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About me...



Purpose of Talk:
Challenge existing views,
and identify opportunities.
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2008
Genetic Programming to 

modify existing programs, 
rather than building them 

from scratch.

Demonstrates concept of 
automated program repair.

Evolutionary repair of faulty software.
Andrea Arcuri. 2011.
Applied Soft Computing 11, 4 (June 2011), 3494-3514.
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2009
GenProg demonstrates 

program repair on 
real-world C programs

Automatically Finding Patches Using Genetic Programming.
Westley Weimer, ThanVu Nguyen, Claire Le Goues, Stephanie Forrest.
Proceedings of International Conference on Software Engineering. ICSE ‘09. 2009.
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Where are the program repair bots?
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Or, why aren’t we all filthy rich yet?
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How to Design a Program Repair Bot? Insights from the Repairnator Project.
Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus.
Proceedings of the International Conference on Software Engineering . ICSE ‘18.

ICSE SEIP ‘18

they 
exist!

(note: we found out about them a few weeks ago)



How do we deploy?
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What do developers need?
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Easy Integration Timeliness Bug Information Patches



The big assumption: The existence of tests
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requires test cases



Software engineering has changed since 
APR was introduced.
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[ triggers CI build ]

[ pushes results ]
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requires test cases
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What are the challenges?
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Challenges
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Patch Quality Scalability Expressiveness
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max = 0;
if(a > b)
    max  = a;
if(b > a)
    max = b;

max = a;
if(a > b)
    max  = a;
if(b > a)
    max = b;

CORRECTBUGGY

max = 7;
if(a > b)
    largest = a;
if(b > a)
    largest = b;

PLAUSIBLE

a b max

3 2 3

4 5 5

7 7 0

a b max

3 2 3

4 5 5

7 7 7

a b max

3 2 3

4 5 5

7 7 7

Challenges: Patch Quality



Not all good patches are correct.

21

CONTROVERSIA
L



22

“Bug reports also accompanied by 
[machine-generated] patches were 
three times as likely to be addressed as 
standard bug reports.”

“In many cases the Kali patch cleanly 
identifies the exact functionality and 
location that the developer patch 
modifies”

“The Kali and developer patches 
typically modify common functionality 
and variables.”

GPCE ‘06ISSTA ‘15



Correctness is a major challenge,
but overfitted patches can still be useful.
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Challenges
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Patch Quality Scalability Expressiveness



Challenges: Expressiveness vs. Scalability
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Expressiveness

Allows the program to be changed in a greater 
number of ways, increasing the odds of finding a 
modification that produces a repair.

● larger corpus of fix ingredients
● wider set of program transformations
● granular modifications to the program



Challenges: Expressiveness vs. Scalability
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Time taken to discover a patch is a function of:

● patch size
● program size
● expressiveness
● ...

Scalability
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Scalability

Expressiveness



How can we make APR both scalable 
and expressive?
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Observation:
APR inherited most of its technologies.
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APPEND 12 3

SWAP 5 6

DELETE 4

Abstract Syntax Tree

Patch Representation
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Everyone is still using spectrum-based fault localisation!

● 2017: ssFix, Repairnator, NOPOL, ...
● 2016: History-Driven Program Repair, ...
● 2015: Angelix, SearchRepair, ...
● 2014: Astor, RSRepair, ...
● 2013: SemFix, ...
● 2011: AE, ...
● ...
● 2009: GenProg
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Recap: Spectra-Based Fault Localisation

34

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

  if (isLeapYear(year)){

    if (days > 366) {

      days -= 366;

      year += 1;

    } else { }

  } else {

    days -= 365;

    year += 1;

  }

}

return year;

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

  if (isLeapYear(year)){

    if (days > 366) {

      days -= 366;

      year += 1;

    } else { }

  } else {

    days -= 365;

    year += 1;

  }

}

return year;

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

  if (isLeapYear(year)){

    if (days > 366) {

      days -= 366;

      year += 1;

    } else { }

  } else {

    days -= 365;

    year += 1;

  }

}

return year;

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

  if (isLeapYear(year)){

    if (days > 366) {

      days -= 366;

      year += 1;

    } else { }

  } else {

    days -= 365;

    year += 1;

  }

}

return year;

Passing Test #1 Failing Test #1Passing Test #2 Passing Test #3



35Shin Yoo. 2012. Evolving human competitive spectra-based fault localisation techniques. In Proceedings of the 4th international conference on Search Based Software 
Engineering (SSBSE'12), Gordon Fraser and Jerffeson Teixeira de Souza (Eds.). Springer-Verlag, Berlin, Heidelberg, 244-258.

GenProg

AMPLEJaccard Ochiai

Tarantula
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Assumption:
several failing test cases (6 is optimal).

Reality:
usually one failing test.

Takes > 12 hours to run GenProg 
and SearchRepair.



Can we tailor fault localisation to 
CI-based program repair?
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time
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BugZoo


