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Introduction I

• Polyglot Programming [Ford, 2008]

• Refactoring [Opdyke, 1992, Fowler, 1999]
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Introduction II

Listing 1: SQL query in Java code.

1 S t r i n g stmt = "SELECT name FROM depar tments "
2 + "WHERE name LIKE ?" ;
3
4 PreparedStatement query ;
5 query = con . p r epa r eS ta t ement ( stmt ) ;
6
7 query . s e t S t r i n g (1 , "M%" ) ;
8 Re s u l t S e t r e s u l t = query . executeQuery ( ) ;
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Introduction III

• Refactoring an MLSA can break the
application [Schink et al., 2011]

• Automated Multi-Language Refactorings (MLR):
• exist only for speci�c language interactions
• are di�cult to implement on a general
basis [Chen and Johnson, 2008]

• Test coverage is required to check language interaction

Hagen Schink Challenges in Refactoring MLSA 5/34 5



Questions

1. Why are MLRs hard to implement on a general basis?

2. How can we provide general refactoring support, though?

3. How could refactoring in Multi-Language Software

Applications (MLSA) look like in future?
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Language Interaction in MLSAs
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Types of Language Interaction
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Figure: Relations between host and guest language.
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Challenges for Automated Refactoring in MLSAs

�While �nding a general solution for extending refactoring across
multiple languages is hard, it is simple and possible to support

automated refactorings for some common cases that programmers
already encounter in their programs today.�

[Chen and Johnson, 2008]
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Challenges for Automated Refactoring in MLSAs

MLR

Language 1

...

Language x

...

Language n

R

R

R

R

R

Hagen Schink Challenges in Refactoring MLSA 9/34 9



Language Combinations - Example

Listing 2: De�nition of sum in Groovy in hello.groovy.

1 def sum(a , b ) { a + b }

Listing 3: Invocation of sum with GroovyClassLoader.

1 GroovyC la s sLoade r g c l = new GroovyC la s sLoade r ( ) ;
2 C l a s s c l a z z = g c l . p a r s eC l a s s (new F i l e ( " h e l l o . g roovy " ) ) ;
3
4 Method sum = c l a z z . getMethod ( "sum" ,
5 I n t e g e r . c l a s s ,
6 I n t e g e r . c l a s s ) ;
7 Object i n s t a n c e = c l a z z . new In s tance ( ) ;
8
9 System . out . p r i n t l n ( sum . i n voke ( i n s t an c e , 1 , 2) ) ;
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Language Combinations - Example

Listing 2: De�nition of sum in Groovy in hello.groovy.

1 def sum(a , b ) { a + b }

Listing 4: Invocation of sum with ScriptEngine (JSR-223).

1 Sc r ip tEng ineManage r f a c t o r y = new Scr ip tEng ineManage r ( ) ;
2 S c r i p tEng i n e eng i n e = f a c t o r y . getEngineByName ( " groovy " ) ;
3
4 eng i n e . e v a l (new F i l eR e ad e r (new F i l e ( " h e l l o . g roovy " ) ) ) ;
5 I n v o c a b l e i n v = ( I n v o c a b l e ) eng i n e ;
6 Object [ ] params = {1 , 2} ;
7
8 System . out . p r i n t l n ( i n v . i n vok eFunc t i on ( "sum" , params ) ) ;
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Language Combinations - Other Examples

• Java - Clojure (similar to Groovy)

• Java - C (JNI, JNA)

• Java - relational Database (JDBC, JPA etc.)

• .Net - relational Database (DataReader, DataTable etc.)

• ...
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Language Combinations - Summary

• Di�erent approaches for interaction between two languages

• Approach may provide di�erent options to establish interaction
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Di�ering Language Concepts - Example

Listing 5: Invoice item in database.

1 CREATE TABLE i n v o i c e (
2 i d INT ,
3 i n vo i c e_da t e DATE,
4 amount MONEY

5 ) ;

Listing 6: Read data from table.

1 va r query = "SELECT id , amount FROM i n v o i c e " ;
2 va r cmd = new SqlCommand ( query , cmd) ;
3 cmd . open ( ) ;
4 va r r e a d e r = cmd . ExecuteReader ( ) ;
5
6 va r i d = r e a d e r . Ge t I n t32 (0 ) ;
7 va r amount = r e ad e r . GetDecimal (1 ) ;
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Di�ering Language Concepts - Summary

• Languages may not share all concepts

• Languages may di�er in the implementation of a given concept

• Semantical changes may be necessary to adapt to a refactoring
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Summary of Challenges

...or why a general approach to refactoring MLSAs is hard.

• Number of languages and frameworks

• Di�ering language concepts

• Scaling a solution to 1 and 2
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Structure Graphs
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Challenges and Measures

Challenges to approach

• A refactoring may not exist for all interacting languages

• Automatic refactoring may not available for all languages

Means to address the challenges

• Developers need to detect language interaction

• Developers need to know the mechanics of language
interaction

A tool needs to enable developers

to complete refactorings manually.
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Structure Graphs - An Example

ID NAME

1 IT

2 HR

3 Sales

ID NAME DEPARTMENT

1 John Doe 1

Table: Tables departments and employees.

Listing 7: Query for department names.

1 S t r i n g stmt = "SELECT name "
2 + "FROM depar tments "
3 + "WHERE name LIKE ?" ;
4 PreparedStatement query =
5 con . p r epa r eS ta t ement ( stmt ) ;
6 // s n i p

departments

nameid
employees

departmentnameid

departments

name
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Implementation - General

• Extraction of structure graphs of host and guest language

• Comparison of structure graphs

• Augmentation of results with language-speci�c information
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Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that

• may be hidden in string
• may be encapsulated in framework-speci�c functions
• may use di�erent type system

• Agreement on the structure graph
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Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string

• may be encapsulated in framework-speci�c functions
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Listing 8: Invocation of sum with GroovyClassLoader.

1 i n v . i n vok eFunc t i on ( "sum" , params )
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Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string
• may be encapsulated in framework-speci�c functions

• may use di�erent type system

• Agreement on the structure graph

Listing 9: De�nition of column id.

1 va r i d = new DataColumn ( " i d " , typeof ( i n t ) ) ; // DataTable
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Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string
• may be encapsulated in framework-speci�c functions
• may use di�erent type system

• Agreement on the structure graph

Listing 10: Read of column amount.

1 va r amount = r e ad e r . GetDecimal (1 ) ; // DataReader
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Implementation - Extraction of Structure Graphs

• Extract elements involved in language interaction that
• may be hidden in string
• may be encapsulated in framework-speci�c functions
• may use di�erent type system

• Agreement on the structure graph
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Implementation - Preparation of Results

• The comparison returns missing and non-matching elements

• Additional information can be retrieved from the results
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Figure: General database schema with a foreign-key relationship.
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Implementation - Scalability

Adding new languages scales because...

• ...structure graph comparison is language independent

• ...a structure graph for a given guest language can be reused
for new host language

• ...preparation of results can be reused for new host languages

The structure graph approach scales over the host languages.
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Related Approaches

• Common Meta Model [Strein et al., 2006]
• Interacting languages share common syntax elements
• A refactoring exists for all interacting languages
• Applicable only for certain types of language interaction

• Linking Model [Mayer and Schroeder, 2014]
• Basis is a model of all syntax elements
• Binding resolvers establish links between the model's elements
• Binding resolvers encapsulate the mechanics of language
interaction

Hagen Schink Challenges in Refactoring MLSA 24/3424



Conclusion and Discussion
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Conclusion

• MLRs are hard to implement due to the structure of MLSAs

• Without MLRs it is error prone to refactor MLSAs

• Structure graphs support detection of broken interactions1

1Evaluation con�rms applicability and performance
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Discussion

Some provocative questions...

• Establishing language interaction at run-time impedes
refactoring: Should we deem it an anti-pattern inside MLSAs?

• Should standardization drive language interaction (like JPA or
JSR-223) to avoid clutter of APIs?

• To avoid MLR entirely, should we favor APIs (and API
versioning) also within MLSAs?

• Should we refactor a common platform to avoid MLR entirely
(see for instance Common Metal Model)?
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