLSA 25/3425



Conclusion

• MLRs are hard to implement due to the structure of MLSAs

• Without MLRs it is error prone to refactor MLSAs

• Structure graphs support detection of broken interactions1

1Evaluation con�rms applicability and performance
Hagen Schink Challenges in Refactoring MLSA 26/3426



Discussion

Some provocative questions...

• Establishing language interaction at run-time impedes
refactoring: Should we deem it an anti-pattern inside MLSAs?

• Should standardization drive language interaction (like JPA or
JSR-223) to avoid clutter of APIs?

• To avoid MLR entirely, should we favor APIs (and API
versioning) also within MLSAs?

• Should we refactor a common platform to avoid MLR entirely
(see for instance Common Metal Model)?

Hagen Schink Challenges in Refactoring MLSA 27/3427



Discussion

Some provocative questions...

• Establishing language interaction at run-time impedes
refactoring: Should we deem it an anti-pattern inside MLSAs?

• Should standardization drive language interaction (like JPA or
JSR-223) to avoid clutter of APIs?

• To avoid MLR entirely, should we favor APIs (and API
versioning) also within MLSAs?

• Should we refactor a common platform to avoid MLR entirely
(see for instance Common Metal Model)?

Hagen Schink Challenges in Refactoring MLSA 27/3427



Discussion

Some provocative questions...

• Establishing language interaction at run-time impedes
refactoring: Should we deem it an anti-pattern inside MLSAs?

• Should standardization drive language interaction (like JPA or
JSR-223) to avoid clutter of APIs?

• To avoid MLR entirely, should we favor APIs (and API
versioning) also within MLSAs?

• Should we refactor a common platform to avoid MLR entirely
(see for instance Common Metal Model)?

Hagen Schink Challenges in Refactoring MLSA 27/3427



Discussion

Some provocative questions...

• Establishing language interaction at run-time impedes
refactoring: Should we deem it an anti-pattern inside MLSAs?

• Should standardization drive language interaction (like JPA or
JSR-223) to avoid clutter of APIs?

• To avoid MLR entirely, should we favor APIs (and API
versioning) also within MLSAs?

• Should we refactor a common platform to avoid MLR entirely
(see for instance Common Metal Model)?

Hagen Schink Challenges in Refactoring MLSA 27/3427



Hagen Schink Challenges in Refactoring MLSA 28/3428



References

Hagen Schink Challenges in Refactoring MLSA 29/3429



Chen, N. and Johnson, R. E. (2008).
Toward Refactoring in a Polyglot World Extending Automated
Refactoring Support Across Java and XML.
In Proceedings of the 2nd ACM Workshop on Refactoring Tools

(WRT 2008), Nashville, TN, USA, October 19, 2008. ACM.

Ford, N. (2008).
The Productive Programmer.
O'Reilly Media, Inc., Sebastopol, CA, USA.

Fowler, M. (1999).
Refactoring: Improving the Design of existing Code.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

Hagen Schink Challenges in Refactoring MLSA 30/3430



Mayer, P. and Schroeder, A. (2014).
Automated Multi-Language Artifact Binding and Rename
Refactoring between Java and DSLs Used by Java Frameworks.
In Proceedings of the 28th European Conference

Object-Oriented Programming (ECOOP 2014), Uppsala,

Sweden, July 28 - August 1, 2014. Springer.

Opdyke, W. F. (1992).
Refactoring Object-Oriented Frameworks.
PhD thesis, University of Illinois, Champaign, IL, USA.

Hagen Schink Challenges in Refactoring MLSA 31/3431



Schink, H. (2013).
sql-schema-comparer: Support of Multi-Language Refactoring
with Relational Databases.
In Proceedings of the 13th IEEE International Working

Conference on Source Code Analysis and Manipulation (SCAM

2013), Eindhoven, Netherlands, September 22-23, 2013. IEEE
Computer Society.

Schink, H., Broneske, D., Schröter, R., and Fenske, W.
(2016a).
A Tree-Based Approach to Support Refactoring in
Multi-Language Software Applications.
In Proceedings of the 2nd International Conference on

Advances and Trends in Software Engineering, Lisbon,

Portugal, February 21-25, 2016. IARIA.

Hagen Schink Challenges in Refactoring MLSA 32/3432



Schink, H., Kuhlemann, M., Saake, G., and Lämmel, R.
(2011).
Hurdles in Multi-language Refactoring of Hibernate
Applications.
In Proceedings of the 6th International Conference on Software

and Data Technologies (ICSOFT 2011), Seville, Spain, July

18-21, 2011. SciTePress.

Schink, H., Siegmund, J., Schröter, R., Thüm, T., and Saake,
G. (2016b).
A Study on Tool Support for Refactoring in Database
Applications.
Softwaretechnik-Trends, 36(2).

Hagen Schink Challenges in Refactoring MLSA 33/3433



Strein, D., Kratz, H., and Löwe, W. (2006).
Cross-Language Program Analysis and Refactoring.
In Proceedings of the 6th IEEE International Workshop on

Source Code Analysis and Manipulation (SCAM 2006),

Philadelphia, Pennsylvania, USA, September 27-29, 2006. IEEE
Computer Society.

Hagen Schink Challenges in Refactoring MLSA 34/3434


	Introduction
	Language Interaction in MLSAs
	Structure Graphs
	Conclusion and Discussion
	References

