
Tree vs. Line
Observation-Based

Slicing

Dave Binkley  

Joint work with 
Nicolas Gold, Syed Islam, Jens Krinke, and Shin Yoo

• Program P
 prod = 1
 sum = 0
 i = 1
 while (i < 10)
 prod *= i
 sum += i
 i += 1
 endwhile
 print sum
 print prod

A Slice - Two Requirements

• A slice of P
• Syntactic subset

 sum = 0
 i = 1
 while (i < 10)

 sum += i
 i += 1
 endwhile
 print sum

• Program P
 prod = 1
 sum = 0
 i = 1
 while (i < 10)
 prod *= i
 sum += i
 i += 1
 endwhile
 print sum
 print prod

A Slice - Two Requirements

• Same Semantics
• Sequence of values

 <45>
 <362880>

• A slice of P
• Syntactic subset

 sum = 0
 i = 1
 while (i < 10)

 sum += i
 i += 1
 endwhile
 print sum

• Program P
 prod = 1
 sum = 0
 i = 1
 while (i < 10)
 prod *= i
 sum += i
 i += 1
 endwhile
 print sum
 print prod

A Slice - Two Requirements

Static Slicing (Weiser)

A static slice S of program P on slicing criterion C  
is any executable program where

1. S can be obtained from P  
by deleting zero or more statements from P.

2. Whenever P halts on  
with state trajectory T,  
then S also halts on input i with state trajectory T′ 
and PROJC(T) is the same as PROJC(T′),

where PROJC projects values associated with C.

any input i

A static slice S of program P on slicing criterion C  
is any executable program where

1. S can be obtained from P  
by deleting zero or more statements from P.

2. Whenever P halts on  
with state trajectory T,  
then S also halts on input i with state trajectory T′ 
and PROJC(T) is the same as PROJC(T′),

where PROJC projects values associated with C.

any input i

Dynamic Slicing

input i ∈ I

dynamic

Slicing is easy!

Slicing is easy!

i=0

i<names.length

check

pw pws names

[] []

match
=false

return
match

names[i]==user

pws[i]==pw

match=true

i++

user

Slicing is easy!

• … just traverse the  
dependences  
(backward) i=0

i<names.length

check

pw pws names

[] []

match
=false

return
match

names[i]==user

pws[i]==pw

match=true

i++

user

Slicing is easy!

• … just traverse the  
dependences  
(backward) i=0

i<names.length

check

pw pws names

[] []

match
=false

return
match

names[i]==user

pws[i]==pw

match=true

i++

user

• Oh wait, dependence  
analysis is hard!

Slicing is easy!

• … just traverse the  
dependences  
(backward) i=0

i<names.length

check

pw pws names

[] []

match
=false

return
match

names[i]==user

pws[i]==pw

match=true

i++

user

• Oh wait, dependence  
analysis is hard!

• Ever had a go at Pointer Analysis 😎

SCAM 2001 
Which Lines do not affect x?

		1	int	mug(int	i,	int	c,	int	x)	
		2	{	
		3			while	(p(i))	
		4			{	
		5					if	(q(c))		
		6					{	
		7							x	=	f();	
		8							c	=	g();	
		9					}	
	10					i	=	h(i);	
	11			}	
	12			printf("@%d\n",	x);	
	13	}

☟

SCAM 2001 
Which Lines do not affect x?

		1	int	mug(int	i,	int	c,	int	x)	
		2	{	
		3			while	(p(i))	
		4			{	
		5					if	(q(c))		
		6					{	
		7							x	=	f();	
		8							c	=	g();	
		9					}	
	10					i	=	h(i);	
	11			}	
	12			printf("@%d\n",	x);	
	13	}

☟

SCAM 2001 
Which Lines do not affect x?

		1	int	mug(int	i,	int	c,	int	x)	
		2	{	
		3			while	(p(i))	
		4			{	
		5					if	(q(c))		
		6					{	
		7							x	=	f();	
		8							c	=	g();	
		9					}	
	10					i	=	h(i);	
	11			}	
	12			printf("@%d\n",	x);	
	13	}

☟

SCAM 2001 
Which Lines do not affect x?

		1	int	mug(int	i,	int	c,	int	x)	
		2	{	
		3			while	(p(i))	
		4			{	
		5					if	(q(c))		
		6					{	
		7							x	=	f();	
		8							c	=	g();	
		9					}	
	10					i	=	h(i);	
	11			}	
	12			printf("@%d\n",	x);	
	13	}

☟

Observation-Based Slicing

• side-steps dependence analysis

• is language independent

• slices multiple languages

• supports binary components and libraries

• produces executable slices

Observation-Based Slicing

• side-steps dependence analysis

• is language independent

• slices multiple languages

• supports binary components and libraries

• produces executable slices

All without any dependence analysis!

Here’s how it works

• delete something (e.g., a line of text)

• execute candidate slice

• observe the behaviour of criterion

• accept deletion if behaviour is unchanged

• repeat until no more deletions are possible

i=0

i<names.length

check

pw pws names

[] []

match
=false

return
match

names[i]==user

pws[i]==pw

match=true

i++

user✗

YeabutTree-ORBS: Observation-Based Slicing for XML Nicolas Gold et al.

Add

s

1

Constant1

Subtract

p
Productn from workspace

u1 if(u1 <= 1)

If

sum
prod
n for termination

if { }

If Action
Subsystem1

Display

Display1

Display2

������

���������
�

�

���

"

�
��

���#���

$��%�
���	��

�
��#���

$��%�
���	���

&

����
���
���	����

����

����	
�
$�������	��

$'�

����
���!	����

Figure 2: The sum/product example as implemented in Simulink. The top
system is the main program, and the bottom system is the if-action subsystem
implementing termination.

have been deleted and are now reliant on their defaults only). Moving a block
causes Simulink to crash.

3.3.2 Retaining Layout Information

In an attempt to resolve the layout issue, the compile script was modified to
use XPath queries to count the block and position elements and check the two
counts matched. The results were better but not perfect: blocks retained their
relative location but the lines connecting them all passed through a point on
the top left of the canvas. In addition, the file would not load reliably.

RN/00/00 4

Here’s my source code

Yeabut

🙁 but is not natural

Tree-ORBS: Observation-Based Slicing for XML Nicolas Gold et al.

Add

s

1

Constant1

Subtract

p
Productn from workspace

u1 if(u1 <= 1)

If

sum
prod
n for termination

if { }

If Action
Subsystem1

Display

Display1

Display2

������

���������
�

�

���

"

�
��

���#���

$��%�
���	��

�
��#���

$��%�
���	���

&

����
���
���	����

����

����	
�
$�������	��

$'�

����
���!	����

Figure 2: The sum/product example as implemented in Simulink. The top
system is the main program, and the bottom system is the if-action subsystem
implementing termination.

have been deleted and are now reliant on their defaults only). Moving a block
causes Simulink to crash.

3.3.2 Retaining Layout Information

In an attempt to resolve the layout issue, the compile script was modified to
use XPath queries to count the block and position elements and check the two
counts matched. The results were better but not perfect: blocks retained their
relative location but the lines connecting them all passed through a point on
the top left of the canvas. In addition, the file would not load reliably.

RN/00/00 4

Here’s my source code

😀 ORBS can slice Simulink models

😀 ORBS can slice Simulink models
🙁 but is not natural

<Block BlockType="SubSystem"  
 Name="while loop body" SID="104">
 <P Name="Ports">[2, 2, 0, 0, 0, 0, 0, 1]</P>
 <P Name="Position">[395, 222, 465, 258]</P>
 <P Name="RequestExecContextInheritance">off</P> 
 ….

Enter Tree-ORBS

TORBS can slice Simulimk’s XML trees!

Enter Tree-ORBS

TORBS can slice Simulimk’s XML trees!

1 if (x < 0) {
2 print x;
3 }
4 y = 42; // Slice taken w.r.t. y

Fig. 1. Deletion Window Motivation

Algorithm 2: Core of the Tree-ORBS Slicer
T-ORBS CORE(T,O, I)
Input: Current Tree T , the criterion consisting of observer O,
and input set I
Output: Updated Tree, T
(1) q ← APPEND(empty queue, start node(T))
(2) while ¬ EMPTY(q)
(3) c← DEQUEUE(q)
(4) T ′ ← DELETE(T, c)
(5) V ′ ← O(T ′, I)
(6) if V = V ′

(7) T ← T ′

(8) else
(9) q ← APPEND(q, CHILDREN(c))
(10) return T

them results in a syntax error. ORBS avoids this issue by
increasing the deletion window until the result compiles. Using
a maximum deletion window size max ws of two or more,
ORBS produces the desired slice.

T-ORBS, the second implementation of observation-based
slicing, was built to slice Simulink models including any
embedded Stateflow, both of which are stored using XML [2].
In the same paper, observation-based slicing was generalized
to observational slicing. The original definition as given in
Section II compared sequences of values observed during
execution. Observational slicing generalizes this comparison
by introducing an observer O and a matching relation R as part
of the criterion. In this paper, only traditional observations and
matching are used, and therefore, the term observation-based
is used. It also permits the simplified version of T-ORBS core
shown as Algorithm 2. Rather than line-by-line, the loop on
Line (2) performs a breadth-first tree traversal. During each
iteration, T-ORBS attempts to delete the subtree rooted at
current node, c. If the resulting system produces the correct
sequence of values then c is permanently deleted. Otherwise
c’s children are placed on the worklist.

The T-ORBS implementation was constructed to slice
MATLAB’s Simulink models, which are stored using XML [2].
Thus to slice traditional source code such as C or Java code,
the code must first be transformed into XML. For this we
use srcML [4]. In theory, T-ORBS should be able to slice the
resulting XML tree-based source code representation without
modification. In practice, this came close to being true. Unlike
Simulink’s XML representation srcML includes XML name
spaces. Thus it was necessary to generalize T-ORBS’ command-
line arguments to include a name-space specification. The only
other change necessary was to transform srcML’s output from
mixed content, where (source) text is intermixed with tags,
to element content. In greater detail, the output from srcML
uses mixed content (much like HTML) where an element may

contain text and other elements. For example, the <if> tag
includes the text “if” and several elements including the element
for the (boolean) condition: <if>if <condition> ... </condition>
... </if>. The transformation to element content moves the
“free” text “if” to be an attribute of an element, resulting in
the XML <if text=“if”> <condition> ... </condition> ... </if>. This
transformation avoids ambiguities concerning to which element
the intermixed text belongs. The resulting T-ORBS slicer is
capable of slicing any language supported by srcML or any other
XML creation tool. For example, it was initially developed
using C code, but was able to slice C++ and Java code without
the need for a single modification.

IV. RESEARCH QUESTIONS

Prior work [1] compared ORBS with various forms of
dynamic slicing, all of which are its ‘algorithmic cousins’
because they all have common roots in dynamic analysis.
Subsequently, ORBS slices were compared to static slices in
order to explore the subtleties and limits of static analysis [7].
This paper studies the two implementations of observation-
based slicing, ORBS, and T-ORBS, using the following research
questions.

RQ1: How do ORBS and T-ORBS slices compare quanti-
tatively? This quantitative question considers the sizes of the
slices produced by the two implementations.

RQ2: How do the slices produced by ORBS and T-ORBS
compare qualitatively? This qualitative question considers
differences in the slices produced by the two implementations.

RQ3: What impact does implementation have on the time
taken to compute a slice? This quantitative question asks if
T-ORBS’ ability to delete large sub-trees pays for its having to
consider a multitude of small subtrees (e.g., each token of an
expression such as a * b + c). It also compares the scalability of
the two implementations by slicing three production systems
as well as the impact of programming language on the slicers.

V. SUBJECT DEMOGRAPHICS

Our experiments concern the seventeen programs shown
in Table I. These are split into four sets, each of which
is specifically chosen to help address various aspects of
the comparison. The first set includes four widely-studied
(tiny) benchmark programs taken from the literature because
they have been used to exemplify slicing challenges and
techniques. While not large, the programs of the second set
are small enough that it is feasible to compute all slices for
all computations of scalar values (e.g., values of types int, char,
double). The third set includes the three production systems
(byacc, ed, and the shell bash) and is used to study the scalability
of observation-based slicing. Finally, the fourth set includes
two Java programs and one C++ program. It is used to consider
the impact of programming language by slicing non-C code.

The first of the tiny programs, sumprod computes the sum
and product of the first ten integers. It is commonly used
to illustrate slicing’s ability to separate the computation of
the sum from that of the product. The second tiny program,
word count, is shown in Figure 2. It computes the number

Enter Tree-ORBS

TORBS can slice Simulimk’s XML trees!
if (a > b)
 m = a;
else
 m = b;

<if>if
 <condition>(…)</condition>
 <then> <expr_stmt> … </expr_stmt></then>
 <else>else <expr_stmt> …</expr_stmt></else>
</if>

Here’s a tree

Initial StudyTABLE I
SUBJECTS CONSIDERED IN THE EMPIRICAL INVESTIGATION

Program LoC SLoC Slices
Known Semantics

sumprod 20 16 8
wc 128 70 17
mug 73 62 16
mbe 82 62 12

Exhaustively Sliced
tcas 185 141 43
schedule2 368 291 78
schedule 465 313 58
totinfo 573 347 54
printtokens2 638 407 75
replace 658 541 309
printtokens 895 569 81

Production Systems
ed 3 062 2 393 1
byacc 7 760 6 615 1
bash 68 230 48 339 1

Non-C Systems
Hanoi.java 171 158 1
permutation.java 658 3091 1
concordance.c++ 1490 1033 1

1 word_count()
2 {
3 while (scanf("%c", &c) == 1)
4 {
5 characters = characters + 1;
6
7 if (c == ’\n’)
8 {
9 lines = lines + 1;

10 }
11
12 if (isletter(c))
13 {
14 if (inword == 0)
15 {
16 words = words + 1;
17 inword = 1;
18 }
19 }
20 else
21 {
22 inword = 0;
23 }
24 }
25 }
26
27 int isletter(char c)
28 {
29 printf("\norbs: %c\n", c); //slice here
30 if (((c >= ’A’) && (c <= ’Z’))
31 || ((c >= ’a’) && (c <= ’z’)))
32 {
33 return 1;
34 }
35 else
36 {
37 return 0;
38 }
39 }

Fig. 2. The word count program with a printf added to slice with respect to
variable c at the top of the function isletter.

of lines, words, and characters in an input text. Its slices are
used in many papers on slicing [8], [9], as trivial examples
of static slices. It is implicit in all treatments of this example,
that the slices are trivial, and present few interesting issues,
hence its widespread use as an illustrative example. As we
shall see, observation-based slicing reveals that there are, in
fact, subtleties, even in this simplest of examples.

Third, the SCAM mug example, shown in Figure 3, appeared
on the souvenir mug given to delegates of the first incarnation
of the SCAM conference in Florence, 2001. It has subsequently
been used as a ‘challenge’ example for slicing algorithms [10],

1 int mug(int i, int c, int x)
2 {
3 while (p(i))
4 {
5 if (q(c))
6 {
7 x = f();
8 c = g();
9 }

10 i = h(i);
11 }
12 printf("\norbs:%d\n", x); //slice here
13 }

Fig. 3. The SCAM’01 Mug Example. Predicates p and q, and function h
depend only on their single formal parameter while functions f and g return
(unknown) constant values. The key point in this code is that in any terminating
execution the final value of x is independent of Line 8: if q(c) is initially
false, it remains false and thus x retains its initial value. On the other hand,
if q(c) is true one or more times then x will have the value assigned at Line
7. In the latter case, it does not matter how often q(c) is true and thus the
assignment at Line 8 does not impact the value of x at Line 12.

1 int mbe(int j, int k)
2 {
3 while (p(j))
4 {
5 if (q(k))
6 {
7 k = f1(k);
8 }
9 else

10 {
11 k = f2(k);
12 j = f3(j);
13 }
14 }
15 printf("\norbs:%d\n", j); //slice here
16 }

Fig. 4. The Montréal Boat Example. Predicates p and q, and functions f1, f2,
and f3 are unshown. They depend only on their single formal parameter. The
relevant observation is that in any terminating execution, the computation of k
is irrelevant to the computation of j.

due to its subtle semantics and the difficulty in obtaining
a minimal slice, even using very sophisticated algorithmic
techniques.

The Montréal Boat Example, mbe, shown in Figure 4, was
formulated by Sebastian Danicic and John Howroyd during a
boat excursion at the 2nd incarnation of the SCAM conference
in Montréal, 2002. It was discussed at length at the conference
as an example of the subtleties of producing minimal slices [11].

In addition to having been used in prior slicing research [1],
[12]–[14], the next set of programs was chosen because it is
possible to compute all slices for assignments involving basic
scalar types (e.g., ints). Doing so supports the comparison over
a large number of slices that have a wide range of complexity
(from slices taken with respect to variable initializations all
the way through to slices taking with respect to final outputs).

The six remaining systems include three larger systems that
are in production use and three systems written in programming
language other than C. For example, these include as a real-
world case study, the often-used non-trivial application: bash
(version 4.2), a Unix shell that is the default on Linux and Mac
OS X. The bash source package includes various tools and
libraries required to build the executable. The build is complex
from a slicing perspective because, during the build, source
code is generated from a grammar and the build itself is strongly
tied to the target operating system. Together with its size, this
makes bash a challenge to statically or dynamically slice (we

RQ1: How do ORBS and T-ORBS slices compare quantitatively?  
  
RQ2: How do the slices produced by ORBS and T-ORBS compare 
 qualitatively?  

RQ3: What impact does implementation have on the time taken  
 to compute a slice?

So, slice the text or the tree?

Sub-Line (stmt) Dependence 😀

typedef enum Boolean { FALSE = 0, TRUE = 1, FAIL = 0,
SUCCEED = 1, OK = 1, NO = 0, YES = 1, NOMSG = 0,
MSG = 1, OFF = 0, ON = 1 } BOOLEAN;}

Sub-Line (stmt) Dependence 😀

typedef enum Boolean { FALSE = 0, TRUE = 1, FAIL = 0,
SUCCEED = 1, OK = 1, NO = 0, YES = 1, NOMSG = 0,
MSG = 1, OFF = 0, ON = 1 } BOOLEAN;}

ORBS retains this entire line

Sub-Line (stmt) Dependence 😀

typedef enum { OK = 1, NO = 0, YES } BOOLEAN;

typedef enum Boolean { FALSE = 0, TRUE = 1, FAIL = 0,
SUCCEED = 1, OK = 1, NO = 0, YES = 1, NOMSG = 0,
MSG = 1, OFF = 0, ON = 1 } BOOLEAN;}

ORBS retains this entire line

TORBS exploits sub-statement dependence

TORBS Preserves Structure 😞

#define OLEV 600 /* in feets/minute */
...
 enabled = High_Confidence && (OLEV < …
 if (enabled && ...
 {
 need_downward_RA = ... // in slice

ORBS Slice

TORBS Preserves Structure 😀

 printf("at end i = %d\n", i);

 {
 sum = sum + i;
 prod = prod * i;
 }

 for(i=1; i<=10; i++)

 printf("\norbs:%d\n", i); //slice here w.r.t. i

TORBS Preserves Structure 😀

 for(i=1; i<=10; i++)

 printf("\norbs:%d\n", i); //slice here w.r.t. i

 {
 }

ORBS Does Not 😞

 printf("at end i = %d\n", i);

 {
 sum = sum + i;
 prod = prod * i;
 }

 for(i=1; i<=10; i++)

 printf("\norbs:%d\n", i); //slice here w.r.t. i

ORBS Does Not 😞

 printf("at end i = %d\n", i);
 for(i=1; i<=10; i++)

 printf("\norbs:%d\n", i); //slice here w.r.t. i

In Comparison

 printf("at end i = %d\n", i);

 for(i=1; i<=10; i++)

 printf("\norbs:%d\n", i); //slice here w.r.t. i

 {
 }
 printf("\norbs:%d\n", i); //slice here w.r.t. i

 for(i=1; i<=10; i++)

(A similar capture example)
 while (scanf("%c", &c) == 1)
 {
 if (isletter(c))
 {
 ...

 int isletter(char c)
 {
 printf("\norbs:%c\n",c); //slice here w.r.t. c

(A similar capture example)
 while (scanf("%c", &c) == 1)
 {
 if (isletter(c))
 {
 ...

 int isletter(char c)
 {
 printf("\norbs:%c\n",c); //slice here w.r.t. c

 while (scanf("%c", &c) == 1)
 printf("\norbs:%c\n",c); //slice here w.r.t. c

ORBS can handle “separate”
trees 😀

#ifdef DEBUG
#endif

ORBS Preserves Structure 😀

if (q(k))
{
 k = f1(k)
 printf(“\norbs:%d\n”, k) // slice here

ORBS Preserves Structure 😀

if (q(k))
{
 k = f1(k)
 printf(“\norbs:%d\n”, k) // slice here

ORBS Slice
(yea it’s

the same)

ORBS Preserves Structure 😀

if (q(k))
{
 k = f1(k)
 printf(“\norbs:%d\n”, k) // slice here

if (q(k))
{
 k = f1()
 printf(“\norbs:%d\n”, k) // slice here

TORBS Slice

ORBS Slice
(yea it’s

the same)

Bonus:
ORBS Preserves Structure😞

{
 inword = 1;
}

Bonus:
ORBS Preserves Structure😞

{
 inword = 1;
}

inword = 1;

ORBS Slice
(yea it’s

the same)

TORBS Slice
(subtree replacement)

TORBS can Bog Down 😞
d = sqrt(b*b - 4*a*c)

TORBS can Bog Down 😞
d = sqrt(b*b - 4*a*c)

TORBS also tries
to delete

ORBS tries to
delete the line

d = sqrt(_*b - 4*a*c)
d = sqrt(b_b - 4*a*c)
d = sqrt(b*_ - 4*a*c)
d = sqrt(b*b _ 4*a*c)
d = sqrt(b*b - _*a*c)
d = sqrt(b*b - 4_a*c)
d = sqrt(b*b - 4*a_c)
d = sqrt(b*b - 4*a*_)

Summary

TORBS - sub-line (stmt) dependence 🤓

TORBS preserves structure 😞
TORBS preserves structure 😀

ORBS can handle “separate” trees 😀

ORBS preserves structure 😀
TORBS can Bog Down 😞

Subtree
Replacement

TORBS preserves structure 😞

while (p(j))
{
 if ((k))
 {
 }
 else
 {
 j = f3();
 printf("\norbs:%d\n", j);
 }
}

Subtree Replacement

<while><condition> … </condition>
 <if>if
 <condition> </condition>
 <then> </then>
 <else>else <expr_stmt> …</expr_stmt></else>
 </if>
</while>

Subtree Replacement

<while><condition> … </condition>
 <if>if
 <condition> </condition>
 <then> </then>
 <else>else <expr_stmt> …</expr_stmt></else>
 </if>
</while>

while

expr_stmt

if

Subtree Replacement

<while><condition> … </condition>
 <if>if
 <condition> </condition>
 <then> </then>
 <else>else <expr_stmt> …</expr_stmt></else>
 </if>
</while>

while

expr_stmt

Subtree Replacement
while

expr_stmt

<while><condition> … </condition>
 <expr_stmt> …</expr_stmt></else>
</while>

Subtree Replacement
In fact 🤓

while (p(j))
{
 if ((k))
 {
 }
 else
 {
 j = f3();
 printf("\norbs:%d\n", j);
 }
}

Subtree Replacement
In fact 🤓

while (p(j))
{
 if ((k))
 {
 }
 else
 {
 j = f3();
 printf("\norbs:%d\n", j);
 }
}

while

if

expr block block

Subtree Replacement
In fact 🤓

while (p(j))
{
 if ((k))
 {
 }
 else
 {
 j = f3();
 printf("\norbs:%d\n", j);
 }
}

while

if

expr block

“big”“small” “small”

block

Subtree Replacement
In fact 🤓

while (p(j))
{
 if ((k))
 {
 }
 else
 {
 j = f3();
 printf("\norbs:%d\n", j);
 }
}

while

ifblock

Subtree Replacement
In fact 🤓

while (p(j))
{
 if ((k))
 {
 }
 else
 {
 j = f3();
 printf("\norbs:%d\n", j);
 }
}

while

ifblock

while (p(j))
{
 j = f3();
 printf("\norbs:%d\n", j);
}

Subtree
Minimum

Size

TORBS can Bog Down 😞

Subtree
Minimum

Size

TORBS can Bog Down 😞

d = sqrt(_*b - 4*a*c)
d = sqrt(b_b - 4*a*c)
d = sqrt(b*_ - 4*a*c)
d = sqrt(b*b _ 4*a*c)
d = sqrt(b*b - _*a*c)
d = sqrt(b*b - 4_a*c)
d = sqrt(b*b - 4*a_c)
d = sqrt(b*b - 4*a*_)

“-st”

-st 0
-st 0,-1
-st 1,0

unchanged from previous
post “slice” run subtree replacement
perform no sublime deletions
on first pass

Timing Impact Study
-st 0
-st 0,-1
-st 1,0
-st 1,0,-1
-st 2,1,0
-st 2,1,0,-1
-st 4,2,1,0
-st 4,2,1,0,-1
-st 8,4,2,1,0
-st 8,4,2,1,0,-1

CPU Time

-st 0
-st 0,-1

0.00
2.00
4.00
6.00
8.00
10.00

"mbe_j_27_while.c" "mbe_j_36_expr.c" "mbe_j_39_expr.c"
work-st.0 work-st.0,-1 work-st.1,0 work-st.1,0,-1 work-st.2,1,0 work-st.2,1,0,-1 work-st.4,2,1,0 work-st.4,2,1,0,-1 work-st.8,4,2,1,0 work-st.8,4,2,1,0,-1

-st 8,4,2,1,0
-st 8,4,2,1,0,-1

Wall Clock Time

0.00

50.00

100.00

150.00

200.00

"mbe_j_27_while.c" "mbe_j_36_expr.c" "mbe_j_39_expr.c"

-st 0
-st 0,-1

-st 8,4,2,1,0
-st 8,4,2,1,0,-1

Current Challenge — GMAT
Language files blank comment code

C++ 3011 271564 363278 1208448
HTML 1912 76587 3850 595289
C 3005 360893 701089 447398
C/C++ Header 3734 132486 309162 322258
Bourne Shell 193 24265 20054 136832
Fortran 77 8 1222 6382 68518
m4 65 6538 2006 55250
Objective C++ 133 7366 5580 30667
XML 207 3101 1433 25093
make 74 956 1194 4440
Python 25 967 712 3732
XSD 79 448 97 2640
CMake 32 437 977 2385
XSLT 15 291 124 2078
CSS 6 287 47 1458
awk 3 93 393 783
DOS Batch 21 274 271 780
Teamcenter def 5 5 0 758
Perl 6 205 242 753
C Shell 6 294 665 662
MATLAB 33 175 964 662
Assembly 2 45 84 485
DTD 12 89 39 455
Bourne Again Shell 4 58 71 221
Lua 1 9 22 204
Javascript 4 17 34 144
Verilog-SystemVerilog 1 7 0 62
MXML 1 6 10 43
YAML 1 6 4 28

SUM: 12599 888691 1418784 2912526

Current Challenge — GMAT
Language files blank comment code

C++ 3011 271564 363278 1208448
HTML 1912 76587 3850 595289
C 3005 360893 701089 447398
C/C++ Header 3734 132486 309162 322258
Bourne Shell 193 24265 20054 136832
Fortran 77 8 1222 6382 68518
m4 65 6538 2006 55250
Objective C++ 133 7366 5580 30667
XML 207 3101 1433 25093
make 74 956 1194 4440
Python 25 967 712 3732
XSD 79 448 97 2640
CMake 32 437 977 2385
XSLT 15 291 124 2078
CSS 6 287 47 1458
awk 3 93 393 783
DOS Batch 21 274 271 780
Teamcenter def 5 5 0 758
Perl 6 205 242 753
C Shell 6 294 665 662
MATLAB 33 175 964 662
Assembly 2 45 84 485
DTD 12 89 39 455
Bourne Again Shell 4 58 71 221
Lua 1 9 22 204
Javascript 4 17 34 144
Verilog-SystemVerilog 1 7 0 62
MXML 1 6 10 43
YAML 1 6 4 28

SUM: 12599 888691 1418784 2912526

files blank comment code
12599 888691 1418784 2912526

Wait What??

 -st 0
#include <stdlib.h>
 c = (int) strtol(argv[2], NULL, 10);

 -st 1,0
#include <stdio.h>
 c = (int) strtol(argv[2]);

Thanks

i=0

i<names.length

check

pw pws names

[] []

match
=false

return
match

names[i]==user

pws[i]==pw

match=true

i++

user✗

