Université iformetiques ¢ methénatiares
1, b L=
1 & eGoLosies

How to Design a Program Repair Bot?
Insights from the Repairnator Project

Simon Urli, Zhongxing Yu, Lionel Seinturier, Martin Monperrus
simon.urli@inria.fr

February, 26, 2018

Inria & University of Lille
Proceedings of ICSE, SEIP track, 2018


simon.urli@inria.fr

After one year of operating a repair
bot: what pitfall should you avoid?

1/23



What is Repairnator?

Repairnator

If the main objective of Terminator
was “Seek and Destroy”, the main
goal of Repairnator is “Scan and
Repair”.

— Fix a maximum of failing builds

from TravisCl.

2/23



Overview & Design choices



Developers

GitHub Projects A
List of
Commits .—T—. projects
Travis Cl l Repairnator Bot
Patch Synthesis
Builds with

failing tests

Cl Build
Analysis

Bug
Reproduction

%

e

Repairnator
patch analyst

—J

collected
repair data

o
v
L
Research
community

3/23



Repairnator targets:

e Java projects using Maven

e Expertise in program repair for Java
e Standard build tool

e Build-based repairing bot
e GitHub projects using TravisCl

4/23



Repairnator targets:

e Java projects using Maven
e Build-based repairing bot

e Easy oracle: failing builds — project to repair
e Long-term view: Repairnator as part of the Cl

e GitHub projects using TravisCl

4/23



Repairnator targets:

e Java projects using Maven

e Build-based repairing bot
e GitHub projects using TravisClI

e GitHub: largest open-source code hosting service
e TravisCl: standard Cl for open-source on GitHub & open API

4/23



Step 1 : Cl Build Analysis




Considered Projects

Different ways to produce the list:

e TravisTorrent
e GHTorrent
o GitHub API & Trends

Criteria to be selected:

1. Open-source and available on Github
2. Use Java and Maven

3. With a test suite
4

. Popular and active: the most starred first and activity in
previous months

5/23



Considered Projects

List of projects to consider
from:

Not using .
TravisCl 77,86% (11047)

e TravisTorrent:

No passing build

on Traviscl i 2+16% (306)

not so many data

e GHTorrent:
needs to be filtered

Using Maven 10,14% (1439)

Using TravisCI

22,14% (3141)

Using Gradle 7,32% (1038)

Undetected tool [ 2,52% (358)

e GitHub Trends: o
no API

The usage of tools over 14188 Java projects
hosted on GitHub.

Results: 1609 projects selected.

6/23



Build analysis

o Notfiltered st Filtered list Second fitering
(> 14000 projacts) (1608 projocts) (281 projects)

I A i " A o
Date

-~ with Clfailure - ).

Process: builds are pulled from Travis, then status and language
are checked and finally logs are analyzed for test failure.

7/23



Build analysis

Problem: Current build analysis is tedious and time-consuming.

What can we do?

e trigger bot from the test-failing build if possible
e it might depend on the considered Cl
e avoid as much as possible log analysis

e get test results from Cl
e launch reproduction even when not sure

8/23



Step 2 : Local bug reproduction




Steps for local bug reproduction

. Clone the repository

. Checkout the right commit

1
2
3. Compile the build (i.e. mvn install -DskipTest)
4. Run test (i.e. mvn test)

5

. Parse test information (i.e. read xml files)

All steps are done inside a docker container and if a bug is
successfully reproduced all data are pushed to a repository.

9/23



Local bug reproduction: obtained results 1/2

Build statuses (all times - 14385 builds)

Error when compiling 5215 (36.3%)
Successful Bug Reproduction _ 4510 (31.4%)
Test without failure 2874 (20.0%)
Error when testing 1415 (9.8%)

Error when checking out . 337 (2.3%)

Error when cloning | 34 (0.2%)

0 1k 2k 3k 4k 5k 6k
Values

fighcharts.com

10/23



Local bug reproduction: obtained results 2/2

Rank Project  Builds with Rank Reproduced

test failure  (test failure) bugs
1 druid-io/druid 579 2 359 (62.00%)
2 apache/flink 477 3 326 (68.34%)
3 prestodb/presto 1000 1 194 (19.40%)
4 hubspot/singularity 437 5 182 (41.65%)
5 corfudb/corfudb 313 7 126 (40.26%)
6 apache/storm 349 6 111 (31.81%)
7 geoserver/geoserver 118 18 109 (92.37%)
8 spotify /docker-client 111 21 99 (89.19%)
9 xetorthio/jedis 100 25 94 (94.00%)
10 4prOn/ripme 94 28 87 (92.55%)

11/23



Local bug reproduction

Bug reproduction is HARD.
Build failure reproduction errors can come from:

e build environment (OS, JDK, ...)

build setup (bash script to start a server, ...)

flaky tests or custom failing goals (checkstyle, coverage
threshold...)

right source code version not found

timeout (after 24 hours we kill build)

12/23



Local bug reproduction

Bug reproduction is HARD.
What can we do?

e reproduce in sandboxed environment (docker)
e use the same setup as in the Cl

e don't try to get back missing commits

13/23



Step 3 : Patch Synthesis




Repair tools

Nopol:
dedicated to repair conditionnal bugs by modifying exisiting
conditions or inserting preconditions.

Astor:
a generate-and-validate repair tool derived from Genprog.

NPEFix:
dedicated to repair only NullPointerException by inserting
preconditions.

14/23



Patch synthesis steps

1. Analyze test information from bug reproduction step
2. if a NullPointerException is detected: run NPEFix
3. Run Astor & Nopol (budget based)

At each point, send an email if a Patch is found.

15/23



Patch synthesis

Patch synthesis is even HARDER
Successful Reproduction Builds (all times - 14307 builds)

Bug reproduction and patch created: 0.4% (17) \

Bug reproduction without patch: 99.6% (4464)
16,23



Obtained patches

Project Builds w/ Nopol  NPEFix Rank
patches patches patches (rep. build)
jamesagnew/hapi-fhir 1 35 0 88
spotify/cassandra-reaper 1 1 0 121
xmlunit/xmlunit 1 145 0 203
apache/pdfbox 1 120 0 95
LiveRamp/hank 1 4 0 225
spring-cloud/spring-cloud- 1 0 1 56
dataflow
IQSS/dataverse 2 0 16 40
bonigarcia/webdrivermanagei 3 30 0 27
GeoWebCache/geowebcache 1 0 2 107
timmolter/XChange 1 0 4 58
phax/jcodemodel 1 624 0 193
phoenixnap/springmvc- 1 348 0 66
raml-plugin
Total 15 1307 23

17/23



Valid patches

Total 15 1307 23

Number of valid patch obtained and accepted: 1.

HxNPEwnhquameams

aaime merged 1 commit into aaime:post_form from lucesape:aaime-post-form on 12 Jan

& Conversation 1 -0~ Commits 1 Files changed 1

& lucesape commented on 12 Jan

This should fix your failing travis build on GeowebCache#582

E Fix NPE with queryParams

ﬂ aaime commented on 12 Jan Owner

Weird, | though I already fixed this... maybe | did in some other place. Thanks for the patch!

e @ aaime merged commit e48f17e into aaime:post_form on 12 Jan Revert

18/23



Valid patches

Total 15 1307 23

Number of valid patch obtained and accepted: 1.

Fix NPE with queryParams g

aaime merged 1 commit into aaine:past_torm from Lucesape:aatne-post—forn on 12 Jan

5! Conversation 1 - Commits 1

Files changed 1

Changes from all commits ~  Jump to..~  +10 -6 mumm unified | spit | [T

vew O v

,11 +306,15 @@ public HttpMethodBase executel

equest(final URL url, final

1 lap<String, String> qu
HttpClient httpClient = getHttpClient();

// prepare the request

- NameValuePair[] params = new NameValuePair[queryParams.size()];
- int i=0;

- for (Map.Entry<String, String= e : queryParams.entryset()) {

- params [i] = new NameValuePair(e.getKey(), e.getValue());

- o
+ NameValuePair[] params;

+

+ if (queryParams != null) {

+ params = new NameValuePair [queryParams.size()];

+ int i=0;

+ for (Map.Entry<String, String= e : queryParams.entrySet()) {
+ parans[il = new NameValuePair(e.getKey(), e.getValue());
+

- 3

19/23



Top 10 error types

Rank Exception Occurrences
1 java.lang.AssertionError 2162
2 java.lang.NullPointerException 641
3 org.junit.ComparisonFailure 419
4 java.lang.Exception 250
5 java.lang.lllegalStateException 202
6 java.lang.NoClassDefFoundError 197
7 java.lang.RuntimeException 191
8 junit.framework.AssertionFailedError 163
9 java.lang.ExceptionlnlnitializerError 117
10 java.io.lOException 110

20/23



thesis: discussion

Current generic repair tools (Astor & Nopol) are really time
and resources consuming

Repairing assertion errors = guessing a behaviour which is
pretty hard

Repairing explicit errors (NPE, NumberFormatException, ...)
seems easier to achieve

For production-readiness, repair tools should use sophisticated
setups (multimodule, external resources, ...)

21/23



Future of Repairnator

1. Bigger scope & faster response time: use directly last finished
builds on TravisCl instead of relying on a list of projects. 4

2. Avoid false positive: Use directly TravisCl to reproduce
failures AND to produce patches.

3. Integrate Repairnator into the Cl.

22/23



Play with it

e Repairnator sourcecode:
https://github.com/Spirals-Team/repairnator

e Repository of bugs:
https://github.com/Spirals-Team/seip-2018
(consolidated data from february 2017 to january 2018)

e Live data: http://repairnator.lille.inria.fr (almost
15000 builds this morning. 14385 two weeks ago)

e Want to integrate your own program repair tool? contact us!

23/23


https://github.com/Spirals-Team/repairnator
https://github.com/Spirals-Team/seip-2018
http://repairnator.lille.inria.fr

	Overview & Design choices
	Step 1 : CI Build Analysis
	Step 2 : Local bug reproduction
	Step 3 : Patch Synthesis

