
Automated Program Repair
Opportunities, Challenges, Advances

1

Chris Timperley

2

Research Interests:

● Automated Program Repair
● Fault Localisation
● GI for Robotics
● Automated Test Generation

Recent Projects:

● BugZoo: reproducible studies of
historical bugs

● Rooibos: language-independent,
syntax-aware search and
transformation.

● Houston: automated testing for
robotics

Postdoc
Carnegie Mellon University, USA
w/ Claire Le Goues

MEng (2013), PhD (2017)
University of York, UK
w/ Susan Stepneyctimperley@cmu.edu

About me...

Purpose of Talk:
Challenge existing views,
and identify opportunities.

3

4

5

2008
Genetic Programming to

modify existing programs,
rather than building them

from scratch.

Demonstrates concept of
automated program repair.

Evolutionary repair of faulty software.
Andrea Arcuri. 2011.
Applied Soft Computing 11, 4 (June 2011), 3494-3514.

6

2009
GenProg demonstrates

program repair on
real-world C programs

Automatically Finding Patches Using Genetic Programming.
Westley Weimer, ThanVu Nguyen, Claire Le Goues, Stephanie Forrest.
Proceedings of International Conference on Software Engineering. ICSE ‘09. 2009.

7

BUGGY
CODE

Fault
Localisation

LOCALISED
CODE

FIXED
CODE

Patch
Generation

Program
Analysis

2009–

Where are the program repair bots?

8

Or, why aren’t we all filthy rich yet?

9

How to Design a Program Repair Bot? Insights from the Repairnator Project.
Simon Urli, Zhongxing Yu, Lionel Seinturier, and Martin Monperrus.
Proceedings of the International Conference on Software Engineering . ICSE ‘18.

ICSE SEIP ‘18

they
exist!

(note: we found out about them a few weeks ago)

How do we deploy?

10

What do developers need?

11

Easy Integration Timeliness Bug Information Patches

The big assumption: The existence of tests

12

requires test cases

Software engineering has changed since
APR was introduced.

13

14

15

[triggers CI build]

[pushes results]

16

requires test cases

17

What are the challenges?

18

Challenges

19

Patch Quality Scalability Expressiveness

20

max = 0;
if(a > b)
 max = a;
if(b > a)
 max = b;

max = a;
if(a > b)
 max = a;
if(b > a)
 max = b;

CORRECTBUGGY

max = 7;
if(a > b)
 largest = a;
if(b > a)
 largest = b;

PLAUSIBLE

a b max

3 2 3

4 5 5

7 7 0

a b max

3 2 3

4 5 5

7 7 7

a b max

3 2 3

4 5 5

7 7 7

Challenges: Patch Quality

Not all good patches are correct.

21

CONTROVERSIA
L

22

“Bug reports also accompanied by
[machine-generated] patches were
three times as likely to be addressed as
standard bug reports.”

“In many cases the Kali patch cleanly
identifies the exact functionality and
location that the developer patch
modifies”

“The Kali and developer patches
typically modify common functionality
and variables.”

GPCE ‘06ISSTA ‘15

Correctness is a major challenge,
but overfitted patches can still be useful.

23

Challenges

24

Patch Quality Scalability Expressiveness

Challenges: Expressiveness vs. Scalability

25

Expressiveness

Allows the program to be changed in a greater
number of ways, increasing the odds of finding a
modification that produces a repair.

● larger corpus of fix ingredients
● wider set of program transformations
● granular modifications to the program

Challenges: Expressiveness vs. Scalability

26

Time taken to discover a patch is a function of:

● patch size
● program size
● expressiveness
● ...

Scalability

27

Scalability

Expressiveness

How can we make APR both scalable
and expressive?

28

Observation:
APR inherited most of its technologies.

29

30

Fault
Localisation

Patch
Generation

Program
Analysis

compiler optimisation
test suite prioritisation
abstract syntax trees
concolic execution

specification mining
...

genetic algorithms
delta-debugging minimisation

random search
program synthesis
metaprogramming
mutation testing

...

Program
Analysis

Patch
Generation

BUGGY
CODE

LOCALISED
CODE

FIXED
CODE

31

APPEND 12 3

SWAP 5 6

DELETE 4

Abstract Syntax Tree

Patch Representation

32

Fault
Localisation

Patch
Generation

Program
Analysis

compiler optimisation
test suite prioritisation
abstract syntax trees
concolic execution

specification mining
...

genetic algorithms
delta-debugging minimisation

random search
program synthesis
metaprogramming
mutation testing

...

Program
Analysis

Patch
Generation

Fault
Localisation

spectrum-based fault localisation
BUGGY
CODE

LOCALISED
CODE

FIXED
CODE

Everyone is still using spectrum-based fault localisation!

● 2017: ssFix, Repairnator, NOPOL, ...
● 2016: History-Driven Program Repair, ...
● 2015: Angelix, SearchRepair, ...
● 2014: Astor, RSRepair, ...
● 2013: SemFix, ...
● 2011: AE, ...
● ...
● 2009: GenProg

33

Recap: Spectra-Based Fault Localisation

34

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

 if (isLeapYear(year)){

 if (days > 366) {

 days -= 366;

 year += 1;

 } else { }

 } else {

 days -= 365;

 year += 1;

 }

}

return year;

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

 if (isLeapYear(year)){

 if (days > 366) {

 days -= 366;

 year += 1;

 } else { }

 } else {

 days -= 365;

 year += 1;

 }

}

return year;

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

 if (isLeapYear(year)){

 if (days > 366) {

 days -= 366;

 year += 1;

 } else { }

 } else {

 days -= 365;

 year += 1;

 }

}

return year;

int year, days;

year = 1980;

days = atoi(argv[1]);

while (days > 365) {

 if (isLeapYear(year)){

 if (days > 366) {

 days -= 366;

 year += 1;

 } else { }

 } else {

 days -= 365;

 year += 1;

 }

}

return year;

Passing Test #1 Failing Test #1Passing Test #2 Passing Test #3

35Shin Yoo. 2012. Evolving human competitive spectra-based fault localisation techniques. In Proceedings of the 4th international conference on Search Based Software
Engineering (SSBSE'12), Gordon Fraser and Jerffeson Teixeira de Souza (Eds.). Springer-Verlag, Berlin, Heidelberg, 244-258.

GenProg

AMPLEJaccard Ochiai

Tarantula

36

Assumption:
several failing test cases (6 is optimal).

Reality:
usually one failing test.

Takes > 12 hours to run GenProg
and SearchRepair.

Can we tailor fault localisation to
CI-based program repair?

37

38

time

39

BugZoo

