
How to Design a Program Repair Bot?

Insights from the Repairnator Project

Simon Urli, Zhongxing Yu, Lionel Seinturier, Martin Monperrus

simon.urli@inria.fr

February, 26th, 2018

Inria & University of Lille

Proceedings of ICSE, SEIP track, 2018

simon.urli@inria.fr


Motivation

After one year of operating a repair

bot: what pitfall should you avoid?

1/23



What is Repairnator?

Repairnator

If the main objective of Terminator

was “Seek and Destroy”, the main

goal of Repairnator is “Scan and

Repair”.

→ Fix a maximum of failing builds

from TravisCI.

2/23



Overview & Design choices



Overview

Travis CI

GitHub Projects

Commits

Builds with 
failing tests

List of 
projects

Repairnator Bot

CI Build 
Analysis

Bug 
Reproduction

Patches
collected

repair data

Developers

Repairnator
patch analyst

Research 
community

Patch Synthesis

Nopol Astor NPEFix

3/23



Design choices

Repairnator targets:

• Java projects using Maven

• Expertise in program repair for Java

• Standard build tool

• Build-based repairing bot

• GitHub projects using TravisCI

4/23



Design choices

Repairnator targets:

• Java projects using Maven

• Build-based repairing bot

• Easy oracle: failing builds → project to repair

• Long-term view: Repairnator as part of the CI

• GitHub projects using TravisCI

4/23



Design choices

Repairnator targets:

• Java projects using Maven

• Build-based repairing bot

• GitHub projects using TravisCI

• GitHub: largest open-source code hosting service

• TravisCI: standard CI for open-source on GitHub & open API

4/23



Step 1 : CI Build Analysis



Considered Projects

Different ways to produce the list:

• TravisTorrent

• GHTorrent

• GitHub API & Trends

Criteria to be selected:

1. Open-source and available on Github

2. Use Java and Maven

3. With a test suite

4. Popular and active: the most starred first and activity in

previous months

5/23



Considered Projects

List of projects to consider

from:

• TravisTorrent:

not so many data

• GHTorrent:

needs to be filtered

• GitHub Trends:

no API

The usage of tools over 14 188 Java projects

hosted on GitHub.

Results: 1609 projects selected.

6/23



Build analysis

Date

N
um

be
r o

f b
ui

ld
s

Collected builds to be analyzed Builds identified as Java with CI failure Builds with JUnit test failure (called “interesting builds”).

Feb '17 Mar '17 Apr '17 May '17 Jun '17 Jul '17 Aug '17 Sep '17 Oct '17 Nov '17 Dec '17
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

8500

9000

9500

10 000

10 500

11 000

11 500

12 000

12 500

13 000

13 500

14 000

14 500

15 000

Highcharts.com

Not filtered list
(> 14 000 projects)

Filtered list
(1 609 projects)

Second filtering
(281 projects)

Process: builds are pulled from Travis, then status and language

are checked and finally logs are analyzed for test failure. 7/23



Build analysis

Problem: Current build analysis is tedious and time-consuming.

What can we do?

• trigger bot from the test-failing build if possible

• it might depend on the considered CI

• avoid as much as possible log analysis

• get test results from CI

• launch reproduction even when not sure

8/23



Step 2 : Local bug reproduction



Steps for local bug reproduction

1. Clone the repository

2. Checkout the right commit

3. Compile the build (i.e. mvn install -DskipTest)

4. Run test (i.e. mvn test)

5. Parse test information (i.e. read xml files)

All steps are done inside a docker container and if a bug is

successfully reproduced all data are pushed to a repository.

9/23



Local bug reproduction: obtained results 1/2

Values

Build statuses (all times - 14385 builds)

5215 (36.3%)5215 (36.3%)

4510 (31.4%)4510 (31.4%)

2874 (20.0%)2874 (20.0%)

1415 (9.8%)1415 (9.8%)

337 (2.3%)337 (2.3%)

34 (0.2%)34 (0.2%)

Error when compiling

Successful Bug Reproduction

Test without failure

Error when testing

Error when checking out

Error when cloning

0 1k 2k 3k 4k 5k 6k

Highcharts.com

10/23



Local bug reproduction: obtained results 2/2

Rank Project Builds with Rank Reproduced

test failure (test failure) bugs

1 druid-io/druid 579 2 359 (62.00%)

2 apache/flink 477 3 326 (68.34%)

3 prestodb/presto 1000 1 194 (19.40%)

4 hubspot/singularity 437 5 182 (41.65%)

5 corfudb/corfudb 313 7 126 (40.26%)

6 apache/storm 349 6 111 (31.81%)

7 geoserver/geoserver 118 18 109 (92.37%)

8 spotify/docker-client 111 21 99 (89.19%)

9 xetorthio/jedis 100 25 94 (94.00%)

10 4pr0n/ripme 94 28 87 (92.55%)

11/23



Local bug reproduction

Bug reproduction is HARD.

Build failure reproduction errors can come from:

• build environment (OS, JDK, ...)

• build setup (bash script to start a server, ...)

• flaky tests or custom failing goals (checkstyle, coverage

threshold...)

• right source code version not found

• timeout (after 24 hours we kill build)

12/23



Local bug reproduction

Bug reproduction is HARD.

What can we do?

• reproduce in sandboxed environment (docker)

• use the same setup as in the CI

• don’t try to get back missing commits

13/23



Step 3 : Patch Synthesis



Repair tools

Nopol:

dedicated to repair conditionnal bugs by modifying exisiting

conditions or inserting preconditions.

Astor:

a generate-and-validate repair tool derived from Genprog.

NPEFix:

dedicated to repair only NullPointerException by inserting

preconditions.

14/23



Patch synthesis steps

1. Analyze test information from bug reproduction step

2. if a NullPointerException is detected: run NPEFix

3. Run Astor & Nopol (budget based)

At each point, send an email if a Patch is found.

15/23



Patch synthesis

Patch synthesis is even HARDER

Successful Reproduction Builds (all times - 14307 builds)

Bug reproduction without patch: 99.6% (4464)Bug reproduction without patch: 99.6% (4464)

Bug reproduction and patch created: 0.4% (17)Bug reproduction and patch created: 0.4% (17)

Highcharts.com 16/23



Obtained patches

Project Builds w/ Nopol NPEFix Rank

patches patches patches (rep. build)

jamesagnew/hapi-fhir 1 35 0 88

spotify/cassandra-reaper 1 1 0 121

xmlunit/xmlunit 1 145 0 203

apache/pdfbox 1 120 0 95

LiveRamp/hank 1 4 0 225

spring-cloud/spring-cloud-

dataflow

1 0 1 56

IQSS/dataverse 2 0 16 40

bonigarcia/webdrivermanager 3 30 0 27

GeoWebCache/geowebcache 1 0 2 107

timmolter/XChange 1 0 4 58

phax/jcodemodel 1 624 0 193

phoenixnap/springmvc-

raml-plugin

1 348 0 66

Total 15 1 307 23
17/23



Valid patches

Total 15 1 307 23

Number of valid patch obtained and accepted: 1.

18/23



Valid patches

Total 15 1 307 23

Number of valid patch obtained and accepted: 1.

19/23



Top 10 error types

Rank Exception Occurrences

1 java.lang.AssertionError 2 162

2 java.lang.NullPointerException 641

3 org.junit.ComparisonFailure 419

4 java.lang.Exception 250

5 java.lang.IllegalStateException 202

6 java.lang.NoClassDefFoundError 197

7 java.lang.RuntimeException 191

8 junit.framework.AssertionFailedError 163

9 java.lang.ExceptionInInitializerError 117

10 java.io.IOException 110

20/23



Patch synthesis: discussion

• Current generic repair tools (Astor & Nopol) are really time

and resources consuming

• Repairing assertion errors = guessing a behaviour which is

pretty hard

• Repairing explicit errors (NPE, NumberFormatException, ...)

seems easier to achieve

• For production-readiness, repair tools should use sophisticated

setups (multimodule, external resources, ...)

21/23



Future of Repairnator

1. Bigger scope & faster response time: use directly last finished

builds on TravisCI instead of relying on a list of projects. "

2. Avoid false positive: Use directly TravisCI to reproduce

failures AND to produce patches.

3. Integrate Repairnator into the CI.

22/23



Play with it

• Repairnator sourcecode:

https://github.com/Spirals-Team/repairnator

• Repository of bugs:

https://github.com/Spirals-Team/seip-2018

(consolidated data from february 2017 to january 2018)

• Live data: http://repairnator.lille.inria.fr (almost

15 000 builds this morning. 14 385 two weeks ago)

• Want to integrate your own program repair tool? contact us!

23/23

https://github.com/Spirals-Team/repairnator
https://github.com/Spirals-Team/seip-2018
http://repairnator.lille.inria.fr

	Overview & Design choices
	Step 1 : CI Build Analysis
	Step 2 : Local bug reproduction
	Step 3 : Patch Synthesis

