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Genetic Programming to

modify existing programs,

rather than building them
from scratch.

Demonstrates concept of
automated program repair.

Evolutionary repair of faulty software.
Andrea Arcuri. 2011.

Applied Soft Computing 11, 4 (June 2011), 3494-3514.

Evolutionary Repair of Faulty Software
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Abstract

Testing and fault localization are very expensive software engineering tasks that have been
tried to be automated. Although many successful techniques have been designed. the actual
change of the code for fixing the discovered faults is still a human-only task. Even in the ideal
case in which automated tools could tell us exactly where the location of a fault is, it is not
always trivial how to fix the code. In this paper we analyse the possibility of automating the
complex task of fixing faults. We propose to model this task as a search problem. and hence
0 use for example evolutionary algorithms to solve it. We then discuss the potential of this
approach and how its current limits can be addressed in the future. This task is extremely
challenging and mainly unexplored in literature. Hence, this paper only covers an initial
investigation and gives directions for future work. A rescarch prototype called JAFF and a
case study are presented to give first validation of this approach

Keyword: Repair, Fault Localization, Automated Debugging, Genetic Programming, Search
Based Software Engincering, Coevolution.

1 Introduction

Software testing is used to reveal the presence of faults in computer programs [S0]. Even if no
fault is found, testing cannot guarantee that the software is fault-free. However, testing can be
used to increase our confidence in the software reliability. Unfortunately, testing is expensive,
time consuming and tedious. It is estimated that testing requires around 50% of the total cost of
software development [14]. This is the reason why there has been a lot of effort spent to automate
this expensive software engineering task.

Even if an optimal automated system for doing software testing existed, we still need to know
where the faults are located, that in order to be able to fix them. Automated techniques can help
the tester in this task [26, 65, 78].

Although in some cases it is possible to automatically locate the faults, there is still the need
to modify the code to remove the faults. Is it possible to automate the task of fixing faults? This
would be the natural next step if we seek a full automation of software engineering. And it would
be particularly helpful in the cases of complex software in which, although the faulty part of code
can be identified, difficult to provide a patch for the fault. This would also be a step forward
10 achieve corporate visions like for example IBM's Autonomic Computing [40].

There has been work on fixing code automatically (e.g., [63, 61, 68, 25]). Unfortunately. in
that work there are heavy ints on the type of modifications that can be y done
on the source code. Hence, only limited classes of faults can be addressed. The reason for putting
these constraints is that there are infinite ways to do modifications on a program, and checking all
of them is impossible.
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Software engineering is expensive, summing to over one half e n rog e 0 n S ra eS
Abstract “To alleiate this burden, we propose an automtic tech-

of the US GDP annually. Software maintenance accounts for o/
of that life cycle cost, and a key aspect of maintenance is fixin|
existing programs. Unfortunately, the number of reported bu
available development resources. It is common for a popular |
hundreds of new bug reports filed every day.

€ mai is

P ive. GenProg reduces softwz

maintenance costs by automatically producing patches (repai
defects.

Our Approach

Many bugs can be fixed with just a few changes to a program's
Human repairs often involve inserting new code and deleting |
existing code. GenProg uses those same building blocks to sei/
automatically.

GenProg uses genetic programming to search for repairs. Ou

Automatic program repair has been  longstanding goal
in software engineering. vet debugging remains a largely
manual process. We introduce a fully automated method
Jfor locating and repairing bugs in software. The approach
works on off-the-shelf legacy applications and does not re-
quire formal specifications. program annotations or s

coding practices. Once a program fault is discovered. an

gram variants until one is found that both retains required
Sfunctionality and also avoids the defect in question. Sian-

ird test cases are used 1o exercise the fault and 10 encode
program requirements. Afier a successful repair has been
discovered, it is minimized using structural differencing al-
gorithms and delta debugging. We describe the proposed
method and report experimental results demonstrating that
it can successfully repair ten different C programs totaling
63,000 lines in under 200 seconds, on average.

1 Introduction

Fixing bugs is a difficult, time-consuming, and manual

5. Some reports place software maintenance. tradi-
tionally defined as any modification made on a system after
its delivery. at 90% of the total cost of a typical software
project [27]. Molifying existing code, repairing defects,
and otherwise evolving software are major part of those
costs [24]. The number of outstanding software defects typ-
ically exceeds the resources available to address them [4].

nique for repairing program defects. Our approach does
not require difficult formal specifications, program anno-
tations or special coding practices. Instead. it works on
off-the-shelf legacy applications and readily-available test-
cases. We use genelic programming (o evolve program vari-
ants until one is found that both retains required function-

ive
cases that encode required program behavior, and a failing
negative testcase that demonstrates a defect.

Genetic progranming (GP) is a computational method
inspired by biological eolution, which discovers computer
programs tilored 10 a pasticular task [19]. GP maintains a
population of individual programs. Computational analogs
of biological mutation and crossover produce program vari-
ants. Each variant’s suitability is evaluated using a user-
defined fitness function, and succe ssful variarts are selected

Gl 5

of problems e.£., see [11), but 10 our knowledge it has not
been used 10 evolve off-the-shelflegacy software.

A significant impediment for an evolutionary algorith
like GP is the potentially infinite-size search space it must
Sample 10 find a correct program. To address this problem,
we introduce two key innovations. First, we restrict the al-
gorith 1o only produce changes that are based on struc-
tures in other parts of the program. In essence, we hypoth-
esize that a program thatis missing important functionality
(e a null check) will be able to copy and adapt it from
another location in the program. Second, we constrain the

proje i
and unknown bugs [21] because they lack the development
resources 10 deal with every defect. For example, in 2005,
one Mozilla developer claimed that, “everyday, almost 300
bugs appear [....] far too much for only the Mozilla pro-
grammers to handle” [S. p. 363].

“This reverch was suppatsd i gurt by Notional Science Foundation

Noaicialendorement should be frred

ICSE"09, May 16-24, 2009, Vancouver, Canada
978-1-4244-3452-7/09/525.00 © 2009 IEEE.

i (that
is. the portions of the program that were on the execution
path that produced the error). Combining these insights, we
demonsirate automatically generated repairs for ten C pro-
‘grams totaling 63,000 lines of code.

We use GP to maintain a population of variants of that
program.  Each variant is represented as an abstract syn-
tax tree (AST) paired with a weighted program path. We
modify variants using o genetic algorithm operations,
crossover and mutation, specifically targeted 1o this repre-

e sy

program repair on
real-world C programs

Automatically Finding Patches Using Genetic Programming.
Westley Weimer, ThanVu Nguyen, Claire Le Goues, Stephanie Forrest.
Proceedings of International Conference on Software Engineering. ICSE ‘09. 2009.
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Where are the program repair bots?

Or, why aren’t we all filthy rich yet?
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ABSTRACT
Program repair rescarch has made tremendous progress over the
last few years, and software development bots are now being in-
vented to help developers gain productisily. n this paper, we inves

e the concept of a“program eepair bot” and present Repaiator.

bot is an aut L moni

» ¢
tors test filures, reproduces bugs, and runs program repair tools
nsteach reproduced bug. If a patch is found. Repairnator bot
reports it 1o the developers. At the time of writing, Repairnator
uses three different progeam repair systems and has been operating
since February 2017 In total it has studied 11317 test failures over
1609 open-source software projects hsted on Gitkub, and has gen
i puiches o 17 difken s, Oves o, we Wt musber
of hard technical challenges and had to make various design and

engineering decisions This ives us a unique experience in this

this paper, we reflect upon Repairnator in order to share
1his knowledge il the aulomatic program repai commurny
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1 INTRODUCTION

Program repair research has made tremendous progress over the
last few years (9, 16,23, 31]. In a variety of empirical evaluations
[13.17,20], it has been shown that current program repair systems
are able to synthesize patches for real bugs in real large programs

However, previous evaluations of p
ally only evaluate the capability of the re

repair techniques gener
r algorithms themselves

For the use of program repair techniques in practice, several other
‘phases such as failure detection, bug reproduction. and patch re-
porting are also needed before or after the run of the core repair
real potential,

in industry, iLis desirable Lo study the design and implementation of
an end-to-end repair toolchain that is amensble to the mainstream
devlopment practices

For & this gap between research and industrial use, we

rl\uuuxrpluhl ‘program repair bot” in this paper. To
m repair bol is an autonomous agent that constantly

us, a pr
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i Matorg 101} maoann sonoa

Zhongxing Yu
University of Lille & lmm Lille, France
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Martin Monperrus
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monitors test failures, reproduces bugs, and runs progeam repair
tools against each reproduced bug. If a patch is found, the proj

repair bot reports it o the developers. We envision that in ten
{rom now there il be handreds of program repair bots tht will
work in concert with developers to maintain large code bases. But
e, nobody has ever reported on
and operation of such a repair bot.

pairnator project is a project o design, implement and
operate a repair bot for Java proge epair bot itself is
called after the project: “Repairnator”, and the name will only refer
to the bot in the remaining of the paper. Repaimator constantly
monitors test failures happening in continuous integration, also

today, to the best of our knowl
the desi
The

ms. Th

called CL: Cis a popular d
frequently int and testing code changes. W est failure
happens on CL Repaimator firs. tries to reproduce the C1 failure.
then runs publicly available program repair tools to make a “repair
attempt”, and finally colleets and reports information about the
failure reprod uction and repair attempt

Al the time of writing, Re

levelopment practice 28, 29) that involses

different program
since February 2017. In total,

1609 open-source software
projects hosted an Gitkub, and has
ent bugs. None of those patches we

rated patches for 17 differ
proposed o the developers
because they allsuffer from the overfitting problem (17, 25, 26]: they
indeed fix the faling build but cannot be considered as a general,
appropriate solution to the bug.

ign and operation of Repaimator has been chall
Over months, we hit a rumber of hard technica challn

A e oA sl Sl w185
Reaieoatan i ovdor o shise this e lidgs with P asismsti
program repair communily.

The pipeline of Repaimator is constituted by three stages: CI
Build Analysis, Bug Reproduction, and Palch Synthesis. For each of
the theee stages: (1) we present how it has been designed, aiming
at inspiring the authors of upcoming repair bots; (2) we report

on results about the operation of Repaimator itself over 9 months
of experiment; and (5) we present and discuss actionable recom
mendations on how to design a program repair bot based on our
experience in archilecting and operating Repaimator.

To sum up, our contributions are:

« & blucprint design of a program repair bot for continuous
integration (CI test failures;

they
exist!

(note: we found out about them a few weeks ago)

How to Design a Program Repair Bot? Insights from the Repairnator Project.
Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus.
Proceedings of the International Conference on Software Engineering . ICSE ‘18.



How do we deploy?



What do developers need?

Easy Integration Timeliness

Bug Information

Patches

11



The big assumption: The existence of tests

requires test cases

12



Software engineering has changed since
APR was introduced.
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requires test cases
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with open(filenate) as f:

Zoc = yanl.load()
except KeyError as err
print(*Error when importing!, filename, '.', err)

Whyis this an issue?

Avoid using yaml.load

“The yaml.load function provides the ability to construct an arbitrary Python object, which may be dangerous If you receive a YAML document from an untrusted
source. The function yaml.safe_load limits this abillty to simple Python objects like Integers or lsts.

Related code pattern

Yaml load
Yaml load

Python Security

17



What are the challenges?
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Challenges: Patch Quality

BUGGY
max = 0;
if(a > b)

max = a;
if(b > a)

max = b;
a ||b | max
323
s s s |3
7708

CORRECT
max = a;
if(a > b)

max = a;
if(b > a)

max = b;
a b | max
323
+ s |5 |9
777

PLAUSIBLE

max = 7;
if(a > b)

largest = a;
if(b > a)

largest = b;
a b max
3 2 3 IEI
s s s
7 7 7 IEI
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Not all good patches are correct.

21
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Patches as Better Bug Reports
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“In many cases the Kali patch cleanly -
identifies the exact functionality and

locatjqn that the developer patch “Bug reports also accompanied by
modifies [machine-generated] patches were

: ' ~ three times as likely to be addressed as
“The Kali and developer patches standard bug reports.”

typically modify common functionality

and variables.”




Correctness is a major challenge,
but overfitted patches can still be useful.
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Challenges: Expressiveness vs. Scalability

)
))))

g

Expressiveness

Allows the program to be changed in a greater
number of ways, increasing the odds of finding a
modification that produces a repair.

e larger corpus of fix ingredients
e wider set of program transformations
e granular modifications to the program

25



Challenges: Expressiveness vs. Scalability

Time taken to discover a patch is a function of:

patch size
program size
expressiveness

Scalability

26



Scalability

Expressiveness

27



How can we make APR both scalable
and expressive?



Observation:
APR inherited most of its technologies.
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Abstract Syntax Tree

APPEND 12 3

SWAP 5 6

DELETE 4

Patch Representation
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Everyone is still using spectrum-based fault localisation!

2017: ssFix, Repairnator, NOPOL, ...
2016: History-Driven Program Repair, ...
2015: Angelix, SearchRepair, ...

2014: Astor, RSRepair, ...

2013: SemFix, ...

2011: AE, ...

2009: GenProg



Recap: Spectra-Based Fault Localisation

int year, days;
year = 1980;
days = atoi(argv[1]);
while (days > 365) {

if (isLeapYear(year)){

if (days > 366) {

days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

int year, days;
year = 1980;
days = atoi(argv[1]);
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {

days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

int year, days;
year = 1980;
days = atoi(argv[1]);
while (days > 365) {
if (isLeapYear(year)){
if (days > 366) {

days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

int year, days;

year = 1980;

days = atoi(argv[1]);
while (days > 365) {
if (isLeapYear(year)){

if (days > 366) {

days -= 366;
year += 1;
} else { }
} else {
days -= 365;
year += 1;

}

return year;

34
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On the Accuracy of Spectrum-based Fault Localization
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Abstract

Spectrum-based fault localization shortens the test-
diagnose-repair cycle by reducing the debugging effort.
As a light-weight automated diagnosis technique it can
casily be integrated with existing testing schemes. Hou-
cver, as no model of the system is taken into account,
its diagnostic accuracy is inkerently limited. Using
the Siemens Set benchmark, we investigate this diag-
nostic accuracy as a function of several parameters
(such as quality and quantity of the program spectra
collected during the execution of the system), some of
which directly relate to test design. Our results indicate
that the superior performance of a particular similar-
ity coefficient, used to analyze the progmm spectra, is
largely independent of test design. Furthermore, near-
optimal diagnostic accumcy (ezonerating about 80% of
the blocks of code on average) is already obtained for
low-quality error observations and limited numbers of
test cases. The influence of the number of test cases
is of primary importance for continuous {embedded)
rocessing applications. where only limited observation

those faults that affect the user most can be solved
before the release deadline, the efficiency with which
faults can be diagnosed and repaired directly influences
software reliability. Automated diagnosis can help to
improve this efficiency.

Diagnosis techniques are complementary to testing
in two ways. First, for tests designed to verify correct
behavior, they generate information on the root cause
of test failures, focusing the subsequent tests that are
required to expose this root cause. Second, for tests de-
signed to expose specific potential root causes, the ex-
tra information generated by diagnosis techniques can
belp to further reduce the set of remaining possible ex-
planations. Given its incremental nature (i.c., taking
into account the results of an entire sequence of tests).
automated diagnosis alleviates much of the work of se-
lecting tests in the latter category, and can hence have
a profound impact on the test-diagnose-repair cycle.

An important part of diagnosis and repair consist in
localizing faults, and several tools for automated de-
bugging and systems diagnosis implement an approach

Assumption:
several failing test cases (6 is optimal).

Reality:
usually one failing test.

Takes > 12 hours to run GenProg
and SearchRepair.
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Can we tailor fault localisation to
Cl-based program repair?
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