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Motivation

After one year of operating a repair

bot: what pitfall should you avoid?
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What is Repairnator?

Repairnator

If the main objective of Terminator

was “Seek and Destroy”, the main

goal of Repairnator is “Scan and

Repair”.

→ Fix a maximum of failing builds

from TravisCI.

2/23



Overview & Design choices
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Design choices

Repairnator targets:

• Java projects using Maven

• Expertise in program repair for Java

• Standard build tool

• Build-based repairing bot

• GitHub projects using TravisCI
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Design choices

Repairnator targets:

• Java projects using Maven

• Build-based repairing bot

• Easy oracle: failing builds → project to repair

• Long-term view: Repairnator as part of the CI

• GitHub projects using TravisCI
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Design choices

Repairnator targets:

• Java projects using Maven

• Build-based repairing bot

• GitHub projects using TravisCI

• GitHub: largest open-source code hosting service

• TravisCI: standard CI for open-source on GitHub & open API
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Step 1 : CI Build Analysis



Considered Projects

Different ways to produce the list:

• TravisTorrent

• GHTorrent

• GitHub API & Trends

Criteria to be selected:

1. Open-source and available on Github

2. Use Java and Maven

3. With a test suite

4. Popular and active: the most starred first and activity in

previous months
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Considered Projects

List of projects to consider

from:

• TravisTorrent:

not so many data

• GHTorrent:

needs to be filtered

• GitHub Trends:

no API

The usage of tools over 14 188 Java projects

hosted on GitHub.

Results: 1609 projects selected.
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Build analysis
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Collected builds to be analyzed Builds identified as Java with CI failure Builds with JUnit test failure (called “interesting builds”).
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(> 14 000 projects)

Filtered list
(1 609 projects)

Second filtering
(281 projects)

Process: builds are pulled from Travis, then status and language

are checked and finally logs are analyzed for test failure. 7/23



Build analysis

Problem: Current build analysis is tedious and time-consuming.

What can we do?

• trigger bot from the test-failing build if possible

• it might depend on the considered CI

• avoid as much as possible log analysis

• get test results from CI

• launch reproduction even when not sure
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Step 2 : Local bug reproduction



Steps for local bug reproduction

1. Clone the repository

2. Checkout the right commit

3. Compile the build (i.e. mvn install -DskipTest)

4. Run test (i.e. mvn test)

5. Parse test information (i.e. read xml files)

All steps are done inside a docker container and if a bug is

successfully reproduced all data are pushed to a repository.
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Local bug reproduction: obtained results 1/2

Values

Build statuses (all times - 14385 builds)

5215 (36.3%)5215 (36.3%)

4510 (31.4%)4510 (31.4%)

2874 (20.0%)2874 (20.0%)

1415 (9.8%)1415 (9.8%)

337 (2.3%)337 (2.3%)

34 (0.2%)34 (0.2%)

Error when compiling

Successful Bug Reproduction

Test without failure

Error when testing

Error when checking out

Error when cloning

0 1k 2k 3k 4k 5k 6k
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Local bug reproduction: obtained results 2/2

Rank Project Builds with Rank Reproduced

test failure (test failure) bugs

1 druid-io/druid 579 2 359 (62.00%)

2 apache/flink 477 3 326 (68.34%)

3 prestodb/presto 1000 1 194 (19.40%)

4 hubspot/singularity 437 5 182 (41.65%)

5 corfudb/corfudb 313 7 126 (40.26%)

6 apache/storm 349 6 111 (31.81%)

7 geoserver/geoserver 118 18 109 (92.37%)

8 spotify/docker-client 111 21 99 (89.19%)

9 xetorthio/jedis 100 25 94 (94.00%)

10 4pr0n/ripme 94 28 87 (92.55%)
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Local bug reproduction

Bug reproduction is HARD.

Build failure reproduction errors can come from:

• build environment (OS, JDK, ...)

• build setup (bash script to start a server, ...)

• flaky tests or custom failing goals (checkstyle, coverage

threshold...)

• right source code version not found

• timeout (after 24 hours we kill build)
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Local bug reproduction

Bug reproduction is HARD.

What can we do?

• reproduce in sandboxed environment (docker)

• use the same setup as in the CI

• don’t try to get back missing commits
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Step 3 : Patch Synthesis



Repair tools

Nopol:

dedicated to repair conditionnal bugs by modifying exisiting

conditions or inserting preconditions.

Astor:

a generate-and-validate repair tool derived from Genprog.

NPEFix:

dedicated to repair only NullPointerException by inserting

preconditions.
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Patch synthesis steps

1. Analyze test information from bug reproduction step

2. if a NullPointerException is detected: run NPEFix

3. Run Astor & Nopol (budget based)

At each point, send an email if a Patch is found.
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Patch synthesis

Patch synthesis is even HARDER

Successful Reproduction Builds (all times - 14307 builds)

Bug reproduction without patch: 99.6% (4464)Bug reproduction without patch: 99.6% (4464)

Bug reproduction and patch created: 0.4% (17)Bug reproduction and patch created: 0.4% (17)

Highcharts.com 16/23



Obtained patches

Project Builds w/ Nopol NPEFix Rank

patches patches patches (rep. build)

jamesagnew/hapi-fhir 1 35 0 88

spotify/cassandra-reaper 1 1 0 121

xmlunit/xmlunit 1 145 0 203

apache/pdfbox 1 120 0 95

LiveRamp/hank 1 4 0 225

spring-cloud/spring-cloud-

dataflow

1 0 1 56

IQSS/dataverse 2 0 16 40

bonigarcia/webdrivermanager 3 30 0 27

GeoWebCache/geowebcache 1 0 2 107

timmolter/XChange 1 0 4 58

phax/jcodemodel 1 624 0 193

phoenixnap/springmvc-

raml-plugin

1 348 0 66

Total 15 1 307 23
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Valid patches

Total 15 1 307 23

Number of valid patch obtained and accepted: 1.
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Valid patches

Total 15 1 307 23

Number of valid patch obtained and accepted: 1.
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Top 10 error types

Rank Exception Occurrences

1 java.lang.AssertionError 2 162

2 java.lang.NullPointerException 641

3 org.junit.ComparisonFailure 419

4 java.lang.Exception 250

5 java.lang.IllegalStateException 202

6 java.lang.NoClassDefFoundError 197

7 java.lang.RuntimeException 191

8 junit.framework.AssertionFailedError 163

9 java.lang.ExceptionInInitializerError 117

10 java.io.IOException 110
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Patch synthesis: discussion

• Current generic repair tools (Astor & Nopol) are really time

and resources consuming

• Repairing assertion errors = guessing a behaviour which is

pretty hard

• Repairing explicit errors (NPE, NumberFormatException, ...)

seems easier to achieve

• For production-readiness, repair tools should use sophisticated

setups (multimodule, external resources, ...)
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Future of Repairnator

1. Bigger scope & faster response time: use directly last finished

builds on TravisCI instead of relying on a list of projects. "

2. Avoid false positive: Use directly TravisCI to reproduce

failures AND to produce patches.

3. Integrate Repairnator into the CI.
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Play with it

• Repairnator sourcecode:

https://github.com/Spirals-Team/repairnator

• Repository of bugs:

https://github.com/Spirals-Team/seip-2018

(consolidated data from february 2017 to january 2018)

• Live data: http://repairnator.lille.inria.fr (almost

15 000 builds this morning. 14 385 two weeks ago)

• Want to integrate your own program repair tool? contact us!
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