
MOBS:  
Multi-Operator Observation-Based Slicing
using Lexical Approximation of Program
Dependence

Seongmin Lee

COINSE, KAIST

Program Slicing

• Generates a subset of the original program,
while preserving the specific behavior of
the original program.

• Specific behavior: Slicing Criterion < i , V > 
(i : line number, V : variable name)

2

Program Slicing

• Generates a subset of the original program,
while preserving the specific behavior of
the original program.

• Specific behavior: Slicing Criterion < i , V > 
(i : line number, V : variable name)

2

Program Slicing

• Generates a subset of the original program,
while preserving the specific behavior of
the original program.

• Specific behavior: Slicing Criterion < i , V > 
(i : line number, V : variable name)

2

• Limitations: lack of supports on 
- code unrecognizable dependency 
- multi-lingual systems

Dependency
analysis

“ORBS: Language-Independent Program Slicing”, FSE14

• Makes a series of deletions of code lines, which  
 
 1) leaves the code (still) compilable, and  
 
 2) preserves the trajectory of the slicing criterion.

3

➡ Purely dynamic & Language Independent

• Able to slice programs on which

• static slicers are unable to make the minimal slice,

• have highly unconventional semantics.

(Binkley et al. 2015, ORBS and the Limits of Static Slicing)

(Yoo et al. 2017, Observational slicing based on visual semantics)

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

• Makes a series of deletions of code lines, which  
 
 1) leaves the code (still) compilable, and  
 
 2) preserves the trajectory of the slicing criterion.

3

➡ Purely dynamic & Language Independent

• Able to slice programs on which

• static slicers are unable to make the minimal slice,

• have highly unconventional semantics.

(Binkley et al. 2015, ORBS and the Limits of Static Slicing)

(Yoo et al. 2017, Observational slicing based on visual semantics)

Observation-Based Slicing (ORBS)

Approximates the program dependence  
via observation of test executions

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE144

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

4

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

4

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

4

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

4

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

4

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

4

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

Window-Deletion

4

int	main()	{	
				int	sum	=	0;	
				int	i	=	1;	
				while	(i	<	11)	{	
								sum	=	sum	+	i;	
								i	=	i	+	1;	
				}	
				printf(“%d\n”,	sum);	
				printf(“ORBS:	%d\n”,	i);	
}		

Observation-Based Slicing (ORBS)

“ORBS: Language-Independent Program Slicing”, FSE14

ORBS: 
i=11

Window-Deletion

4

Limitations of ORBS

• Scalability

- Takes around 7200 s  
to delete 220 lines.  
 ⇒ 0.03 del/s 
 ⇒ 32.7 s/del

()‘escape’ package 
on Guava

5

Scalability

6

Efficiency

6

Number of  
Deleted Lines

Time spent

Efficiency

6

Number of  
Deleted Lines

Efficiency

Deletion  
Attempt

6

Number of  
Deleted Lines

Efficiency

Deletion  
Attempt

6

Number of  
Deleted Lines

Efficiency

Deletion  
Attempt

6

7

7

7

“ Delete all lines of code that are related to a word ‘log’! ”

7

“ Delete all lines of code that are related to a word ‘log’! ”

7

Spatial 
Neighborhood

Dependence Approximation

“ Delete all lines of code that are related to a word ‘log’! ”

7

Spatial 
Neighborhood

Lexical 
Neighborhood

Dependence Approximation

Deletion based on Lexical Similarity

• Vector Space Model

- Traditional method for calculating distances between text
documents and a query.

• Latent Dirichlet Allocation

- Probabilistic model that describes which topics are presented in
a given document.

8

Deletion based on Lexical Similarity

8

Cat Tiger Morality

Deletion based on Lexical Similarity

8

Cat Tiger Morality

[0.6,	0.7,	...] [0.6,	0.8,	...] [0.3,	0.4,	...]≈ ≈

Deletion based on Lexical Similarity

8

Cat Tiger Morality

[0.6,	0.7,	...] [0.6,	0.8,	...] [0.3,	0.4,	...]≈ ≈
• Consider each code lines as a document.

• Attempts to delete a set of code lines whose similarity is
above certain threshold.

• Vector Space Model

➡ VSM-Deletion

• Latent Dirichlet Allocation

➡ LDA-Deletion

Deletion based on Lexical Similarity

8

• Consider each code lines as a document.

• Attempts to delete a set of code lines whose similarity is
above certain threshold.

• Vector Space Model

➡ VSM-Deletion

• Latent Dirichlet Allocation

➡ LDA-Deletion

Deletion based on Lexical Similarity

8

⇒ Lexical Similarity based ORBS (LS-ORBS)
(Lee et al. 2016, Using source code lexical similarity to improve efficiency of observation based slicing)

Advantage of LS-ORBS w.r.t ORBS

ORBS (Window) LS-ORBS (VSM, LDA)

Can delete only up to k lines per
deletion attempt (k = window size)

Can delete an arbitrary number of
similar lines with a single deletion

Can delete consecutive lines only Can delete non-consecutive lines

Multiple deletion attempt on a
single line at each iteration

Single line - Single attempt at each
iteration

9

10

LS-ORBS - Subjects

• Java: 12 slice criteria from 3 open source java projects

- 3 slice criteria for each of subpackage ‘escape’ and ‘net’
from Guava.

- 3 slice criteria for each of apache-commons-csv, cli	

• C: Siemens Suite (except tcas)

- 1 slice criteria for each program (total 6)

LS-ORBS - Results

W−
ORBS

5 i
ter

s

LD
A−

ORBS

3 i
ter

s

VSM−
ORBS

3 i
ter

s

0
20

00
40

00
60

00
80

00

0
10

0
20

0
30

0
40

0
50

0

C
om

pi
le

s

Ex
ec

ut
es

●

●
●

18.87

7 5.79

1.27

0.83 0.76

●

Compiles
Execcutes
Deletes
CPD
EPD

W−
ORBS

5 i
ter

s

LD
A−

ORBS

3 i
ter

s

VSM−
ORBS

3 i
ter

s

0
20

0
40

0
60

0
80

0

0
20

00
40

00
60

00
80

00
12

00
0

D
el

et
es

(li
ne

)

Ti
m

e(
se

c)33.33

15.82 13.96

Deletes
Time
SPD

guava−escape 3: W−ORBS and LDA−ORBS, VSM−ORBS

44.79% # of compilations, 69.56% # of executions, 63.74% time taken

per deleted line.

11

Compare Strategies

of deleted lines

Efficiency

12

Compare Strategies

of deleted lines

Efficiency

ORBS
Window-Deletion

12

Compare Strategies

of deleted lines

Efficiency

LS-ORBS

ORBS
Window-Deletion

VSM-, LDA-Deletion

12

Compare Strategies

LS-ORBS ORBS

12

Compare Strategies

LS-ORBS ORBS

VSM-, LDA-Deletion 
+ 

Window-Deletion

12

Compare Strategies

of deleted lines

Efficiency
LS-ORBS

ORBS

12

Multi-operator Observation-Based Slicing

of deleted lines

Efficiency
LS-ORBS

ORBS

12

13

MOBS

Q. How to select the operator among various kind of
deletion operators ?

13

14

Operator Selection Strategies

Probability Distribution

15

Operator Selection Strategies

15

Operator Selection Strategies

Fixed Operator Selection 
(FOS)

• Uniform

• Applicability

• Success rate

• Affect

• # of deletable lines

15

Operator Selection Strategies

Fixed Operator Selection 
(FOS)

Rolling Operator Selection
(ROS)

D1
D2D3

D4

D8D5
D7D6

• Uniform

• Applicability

• Success rate

• Affect

• # of deletable lines

15

Operator Selection Strategies

Fixed Operator Selection 
(FOS)

Rolling Operator Selection
(ROS)

D1
D2

D3

D4
D8

D5 D7D6

• Uniform

• Applicability

• Success rate

• Affect

• # of deletable lines

15

Operator Selection Strategies

Fixed Operator Selection 
(FOS)

Rolling Operator Selection
(ROS)

D1
D2D3

D4

D8
D5

D7D6

• Uniform

• Applicability

• Success rate

• Affect

• # of deletable lines

15

Operator Selection Strategies

Fixed Operator Selection 
(FOS)

Rolling Operator Selection
(ROS)

D1
D2D3

D4

D8D5
D7D6

• Uniform

• Applicability

• Success rate

• Affect

• # of deletable lines

16

MOBS - Configuration

• 12 Studied Deletion Operators

- Window-Deletion of size 1, 2, 3, 4.

- VSM-, LDA-Deletion of threshold 0.6, 0.7, 0.8, 0.9.

• Repeats 20 times for each operator selection strategy.

16

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

17

MOBS - Results

17

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

17

MOBS - Results
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) between W-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

17

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

17

MOBS - Results
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) between W-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

17

ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) betweenW-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

17

MOBS - Results
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Lee et al.

Algorithm 1:MOBS
input :Source program P = {l1, ..., ln }, Slicing criterion (�, l, I), Set of

deletion operators D = {D1, ..., Dn }, Slicing Strategy S , Static
Proportion R , Proportion UpdaterU

output :A slice of P for (�, l, I)
1 O S����(P, �, l) . Insert a slicing criterion

2 V E������(B����(O), I) . Obtain the oracle

3 D I���O������� (D, S, R) . Set the selection prob.

4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O 0, l ine_cnt, status D(O, V , i, I) . Delete

9 D U (D, D, status, l ine_cnt) . Update the prob.

10 if status = success then
11 O, deleted O 0, True . Accept the deletion

12 until ¬deleted
13 return O

Table 1: Comparison of Number of Compilations (C), Number
of Test Executions (E), Execution Time (sec) (T), and Number of
Deleted Lines (D) between W-ORBS, VSM-ORBS, and LDA-ORBS

Subject W-ORBS VSM-ORBS (� = 0.9) LDA-ORBS (� = 0.9)
C E T D C E T D C E T D

commons-cli 21,707 2,398 33,121 1083 2,525 402 6,148 272 2,191 363 5,680 245
commons-csv 14,645 1,338 27,297 817 1,619 242 4,123 213 1,502 177 3,682 138
guava-escape 6,282 441 10,456 259 741 105 1,825 113 753 98 1,710 106
guava-net 12,511 816 22,202 887 1,715 331 5,749 405 1,650 169 5,499 209

uses pre-de�ned operator proportions for an entire slice. The pro-
portions are initialized in one of the following ways: uniform value,
using the number of successful deletions (applicability), using the
number of lines deleted (a�ect). In contrast, ROS updates the pro-
portion after each deletion attempt. The proportion updater U for
ROS changes operator proportions, which have been initialized
with a uniform value, based on the result of deletion.

4 EXPERIMENTAL SETUP
We ask the following research questions:
RQ1. Lexical Deletion Operators: How e�cient/e�ective is VSM-
ORBS, LDA-ORBS when compared to W-ORBS?
RQ2. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?

We use three real world Java projects in our empirical study:
commons-cli (2,081 NCLOC, 26 test cases) and commons-csv (1,504
NCLOC, 13 test cases) from Apache Commons Project, and Guava

which is a core Java library developed by Google. We choose three
slicing criteria for each Apache projects three slicing criteria from
each sub-package from Guavawe study: common.escape (590NCLOC,
6 test cases) and common.net (1,569 NCLOC, 8 test cases).

The library of deletion operators used by ORBS variants are:
W-ORBS with D�k where deletion window size k = 1, 2, 3, and
4, VSM-ORBS with D���� where threshold � = 0.6, 0.7, 0.8, and
0.9, and LDA-ORBS with D���� where threshold � = 0.6, 0.7, 0.8,
and 0.9. MOBS uses all of the aforementioned operators. Due to
the stochastic operator selection, we repeatMOBS runs 20 times.

5 RESULTS
Table 1 shows the result of the operator e�ciency comparisons
between W-ORBS, VSM-ORBS, and LDA-ORBS. Overall, VSM-
ORBS and LDA-ORBS delete 35.3% and 26.1% of the number of

Table 2: Statistics on Number of Deleted Lines (µdel), Execution
Time (µt ime), Seconds per Deletion (µspd), and Speed Up ratio w.r.t
W-ORBS by W-ORBS andMOBS

Criteria Strategy µdel µt ime µspd Speedup

commons-cli

ROS-MOBS 1051 20533 19.89 2.76
FOS-app-MOBS 957 23697 25.32 2.40
FOS-a�-MOBS 969 21690 22.89 2.62
FOS-uni-MOBS 951 23653 25.31 2.40
W-ORBS 1255 56897 46.01 1.00

commons-csv

ROS-MOBS 665 12850 19.86 3.61
FOS-app-MOBS 618 14862 24.55 3.11
FOS-a�-MOBS 625 14103 22.97 3.26
FOS-uni-MOBS 606 13531 22.68 3.39
W-ORBS 797 46008 58.78 1.00

guava-escape

ROS-MOBS 213 5172 24.75 3.17
FOS-app-MOBS 195 5146 26.64 3.21
FOS-a�-MOBS 201 5213 26.55 3.11
FOS-uni-MOBS 210 5143 24.89 3.17
W-ORBS 264 16249 63.01 1.00

guava-net

ROS-MOBS 788 11854 15.17 2.67
FOS-app-MOBS 724 11725 16.23 2.73
FOS-a�-MOBS 738 12362 16.88 2.55
FOS-uni-MOBS 730 12702 17.52 2.49
W-ORBS 917 31645 35.03 1.00

lines deleted by W-ORBS, respectively. However, VSM-ORBS uses
only 12.1% of compilations and 25.0% of executions of W-ORBS,
resulting in only 19.7% of the execution time of W-ORBS. Similarly,
LDA-ORBS uses 11.4% of compilations, 18.0% of executions, and
takes 18.5% of the execution time of W-ORBS.

Table 2 shows the average result of the e�ciency/e�ectiveness
comparisons between W-ORBS, and MOBS with the four di�erent
operator selection strategies. We terminateMOBS after the same
number of iterations W-ORBS required to terminate. While all the
MOBS variants slices the program more e�ciently than W-ORBS,
ROS-MOBS performs slightly better than others. Overall,MOBS
deletes about 79% of the lines W-ORBS deletes, using about one
third of the execution timeW-ORBS requires.

6 CONCLUSION
This paper makes two novel technical contributions. First, we
present a generalisation of observational slicing that can exploit
multiple deletion operators. Second, we introduce lexical deletion
operators that exploit lexical similarities between source code lines
to improve the e�ciency of ORBS. MOBS is the resulting obser-
vational slicer that uses multiple deletion operators including the
newly-introduced lexical deletion operators. The results of our em-
pirical evaluation of MOBS using three real world Java programs
suggest that MOBS can signi�cantly improve the e�ciency of W-
ORBS: it can delete about 79% of the lines deleted by W-ORBS,
while taking only about a third of the execution time.

REFERENCES
[1] David Binkley, Nicolas Gold, M. Harman, Syed Islam, Jens Krinke, and Shin

Yoo. 2014. ORBS: Language-Independent Program Slicing. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on the Foundations of Software
Engineering (FSE 2014). 109–120.

[2] David E. Goldberg. 1989. Genetic Algorithms in Search, Optimization & Machine
Learning. Addison-Wesley, Reading, MA.

The results show that MOBS can delete up to 79% lines in
less than 33% time compared to ORBS.

17

18

Again, Compare Strategies

18

LS-ORBS

ORBS

of deleted lines

Efficiency

18

Again, Compare Strategies

18

LS-ORBS

ORBS

MOBS

of deleted lines

Efficiency

20

Multi-language Subject

• Misaka(http://misaka.61924.nl)

• A Python binding for Hoedown, a
markdown parsing C library.

• Programming language:  
C, Python

20

NCLOC FILES TC

C 4360 10

Python 473 5

Total 4833 15 92

http://misaka.61924.nl/

21

Multi-language Configuration

• LS-ORBS

- Construct VSM and LDA model using the source code with
both programming language at once.

• MOBS

- Use the same deletion operators.

- Run the experiments once for each probability distribution
strategy.

21

22

LS-ORBS Results

22

wind
ow
−4

6 i
ter

s
vsm

−0
.9

4 i
ter

s

lda
−5

00
−0

.9

3 i
ter

s

0
10

00
0

30
00

0
50

00
0

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

C
om

pi
le

s

Ex
ec

ut
es

●

●

●

14.34

9.89
12.72

5.43

2.61 2.76

●

Compiles
Execcutes
Deletes
CPD
EPD

wind
ow
−4

6 i
ter

s
vsm

−0
.9

4 i
ter

s

lda
−5

00
−0

.9

3 i
ter

s
0

10
00

30
00

50
00

70
00

0
20

00
0

60
00

0
1e

+0
5

D
el

et
es

(li
ne

)

Ti
m

e(
se

c)

31.29

17.93 19.13

Deletes
Time
SPD

misaka_end 1: W−ORBS, VSM−ORBS and LDA−ORBS

23

MOBS Results

23

75% lines / 2.9X speed

Multi-lingural Deletion Examples

24

┌	callbacks.py (125) >	result	=	renderer.blockhtml(text)
└	hoedown/html.c (635) >	renderer->blockhtml	=	NULL;

• Both LDA and VSM Deletion operator

┌	callbacks.py (97) >	elif	align_bit	==	TABLE_ALIGN_LEFT:
|	callbacks.py (98) >					align	=	‘left'
└	hoedown/html.c (195) >	case	HOEDOWN_TABLE_ALIGN_LEFT:

• VSM Deletion operator

┌	api.py (29) >	lib.hoedown_buffer_puts(ib,	text.encode('utf-8'))
|	hoedown/document.c (2490) >	hoedown_buffer_free(text);
└	hoedown/html_smartypants.c (195) >	hoedown_buffer_putc(ob,	text[0]);

• LDA Deletion operator

26

Appendix A. Applicability & Affect

26

• Apply every deletion operators on each code line individually,
record the comparability and # of deleted lines.

26

26

Appendix A. Applicability & Affect

26

MOBS: Multi-Operator Observation-Based Slicing Conference’17, July 2017, Washington, DC, USA

the number of compilations and executions and consequently the
execution time.

All in all, comparisons provide an answer for RQ1: while lexical
deletion operators delete fewer lines, they use signi�cantly fewer
compilations and executions, resulting in shorter execution time,
making them highly attractive in terms of per-deletion e�ciency.

Table 3: Comparison between Deletion Operators

Criteria t W V L W \V W \ L V \W V \ L L \W L \V VDPS LDPS

cli-1 540 539 210 162 330 377 1 83 0 35 5.60 3.36
cli-2 636 633 269 177 367 456 3 125 0 33 7.04 2.46
cli-3 638 634 275 241 362 396 3 84 3 50 6.99 4.09

csv-1 487 485 207 146 279 340 1 77 1 16 5.76 5.29
csv-2 418 418 183 119 235 299 0 75 0 11 6.08 3.21
csv-3 486 486 212 121 274 365 0 101 0 10 5.82 2.31

esc-1 144 144 87 82 57 62 0 8 0 3 6.78 2.53
esc-2 130 130 80 72 50 58 0 12 0 4 7.12 3.13
esc-3 163 163 98 99 65 64 0 10 0 11 6.39 3.49

net-1 567 563 378 212 189 351 4 175 0 9 3.53 3.16
net-2 542 538 373 209 169 329 4 170 0 6 3.57 3.74
net-3 582 578 387 192 195 386 4 205 0 10 3.52 2.29

Table 4: Operator Proportions for FOS with Applicability

Criteria D��� with � = D��� with � = D� with � =

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 1 2 3 4

commons-cli-1 0.026 0.039 0.071 0.090 0.033 0.049 0.081 0.116 0.215 0.092 0.110 0.079
commons-cli-2 0.029 0.035 0.058 0.085 0.033 0.052 0.093 0.125 0.213 0.085 0.121 0.072
commons-cli-3 0.030 0.041 0.069 0.103 0.030 0.047 0.083 0.116 0.199 0.094 0.105 0.082

commons-csv-1 0.050 0.057 0.070 0.078 0.035 0.055 0.081 0.111 0.160 0.092 0.118 0.093
commons-csv-2 0.041 0.053 0.066 0.077 0.037 0.055 0.091 0.118 0.169 0.091 0.115 0.087
commons-csv-3 0.043 0.048 0.058 0.067 0.038 0.064 0.093 0.118 0.164 0.092 0.123 0.094

guava-escape-1 0.089 0.091 0.100 0.103 0.069 0.073 0.094 0.109 0.140 0.043 0.049 0.040
guava-escape-2 0.088 0.094 0.097 0.099 0.072 0.070 0.099 0.110 0.146 0.046 0.043 0.036
guava-escape-3 0.093 0.093 0.102 0.109 0.063 0.070 0.093 0.108 0.136 0.043 0.048 0.041

guava-net-1 0.042 0.046 0.056 0.066 0.080 0.099 0.109 0.115 0.133 0.082 0.090 0.082
guava-net-2 0.045 0.049 0.061 0.066 0.080 0.098 0.109 0.115 0.130 0.081 0.085 0.082
guava-net-3 0.033 0.040 0.052 0.061 0.083 0.101 0.112 0.120 0.138 0.084 0.092 0.085

Table 5: Operator Proportions for FOS with A�ect

Criteria D��� with � = D��� with � = D� with � =

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 1 2 3 4

commons-cli-1 0.045 0.052 0.054 0.053 0.085 0.098 0.120 0.149 0.071 0.060 0.109 0.104
commons-cli-2 0.029 0.026 0.032 0.051 0.084 0.118 0.204 0.153 0.062 0.050 0.107 0.084
commons-cli-3 0.046 0.043 0.071 0.091 0.071 0.101 0.170 0.128 0.054 0.051 0.086 0.089

commons-csv-1 0.084 0.085 0.085 0.083 0.070 0.089 0.086 0.139 0.041 0.048 0.092 0.097
commons-csv-2 0.047 0.054 0.058 0.053 0.091 0.102 0.117 0.175 0.049 0.053 0.100 0.101
commons-csv-3 0.038 0.037 0.038 0.036 0.093 0.125 0.121 0.174 0.051 0.057 0.114 0.116

guava-escape-1 0.066 0.066 0.066 0.058 0.171 0.128 0.149 0.153 0.037 0.023 0.039 0.043
guava-escape-2 0.076 0.072 0.071 0.068 0.169 0.121 0.149 0.149 0.036 0.022 0.031 0.035
guava-escape-3 0.094 0.088 0.089 0.078 0.144 0.111 0.130 0.133 0.035 0.022 0.037 0.041

guava-net-1 0.057 0.057 0.054 0.052 0.137 0.120 0.111 0.105 0.046 0.056 0.093 0.112
guava-net-2 0.062 0.065 0.071 0.067 0.130 0.114 0.106 0.101 0.042 0.052 0.083 0.107
guava-net-3 0.031 0.036 0.039 0.044 0.148 0.130 0.121 0.115 0.050 0.061 0.101 0.123

6.2 Operator Comparison
To answerRQ2, we investigate the relative applicability of di�erent
deletion operators. This is done by applying each deletion operator
to all lines of text in the program source code and identifying
which lines are successful application points for which deletion
operator. LetW , V , and L be the set of lines against which DM�
(more speci�cally, D�1 to D�4), D���, and D��� operators can

be successfully applied: let t be the union ofW , V , and L. We then
compute di�erence of these sets,V \W , L\W ,V \L, and L\V , to check
how uniquely these operators can be applied to di�erent locations.
Additionally, we compute the expected number of Deleted lines per
Successful application (DPS), which we interpret to be correlated to
the relative e�ectiveness of each operator. These values are denoted
asWDPS ,VDPS , and LDPS .

Table 3 presents sizes ofW , V , and L as well as set di�erences
between them, along with DPS values,VDPS and LDPS . The sizes
ofW are either identical or very close to that of t. Sizes of V and
L are signi�cantly smaller than that ofW ; |V \W | and |L \W | are
always close to zero. Overall, this suggests that DM� can handle
most of the deletions made by ORBS.

However, the results from DPS analysis provide evidence that
lexical deletion operators can still contribute to improving the ef-
�ciency of ORBS. Note that, since DPS measures the expected
number of deletions per successful application,WDPS is always 2.5
(i.e., the expected number of deletions of a successful application
of D�1 to D�4 would be 2.5: the mean of {1,. . . ,4}). In comparison,
VDPS and LDPS values are higher thanWDPS for most slicing
criteria, suggesting that, when successful, lexical deletion operators
are capable of deleting more lines per deletion. Lexical deletion
operators are also capable of deleting a small number of lines that
cannot be deleted by DM� operators (e.g.,V \W > 0 for all slicing
criteria in guava-net).

Note that higher DPS values do not necessarily mean that the
corresponding operator will be highly applicable, as it measures the
expected deletions per successful application. However, the results
in Table 3 suggest that, if applied appropriately, lexical deletion
operators can contribute to improving the e�ciency of ORBS by
deleting more lines per attempt. This provides an answer to RQ2
and justi�es our motivation forMOBS.

6.3 Operator Selection Strategy
Tables 4 and 5 respectively present the applicability and a�ect, com-
puted proportions for the FOS deletion operator. Lexical deletion
operators tend to show lower applicability proportions than a�ect
proportions. This is expected to some extent: while lexical deletion
operators are harder to apply in general, they delete more lines
when successful. Similarly, D�1 shows higher applicability propor-
tions but lower a�ect proportions when compared to D�4: there
are more opportunities to apply the single line deletion, but not
enough to counter the larger number of lines deleted by D�4.

Table 6 compares the e�ciency of four di�erent operator selec-
tion strategies forMOBS using SPD values. For later comparison
to W-ORBS, we terminate MOBS after the number of iterations
W-ORBS requires to terminate, and compute SPD values up to
that iteration. In Table 6, each of ROS, APP, AFF, and UNI refers
respectively to operator selection strategy: ROS, FOS with appli-
cability, FOS with a�ect, and FOS with uniform proportions. We
apply one-sided Mann-Whitney U Test with 95% con�dence level
in both directions. The alternative hypothesis for a column named
‘A < B’ is that the selection strategy A has lower SPD than B, and
‘A > B’ for the opposite direction. Statistically signi�cant results
are typeset in bold. We have applied Bonferroni correction [5, 11]
to counteract the large number of hypothesis tests that we perform.

26

26

Appendix A. Applicability & Affect

26

MOBS: Multi-Operator Observation-Based Slicing Conference’17, July 2017, Washington, DC, USA

the number of compilations and executions and consequently the
execution time.

All in all, comparisons provide an answer for RQ1: while lexical
deletion operators delete fewer lines, they use signi�cantly fewer
compilations and executions, resulting in shorter execution time,
making them highly attractive in terms of per-deletion e�ciency.

Table 3: Comparison between Deletion Operators

Criteria t W V L W \V W \ L V \W V \ L L \W L \V VDPS LDPS

cli-1 540 539 210 162 330 377 1 83 0 35 5.60 3.36
cli-2 636 633 269 177 367 456 3 125 0 33 7.04 2.46
cli-3 638 634 275 241 362 396 3 84 3 50 6.99 4.09

csv-1 487 485 207 146 279 340 1 77 1 16 5.76 5.29
csv-2 418 418 183 119 235 299 0 75 0 11 6.08 3.21
csv-3 486 486 212 121 274 365 0 101 0 10 5.82 2.31

esc-1 144 144 87 82 57 62 0 8 0 3 6.78 2.53
esc-2 130 130 80 72 50 58 0 12 0 4 7.12 3.13
esc-3 163 163 98 99 65 64 0 10 0 11 6.39 3.49

net-1 567 563 378 212 189 351 4 175 0 9 3.53 3.16
net-2 542 538 373 209 169 329 4 170 0 6 3.57 3.74
net-3 582 578 387 192 195 386 4 205 0 10 3.52 2.29

Table 4: Operator Proportions for FOS with Applicability

Criteria D��� with � = D��� with � = D� with � =

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 1 2 3 4

commons-cli-1 0.026 0.039 0.071 0.090 0.033 0.049 0.081 0.116 0.215 0.092 0.110 0.079
commons-cli-2 0.029 0.035 0.058 0.085 0.033 0.052 0.093 0.125 0.213 0.085 0.121 0.072
commons-cli-3 0.030 0.041 0.069 0.103 0.030 0.047 0.083 0.116 0.199 0.094 0.105 0.082

commons-csv-1 0.050 0.057 0.070 0.078 0.035 0.055 0.081 0.111 0.160 0.092 0.118 0.093
commons-csv-2 0.041 0.053 0.066 0.077 0.037 0.055 0.091 0.118 0.169 0.091 0.115 0.087
commons-csv-3 0.043 0.048 0.058 0.067 0.038 0.064 0.093 0.118 0.164 0.092 0.123 0.094

guava-escape-1 0.089 0.091 0.100 0.103 0.069 0.073 0.094 0.109 0.140 0.043 0.049 0.040
guava-escape-2 0.088 0.094 0.097 0.099 0.072 0.070 0.099 0.110 0.146 0.046 0.043 0.036
guava-escape-3 0.093 0.093 0.102 0.109 0.063 0.070 0.093 0.108 0.136 0.043 0.048 0.041

guava-net-1 0.042 0.046 0.056 0.066 0.080 0.099 0.109 0.115 0.133 0.082 0.090 0.082
guava-net-2 0.045 0.049 0.061 0.066 0.080 0.098 0.109 0.115 0.130 0.081 0.085 0.082
guava-net-3 0.033 0.040 0.052 0.061 0.083 0.101 0.112 0.120 0.138 0.084 0.092 0.085

Table 5: Operator Proportions for FOS with A�ect

Criteria D��� with � = D��� with � = D� with � =

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 1 2 3 4

commons-cli-1 0.045 0.052 0.054 0.053 0.085 0.098 0.120 0.149 0.071 0.060 0.109 0.104
commons-cli-2 0.029 0.026 0.032 0.051 0.084 0.118 0.204 0.153 0.062 0.050 0.107 0.084
commons-cli-3 0.046 0.043 0.071 0.091 0.071 0.101 0.170 0.128 0.054 0.051 0.086 0.089

commons-csv-1 0.084 0.085 0.085 0.083 0.070 0.089 0.086 0.139 0.041 0.048 0.092 0.097
commons-csv-2 0.047 0.054 0.058 0.053 0.091 0.102 0.117 0.175 0.049 0.053 0.100 0.101
commons-csv-3 0.038 0.037 0.038 0.036 0.093 0.125 0.121 0.174 0.051 0.057 0.114 0.116

guava-escape-1 0.066 0.066 0.066 0.058 0.171 0.128 0.149 0.153 0.037 0.023 0.039 0.043
guava-escape-2 0.076 0.072 0.071 0.068 0.169 0.121 0.149 0.149 0.036 0.022 0.031 0.035
guava-escape-3 0.094 0.088 0.089 0.078 0.144 0.111 0.130 0.133 0.035 0.022 0.037 0.041

guava-net-1 0.057 0.057 0.054 0.052 0.137 0.120 0.111 0.105 0.046 0.056 0.093 0.112
guava-net-2 0.062 0.065 0.071 0.067 0.130 0.114 0.106 0.101 0.042 0.052 0.083 0.107
guava-net-3 0.031 0.036 0.039 0.044 0.148 0.130 0.121 0.115 0.050 0.061 0.101 0.123

6.2 Operator Comparison
To answerRQ2, we investigate the relative applicability of di�erent
deletion operators. This is done by applying each deletion operator
to all lines of text in the program source code and identifying
which lines are successful application points for which deletion
operator. LetW , V , and L be the set of lines against which DM�
(more speci�cally, D�1 to D�4), D���, and D��� operators can

be successfully applied: let t be the union ofW , V , and L. We then
compute di�erence of these sets,V \W , L\W ,V \L, and L\V , to check
how uniquely these operators can be applied to di�erent locations.
Additionally, we compute the expected number of Deleted lines per
Successful application (DPS), which we interpret to be correlated to
the relative e�ectiveness of each operator. These values are denoted
asWDPS ,VDPS , and LDPS .

Table 3 presents sizes ofW , V , and L as well as set di�erences
between them, along with DPS values,VDPS and LDPS . The sizes
ofW are either identical or very close to that of t. Sizes of V and
L are signi�cantly smaller than that ofW ; |V \W | and |L \W | are
always close to zero. Overall, this suggests that DM� can handle
most of the deletions made by ORBS.

However, the results from DPS analysis provide evidence that
lexical deletion operators can still contribute to improving the ef-
�ciency of ORBS. Note that, since DPS measures the expected
number of deletions per successful application,WDPS is always 2.5
(i.e., the expected number of deletions of a successful application
of D�1 to D�4 would be 2.5: the mean of {1,. . . ,4}). In comparison,
VDPS and LDPS values are higher thanWDPS for most slicing
criteria, suggesting that, when successful, lexical deletion operators
are capable of deleting more lines per deletion. Lexical deletion
operators are also capable of deleting a small number of lines that
cannot be deleted by DM� operators (e.g.,V \W > 0 for all slicing
criteria in guava-net).

Note that higher DPS values do not necessarily mean that the
corresponding operator will be highly applicable, as it measures the
expected deletions per successful application. However, the results
in Table 3 suggest that, if applied appropriately, lexical deletion
operators can contribute to improving the e�ciency of ORBS by
deleting more lines per attempt. This provides an answer to RQ2
and justi�es our motivation forMOBS.

6.3 Operator Selection Strategy
Tables 4 and 5 respectively present the applicability and a�ect, com-
puted proportions for the FOS deletion operator. Lexical deletion
operators tend to show lower applicability proportions than a�ect
proportions. This is expected to some extent: while lexical deletion
operators are harder to apply in general, they delete more lines
when successful. Similarly, D�1 shows higher applicability propor-
tions but lower a�ect proportions when compared to D�4: there
are more opportunities to apply the single line deletion, but not
enough to counter the larger number of lines deleted by D�4.

Table 6 compares the e�ciency of four di�erent operator selec-
tion strategies forMOBS using SPD values. For later comparison
to W-ORBS, we terminate MOBS after the number of iterations
W-ORBS requires to terminate, and compute SPD values up to
that iteration. In Table 6, each of ROS, APP, AFF, and UNI refers
respectively to operator selection strategy: ROS, FOS with appli-
cability, FOS with a�ect, and FOS with uniform proportions. We
apply one-sided Mann-Whitney U Test with 95% con�dence level
in both directions. The alternative hypothesis for a column named
‘A < B’ is that the selection strategy A has lower SPD than B, and
‘A > B’ for the opposite direction. Statistically signi�cant results
are typeset in bold. We have applied Bonferroni correction [5, 11]
to counteract the large number of hypothesis tests that we perform.

26

26

Appendix A. Applicability & Affect

26

MOBS: Multi-Operator Observation-Based Slicing Conference’17, July 2017, Washington, DC, USA

the number of compilations and executions and consequently the
execution time.

All in all, comparisons provide an answer for RQ1: while lexical
deletion operators delete fewer lines, they use signi�cantly fewer
compilations and executions, resulting in shorter execution time,
making them highly attractive in terms of per-deletion e�ciency.

Table 3: Comparison between Deletion Operators

Criteria t W V L W \V W \ L V \W V \ L L \W L \V VDPS LDPS

cli-1 540 539 210 162 330 377 1 83 0 35 5.60 3.36
cli-2 636 633 269 177 367 456 3 125 0 33 7.04 2.46
cli-3 638 634 275 241 362 396 3 84 3 50 6.99 4.09

csv-1 487 485 207 146 279 340 1 77 1 16 5.76 5.29
csv-2 418 418 183 119 235 299 0 75 0 11 6.08 3.21
csv-3 486 486 212 121 274 365 0 101 0 10 5.82 2.31

esc-1 144 144 87 82 57 62 0 8 0 3 6.78 2.53
esc-2 130 130 80 72 50 58 0 12 0 4 7.12 3.13
esc-3 163 163 98 99 65 64 0 10 0 11 6.39 3.49

net-1 567 563 378 212 189 351 4 175 0 9 3.53 3.16
net-2 542 538 373 209 169 329 4 170 0 6 3.57 3.74
net-3 582 578 387 192 195 386 4 205 0 10 3.52 2.29

Table 4: Operator Proportions for FOS with Applicability

Criteria D��� with � = D��� with � = D� with � =

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 1 2 3 4

commons-cli-1 0.026 0.039 0.071 0.090 0.033 0.049 0.081 0.116 0.215 0.092 0.110 0.079
commons-cli-2 0.029 0.035 0.058 0.085 0.033 0.052 0.093 0.125 0.213 0.085 0.121 0.072
commons-cli-3 0.030 0.041 0.069 0.103 0.030 0.047 0.083 0.116 0.199 0.094 0.105 0.082

commons-csv-1 0.050 0.057 0.070 0.078 0.035 0.055 0.081 0.111 0.160 0.092 0.118 0.093
commons-csv-2 0.041 0.053 0.066 0.077 0.037 0.055 0.091 0.118 0.169 0.091 0.115 0.087
commons-csv-3 0.043 0.048 0.058 0.067 0.038 0.064 0.093 0.118 0.164 0.092 0.123 0.094

guava-escape-1 0.089 0.091 0.100 0.103 0.069 0.073 0.094 0.109 0.140 0.043 0.049 0.040
guava-escape-2 0.088 0.094 0.097 0.099 0.072 0.070 0.099 0.110 0.146 0.046 0.043 0.036
guava-escape-3 0.093 0.093 0.102 0.109 0.063 0.070 0.093 0.108 0.136 0.043 0.048 0.041

guava-net-1 0.042 0.046 0.056 0.066 0.080 0.099 0.109 0.115 0.133 0.082 0.090 0.082
guava-net-2 0.045 0.049 0.061 0.066 0.080 0.098 0.109 0.115 0.130 0.081 0.085 0.082
guava-net-3 0.033 0.040 0.052 0.061 0.083 0.101 0.112 0.120 0.138 0.084 0.092 0.085

Table 5: Operator Proportions for FOS with A�ect

Criteria D��� with � = D��� with � = D� with � =

0.6 0.7 0.8 0.9 0.6 0.7 0.8 0.9 1 2 3 4

commons-cli-1 0.045 0.052 0.054 0.053 0.085 0.098 0.120 0.149 0.071 0.060 0.109 0.104
commons-cli-2 0.029 0.026 0.032 0.051 0.084 0.118 0.204 0.153 0.062 0.050 0.107 0.084
commons-cli-3 0.046 0.043 0.071 0.091 0.071 0.101 0.170 0.128 0.054 0.051 0.086 0.089

commons-csv-1 0.084 0.085 0.085 0.083 0.070 0.089 0.086 0.139 0.041 0.048 0.092 0.097
commons-csv-2 0.047 0.054 0.058 0.053 0.091 0.102 0.117 0.175 0.049 0.053 0.100 0.101
commons-csv-3 0.038 0.037 0.038 0.036 0.093 0.125 0.121 0.174 0.051 0.057 0.114 0.116

guava-escape-1 0.066 0.066 0.066 0.058 0.171 0.128 0.149 0.153 0.037 0.023 0.039 0.043
guava-escape-2 0.076 0.072 0.071 0.068 0.169 0.121 0.149 0.149 0.036 0.022 0.031 0.035
guava-escape-3 0.094 0.088 0.089 0.078 0.144 0.111 0.130 0.133 0.035 0.022 0.037 0.041

guava-net-1 0.057 0.057 0.054 0.052 0.137 0.120 0.111 0.105 0.046 0.056 0.093 0.112
guava-net-2 0.062 0.065 0.071 0.067 0.130 0.114 0.106 0.101 0.042 0.052 0.083 0.107
guava-net-3 0.031 0.036 0.039 0.044 0.148 0.130 0.121 0.115 0.050 0.061 0.101 0.123

6.2 Operator Comparison
To answerRQ2, we investigate the relative applicability of di�erent
deletion operators. This is done by applying each deletion operator
to all lines of text in the program source code and identifying
which lines are successful application points for which deletion
operator. LetW , V , and L be the set of lines against which DM�
(more speci�cally, D�1 to D�4), D���, and D��� operators can

be successfully applied: let t be the union ofW , V , and L. We then
compute di�erence of these sets,V \W , L\W ,V \L, and L\V , to check
how uniquely these operators can be applied to di�erent locations.
Additionally, we compute the expected number of Deleted lines per
Successful application (DPS), which we interpret to be correlated to
the relative e�ectiveness of each operator. These values are denoted
asWDPS ,VDPS , and LDPS .

Table 3 presents sizes ofW , V , and L as well as set di�erences
between them, along with DPS values,VDPS and LDPS . The sizes
ofW are either identical or very close to that of t. Sizes of V and
L are signi�cantly smaller than that ofW ; |V \W | and |L \W | are
always close to zero. Overall, this suggests that DM� can handle
most of the deletions made by ORBS.

However, the results from DPS analysis provide evidence that
lexical deletion operators can still contribute to improving the ef-
�ciency of ORBS. Note that, since DPS measures the expected
number of deletions per successful application,WDPS is always 2.5
(i.e., the expected number of deletions of a successful application
of D�1 to D�4 would be 2.5: the mean of {1,. . . ,4}). In comparison,
VDPS and LDPS values are higher thanWDPS for most slicing
criteria, suggesting that, when successful, lexical deletion operators
are capable of deleting more lines per deletion. Lexical deletion
operators are also capable of deleting a small number of lines that
cannot be deleted by DM� operators (e.g.,V \W > 0 for all slicing
criteria in guava-net).

Note that higher DPS values do not necessarily mean that the
corresponding operator will be highly applicable, as it measures the
expected deletions per successful application. However, the results
in Table 3 suggest that, if applied appropriately, lexical deletion
operators can contribute to improving the e�ciency of ORBS by
deleting more lines per attempt. This provides an answer to RQ2
and justi�es our motivation forMOBS.

6.3 Operator Selection Strategy
Tables 4 and 5 respectively present the applicability and a�ect, com-
puted proportions for the FOS deletion operator. Lexical deletion
operators tend to show lower applicability proportions than a�ect
proportions. This is expected to some extent: while lexical deletion
operators are harder to apply in general, they delete more lines
when successful. Similarly, D�1 shows higher applicability propor-
tions but lower a�ect proportions when compared to D�4: there
are more opportunities to apply the single line deletion, but not
enough to counter the larger number of lines deleted by D�4.

Table 6 compares the e�ciency of four di�erent operator selec-
tion strategies forMOBS using SPD values. For later comparison
to W-ORBS, we terminate MOBS after the number of iterations
W-ORBS requires to terminate, and compute SPD values up to
that iteration. In Table 6, each of ROS, APP, AFF, and UNI refers
respectively to operator selection strategy: ROS, FOS with appli-
cability, FOS with a�ect, and FOS with uniform proportions. We
apply one-sided Mann-Whitney U Test with 95% con�dence level
in both directions. The alternative hypothesis for a column named
‘A < B’ is that the selection strategy A has lower SPD than B, and
‘A > B’ for the opposite direction. Statistically signi�cant results
are typeset in bold. We have applied Bonferroni correction [5, 11]
to counteract the large number of hypothesis tests that we perform.

26

Appendix B. ROS Formula

Conference’17, July 2017, Washington, DC, USA

Algorithm 3:MOBS
input :Source program P = {l1, ..., ln },

Slicing criterion (�, l ,I),
Set of deletion operators D = {D1, ...,Dn },
Proportion UpdaterU ,
Static Proportion R

output :A slice, S , of P for (�, l ,I)
1 O S����(P,�, l)
2 V E������(B����(O),I)
3 D I���O������� (D, S,R)
4 repeat
5 deleted False
6 for i L����� (O) to 1 do
7 D S�����O�������(D)
8 O

0, line_cnt , status D(O,V , i,I)
9 D U (D,D, status, line_cnt)

10 if status = success then
11 O O

0

12 deleted True
13 end
14 end
15 until ¬deleted
16 return O

Algorithm 4: Applicability/A�ect Measurement for FOS
input :Source program P = {l1, ..., ln },

Slicing criterion (�, l ,I),
Set of deletion operators D = {D1, ...,Dn }

output :Static Proportion R

1 O S����(P,�, l)
2 V E������(B����(O),I)
3 R I���������(D, L����� (O))
4 for i L����� (O) to 1 do
5 foreach D 2 D do
6 O

0, line_cnt , status D(O,V , i,I)
7 if status = success then
8 RD [i] 1 . {Applicability}
9 RD [i] line_cnt . {Affect}

10 end
11 end
12 end
13 return R

for FOS simply returns the current operator proportions, D, un-
changed. We evaluate the three di�erent variations of FOS: one
using a distribution based on applicability, one using a distribution
based on a�ect, and one using a uniform distribution.

Algorithm 4 presents the calculation of the data used to compute
the applicability and a�ect distributions. Given a source program,
a slicing criterion, and a set of deletion operators, D, it returns a
proportion array, R, for each deletion operatorD 2 D. The function
I��������� assigns each entry the value 0. The algorithm iteratively

applies each operator D to each source line and records in the
proportion array RD, either the deletion’s successful application or
the number of lines deleted. During the execution MOBS uses the
following probabilities for each deletion operator D:

P (D) =
P
1in RD[i]P

D’2D
P
1in RD’[i]

(1)

4.3 Rolling Operator Selection (ROS)
In contrast to the FOS strategy, the Rolling Operator Selection (ROS)
updates the proportion after each deletion attempt. The proportions
of the operators P (D) are initialised with a uniform value. The
proportion updater U for ROS changes operator proportions based
on the result of deletion with the respective operator according to
Equation 2:

Pnew (D) =

8>>>><>>>>:

�comp · P (D) compilation-error

�exec · P (D) trajectory-change⇣
1 + log10 (line_cnt + 1)

⌘
· P (D) success

(2)

The penalty factor for a compilation failure, �comp , and an ex-
ecution failure �exec , are both in the range 2 [0, 1): we penalise
compilation failure more severely (i.e., �comp �exec) because
successful compilation is necessary condition for a successful dele-
tion. On the other hand, a successful deletion always increases the
proportion as log10 (line_cnt + 1) > 0. Based on our empirical in-
vestigation, we set �comp as 0.98 and �exec as 0.99. The selection
of the next operator is based on the updated proportions.

5 EXPERIMENTAL SETUP
5.1 Research Questions
Our empirical studies are designed to answer the following research
questions:

RQ1. Lexical Deletion Operators: How e�cient/ e�ective are lex-
ical deletion operators? We compare the results of VSM-ORBS, LDA-
ORBS and W-ORBS with respect to the number of lines deleted
(e�ectiveness) and the time it takes to complete slicing (e�ciency).
We also investigate the impact of similarity threshold parameter
for VSM-ORBS and LDA-ORBS.

RQ2. Operator Comparison: How di�erent are the deletion op-
erators from each other, both quantitatively and qualitatively? As
discussed in 3.4, the lexical deletion operators have di�erent criteria
for choosing lines to delete. We analyse how each deletion opera-
tors slices the source code by comparing the operator proportions
for FOS (both applicability and a�ect). We also investigates the
di�erences between �nal slices obtained using di�erent deletion
operators.

RQ3. Operator Selection Strategy: Between variations of FOS and
ROS, what is the strategy that is the most e�ective and e�cient? We
compare both the performance and the resulting slice sizes using
the three variations of FOS as well as ROS.

RQ4. MOBS: How e�cient/e�ective is MOBS compare to W-ORBS?
Finally, we compare MOBS to the original ORBS (i.e., W-ORBS) in
terms of e�ectiveness and e�ciency.

27

Appendix C. Statistics b/w MOBS Strategies
Conference’17, July 2017, Washington, DC, USA

Table 6: Results of Mann-Whitney U Test on SPD between Selection Strategies after Bonferroni Correction

Criteria pBonf
ROS < APP ROS < AFF ROS < UNI APP < AFF APP < UNI AFF < UNI ROS > APP ROS > AFF ROS > UNI APP > AFF APP > UNI AFF > UNI

commons-cli-1 <0.05 <0.05 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 1.0 1.0
commons-cli-2 0.10 1.0 <0.05 1.0 1.0 <0.05 1.0 1.0 1.0 0.81 1.0 1.0
commons-cli-3 <0.05 <0.05 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 1.0 1.0

commons-csv-1 <0.05 <0.05 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
commons-csv-2 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 1.0
commons-csv-3 <0.05 0.40 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

guava-escape-1 1.0 0.11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
guava-escape-2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.28 0.48
guava-escape-3 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 <0.05 1.0

guava-net-1 1.0 <0.05 <0.05 1.0 0.81 <0.05 1.0 1.0 1.0 1.0 1.0 1.0
guava-net-2 1.0 0.31 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
guava-net-3 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 0.19 1.0

Table 7: Â12 on SPD between Selection Strategies

Criteria Vargha-Delaney Â12
ROS < APP ROS < AFF ROS < UNI APP < AFF APP < UNI AFF < UNI

commons-cli-1 0.04 0.08 0.08 0.86 0.59 0.29
commons-cli-2 0.21 0.29 0.00 0.73 0.43 0.11
commons-cli-3 0.10 0.19 0.16 0.82 0.69 0.32

commons-csv-1 0.11 0.12 0.15 0.66 0.63 0.45
commons-csv-2 0.19 0.42 0.54 0.73 0.82 0.61
commons-csv-3 0.15 0.25 0.12 0.64 0.48 0.29

guava-escape-1 0.39 0.22 0.38 0.34 0.57 0.65
guava-escape-2 0.28 0.30 0.53 0.63 0.76 0.75
guava-escape-3 0.04 0.52 0.39 0.92 0.88 0.39

guava-net-1 0.34 0.15 0.09 0.37 0.27 0.19
guava-net-2 0.42 0.24 0.21 0.44 0.37 0.39
guava-net-3 0.14 0.42 0.41 0.87 0.77 0.40

The raw p–values are multiplied by the total number of hypotheses
we test, which is 144 (we record 1.0 if the result is greater than 1.0).

The results show that ROS tends to outperform other strategies,
even after the Bonferroni correction. Overall, FOSwith applicability,
a�ect, and uniform proportions show little di�erence from each
other. In addition to the Mann-Whitney U Test, Table 7 shows the
result of Vargha-Delaney Â12 statistic [29] on SPD: similarly to
Table 6, values less than < 0.5 suggests strategy A outperforms B
and are typeset in bold. Overall, the Â12 statistic agrees with the
results of Mann-Whitney U Test. To answer RQ3: Rolling Operator
Selection (ROS) shows the best performance.

6.4 Comparison betweenMOBS andW-ORBS
Finally, we compareMOBS toW-ORBS. Table 8 shoes the means
and standard deviations for the execution times and the number of
deleted lines for W-ORBS as well as MOBS with the four di�erent
operator selection strategies. Figure 5 contains boxplots that show
the distributions of these values. Note that the �-axis for the exe-
cution time boxplots on the right use a logarithmic scale. For all
results, MOBS is terminated after the same number of iterations
W-ORBS required to terminate. Using the same number of itera-
tion provides us a stopping criterion that is independent from the
relative di�culties of each slicing criterion we study.

Among theMOBS variants, ROS-MOBS performs the best. For
the commons-csv-1 slicing criterion, the number of lines deleted
by ROS-MOBS is 87% of those deleted by W-ORBS; to produce

this result, ROS-MOBS only requires 28% of the execution time
W-ORBS takes. The worst e�ectiveness of ROS-MOBS can be seen
in the guava-net-2 criterion: ROS-MOBS only deletes 73% of what
W-ORBS deleted (taking 35% of the execution time of W-ORBS).
Theworst e�ciency of ROS-MOBS, on the other hand, is foundwith
guava-net-3, for which ROS-MOBS takes 41% of the execution
time required by W-ORBS (deleting 85% of the lines that W-ORBS
deleted). Overall,MOBS deletes roughly 80% of the number of lines
W-ORBS deletes, using roughly about one third of the execution
timeW-ORBS requires.

Table 9 presents the per-deletion e�ciency (i.e., Seconds per
Deletion) for MOBS and W-ORBS, as well as the speed-up. For
Table 9, we computed two sets of results: one using only up to
the same number of iterationsW-ORBS requires to terminate (W-
ORBS Iter.), and another using all the iterations eachMOBS variant
requires to terminate (All Iter.). While SPD and speedup values for
theW-ORBS Iterations scenario is in line with the results shown
in Table 8 and Figure 5, the results for the All Iterations scenario
shows an interesting trend: while FOS variants of MOBS often
takes longer thanW-ORBS, ROS-MOBS consistently requires less
execution time to terminate. This suggests that dynamic learning of
operator applicability has signi�cant potential with respect to the
scalability of ORBS. To answer RQ4:MOBS with Rolling Operator
Selection strategy can be both e�ective and e�cient, being capable
of deleting over 80% of the number of lines deleted by W-ORBS,
while requiring roughly only one third of wall clock execution time.

7 RELATEDWORK
Since its introduction by Weiser in the 1970s [31], program slicing
has been widely studied and developed until the present day [3, 4,
17, 18]. Static program slicing produces slices that are correct for all
possible program executions, whereas dynamic slicing aims to tailor
slices to a particular set of program inputs [19]. Observation-Based
Slicing (ORBS) is a recently introduced type of dynamic slicing:
it only preserves program dependencies that are observable [6]
via program execution. The dynamic nature of ORBS means it
under-approximates the semantics of program dependence, limited
by the test suites used as input. However, accepting deletions of
source code lines based on purely dynamic observation has its own
bene�ts, such as being able to handle dependencies that no static
slicers can cope with [7], slicing multi-lingual systems [7, 14], and

28

Appendix C. Statistics b/w MOBS Strategies

Conference’17, July 2017, Washington, DC, USA

Table 6: Results of Mann-Whitney U Test on SPD between Selection Strategies after Bonferroni Correction

Criteria pBonf
ROS < APP ROS < AFF ROS < UNI APP < AFF APP < UNI AFF < UNI ROS > APP ROS > AFF ROS > UNI APP > AFF APP > UNI AFF > UNI

commons-cli-1 <0.05 <0.05 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 1.0 1.0
commons-cli-2 0.10 1.0 <0.05 1.0 1.0 <0.05 1.0 1.0 1.0 0.81 1.0 1.0
commons-cli-3 <0.05 <0.05 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 1.0 1.0

commons-csv-1 <0.05 <0.05 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
commons-csv-2 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 1.0
commons-csv-3 <0.05 0.40 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

guava-escape-1 1.0 0.11 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
guava-escape-2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.28 0.48
guava-escape-3 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 <0.05 1.0

guava-net-1 1.0 <0.05 <0.05 1.0 0.81 <0.05 1.0 1.0 1.0 1.0 1.0 1.0
guava-net-2 1.0 0.31 0.10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
guava-net-3 <0.05 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 <0.05 0.19 1.0

Table 7: Â12 on SPD between Selection Strategies

Criteria Vargha-Delaney Â12
ROS < APP ROS < AFF ROS < UNI APP < AFF APP < UNI AFF < UNI

commons-cli-1 0.04 0.08 0.08 0.86 0.59 0.29
commons-cli-2 0.21 0.29 0.00 0.73 0.43 0.11
commons-cli-3 0.10 0.19 0.16 0.82 0.69 0.32

commons-csv-1 0.11 0.12 0.15 0.66 0.63 0.45
commons-csv-2 0.19 0.42 0.54 0.73 0.82 0.61
commons-csv-3 0.15 0.25 0.12 0.64 0.48 0.29

guava-escape-1 0.39 0.22 0.38 0.34 0.57 0.65
guava-escape-2 0.28 0.30 0.53 0.63 0.76 0.75
guava-escape-3 0.04 0.52 0.39 0.92 0.88 0.39

guava-net-1 0.34 0.15 0.09 0.37 0.27 0.19
guava-net-2 0.42 0.24 0.21 0.44 0.37 0.39
guava-net-3 0.14 0.42 0.41 0.87 0.77 0.40

The raw p–values are multiplied by the total number of hypotheses
we test, which is 144 (we record 1.0 if the result is greater than 1.0).

The results show that ROS tends to outperform other strategies,
even after the Bonferroni correction. Overall, FOSwith applicability,
a�ect, and uniform proportions show little di�erence from each
other. In addition to the Mann-Whitney U Test, Table 7 shows the
result of Vargha-Delaney Â12 statistic [29] on SPD: similarly to
Table 6, values less than < 0.5 suggests strategy A outperforms B
and are typeset in bold. Overall, the Â12 statistic agrees with the
results of Mann-Whitney U Test. To answer RQ3: Rolling Operator
Selection (ROS) shows the best performance.

6.4 Comparison betweenMOBS andW-ORBS
Finally, we compareMOBS toW-ORBS. Table 8 shoes the means
and standard deviations for the execution times and the number of
deleted lines for W-ORBS as well as MOBS with the four di�erent
operator selection strategies. Figure 5 contains boxplots that show
the distributions of these values. Note that the �-axis for the exe-
cution time boxplots on the right use a logarithmic scale. For all
results, MOBS is terminated after the same number of iterations
W-ORBS required to terminate. Using the same number of itera-
tion provides us a stopping criterion that is independent from the
relative di�culties of each slicing criterion we study.

Among theMOBS variants, ROS-MOBS performs the best. For
the commons-csv-1 slicing criterion, the number of lines deleted
by ROS-MOBS is 87% of those deleted by W-ORBS; to produce

this result, ROS-MOBS only requires 28% of the execution time
W-ORBS takes. The worst e�ectiveness of ROS-MOBS can be seen
in the guava-net-2 criterion: ROS-MOBS only deletes 73% of what
W-ORBS deleted (taking 35% of the execution time of W-ORBS).
Theworst e�ciency of ROS-MOBS, on the other hand, is foundwith
guava-net-3, for which ROS-MOBS takes 41% of the execution
time required by W-ORBS (deleting 85% of the lines that W-ORBS
deleted). Overall,MOBS deletes roughly 80% of the number of lines
W-ORBS deletes, using roughly about one third of the execution
timeW-ORBS requires.

Table 9 presents the per-deletion e�ciency (i.e., Seconds per
Deletion) for MOBS and W-ORBS, as well as the speed-up. For
Table 9, we computed two sets of results: one using only up to
the same number of iterationsW-ORBS requires to terminate (W-
ORBS Iter.), and another using all the iterations eachMOBS variant
requires to terminate (All Iter.). While SPD and speedup values for
theW-ORBS Iterations scenario is in line with the results shown
in Table 8 and Figure 5, the results for the All Iterations scenario
shows an interesting trend: while FOS variants of MOBS often
takes longer thanW-ORBS, ROS-MOBS consistently requires less
execution time to terminate. This suggests that dynamic learning of
operator applicability has signi�cant potential with respect to the
scalability of ORBS. To answer RQ4:MOBS with Rolling Operator
Selection strategy can be both e�ective and e�cient, being capable
of deleting over 80% of the number of lines deleted by W-ORBS,
while requiring roughly only one third of wall clock execution time.

7 RELATEDWORK
Since its introduction by Weiser in the 1970s [31], program slicing
has been widely studied and developed until the present day [3, 4,
17, 18]. Static program slicing produces slices that are correct for all
possible program executions, whereas dynamic slicing aims to tailor
slices to a particular set of program inputs [19]. Observation-Based
Slicing (ORBS) is a recently introduced type of dynamic slicing:
it only preserves program dependencies that are observable [6]
via program execution. The dynamic nature of ORBS means it
under-approximates the semantics of program dependence, limited
by the test suites used as input. However, accepting deletions of
source code lines based on purely dynamic observation has its own
bene�ts, such as being able to handle dependencies that no static
slicers can cope with [7], slicing multi-lingual systems [7, 14], and

28

