Mutation Testing and Automated
Program Improvement

Mike Papadakis
University of Luxembourg
SnT Center

58th CREST Open Workshop

. I “ *Part of the presentation were made by Dr. Yue Jia

Mutation Testing

Mutation Testing

< /> =4 | Mutant

Original

Program

Code-based Mutation Testing

< />

Original
Program

Code-based Mutation Testing

222D
1

—> KNP

Original
Program

Tests

Code-based Mutation Testing

2, ;
_—
—_—

W [>

Original
Program

Killed
/___\

. .
B> > Our test suite can capture

faults represented by the
killed mutants

N

Mutant Mutant Mutant

Original
Program

Survived
B
Vel Y

¥ [>

Our test suite cannot
capture faults
represented by the
survived mutants

=,
_—
_—

Original
Program

Survived

e ———
B

Our test suite cannot
capture faults
represented by the
survived mutants

New Tests

Original
Program

Killed Surwved

e —
—

N ‘e

Mutation i Killed . . ‘

~~

ey 113111

~ 0.43

\

Mutation Testing: Focuses on the behaviour
differences between program variants

A good mutant is one that leads to test cases that
reveal erroneous behaviour (of the original program)

Program Improvement: Focuses on the program
variants with the “same” or “similar” behaviour

Mutation Testing and Automated
Program Improvement

Same Behaviour - |

Improving other properties

Different
Behaviour

Sy ae | EE e
2 L ._rl', Jl| AN)
20415 e)

P

Likely Fault Revealing

Program Variants

Mutation Testing and Automated
Program Improvement

Same Behaviour - |

Improving other properties
Different |

Likely Fault Revealing

Program Variants

Feasibility and Scalability issues are the same!

« Automated Program

\ Improvement

In Mutation Testing
Context (code location and
transformation) matters. ..

Improbable or surprising code is
ikely to be problematic

< />

Original ‘

Program Variant
Improbable More probable
code snipets code snipets

Ray et al. On the "naturalness" of bugqgy code ICSE'16

Build a model (learn from existing code)

QlITOPT | oalTODT |
‘do«osotr“ OT)too0 PpOI
lOtlloptgtooo 1 llio‘ Ibnoﬂt
L?ll‘rQU (v} (o000

rnopT160
tho |!
oD 0
| Q

0~-00~0 g©
00 “0 O -~

o©°

o]
v}
o

|
o]

LSTM Recurrent Neural
Network

Mutations-Transformations

Mutations-Transformations

Mutations-Transformations

Mutations-Transformations

" Multiple Predefined

! Syntactic
G Transformations
< /> — Variants e
Original \
Program ‘ Variants
| Tailored Mutations
Variants]

Code Locations & Guidance...

These patterns can be used for
identitying interesting locations &
guide evolution

Vol o1 Q

L1 OO0 1 t0Q 1 (

po ti1\'folo
o0
o
1o

vt Yo 100

Defect

Patterns are described in terms of
Control & Data Dependencies

AST Graph elements

Pattern

In mutation testing only a few
mutants (approximately 3%) are
interesting...

Problem

Prioritisation
Problem

Set selection
problem

t1LOD 1 (oon-'~5-‘loo"0l
o 1 Mol 0ans ~ v o~
.99‘ *r:-l" (00 14

.
e
ey '

Variant

Selection Problem

Prediction Modelling

Machine Learning

Mutants Defects set
- S,

Program features M @ -
Extraction *ﬁ_ ;

Classification Training

Classifier

Classifier that predicts mutants’ Utility

Evolution

Classifier

Learning-to-rank Mutants

o]

h B

BREom
ﬂ O

|(/ﬁ [._bT_ W

)

A
B Gl

Mutants Programs under test
e

Program features Extraction

(

ML Classifier

. . Mutants ranked by
Evolution Time Brobab i1ty O Heidity

Learning-to-rank Mutants

Mutants Programs under test
\ "

Mutants Defects set ‘

.

[Program features Extraction]

'

Program features ; @ s
Extraction *ﬁ —— o

Classification Training ML Classifier

Mutants ranked by
probability of utility

Evolution time

Features

Depth in the CFG of B

Complexity of S as its number of mutants
Mutant type of M

Types of mutants on Pg

AST type of Pg

Number of predecessor/successor Basic
Blocks of B on the CFG

Number of AST parents of §

Type of B

Type of P’ basic block

Number of mutants on §

Number of mutants of statement control
out-dependent to S

Number of mutants of statement control
in-dependentto S

Number of mutants of statement data out-
dependentto S

Number of mutants of statement data in-
dependentto S

Number of mutants of statement control
out-dependent to Py

Number of mutants of statement control
in-dependent to Pg

Number of mutants of statement data out-
dependent to Pg

Number of mutants of statement data in-
dependent to Pg

Mutant type and statement type of
statement control out-dependent to S
Mutant type and statement type of
statement control in-dependent to S
Mutant type and statement type of
statement data out-dependent to S
Mutant type and statement type of
statement data in-dependent to S

M denotes a mutant on statement S in basic block B. Psdenotes the AST parent (of S)

Learning to Rank
Interesting Mutants

Use Gradient Boosted Decision Trees

LLVM-based mutation tool

Control and Data Dependencies
are the most informative Features

Subsuming mutants and Faults

Killable

Subsuming

Mutation Testing and Automated
Program Improvement

Same Behaviour - |

Improving other properties
Different |

Likely Fault Revealing

Program Variants

Plausibility &

—valuation

Evaluate Solutions

[Dynamic - Test-based Evaluation J

Evaluate Solutions

[Execution Hijack J

| -

Tsankov et al. Execution Hijacking: Improving Dynamic Analysis by Flying off Course ICST'11

Evaluate Solutions

[Execution Hijack

=G —p ——

Tsankov et al. Execution Hijacking: Improving Dynamic Analysis by Flying off Course ICST'11

Proposing & Documenting
Changes

Mutation Testing and Automated
Program Improvement Build a model (learn from existing code)

dehaviour -
H 1> aviouu

Improving other properties

Program Variant

Learning-to-ran

Evolution time

Differences Synthesise conditions-hintsJ
{ B
AR e

