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Code-based Mutation Testing
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Code-based Mutation Testing
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Mutation Testing: Focuses on the behaviour
differences between program variants

A good mutant is one that leads to test cases that
reveal erroneous behaviour (of the original program)

Program Improvement: Focuses on the program
variants with the “same” or “similar” behaviour
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Feasibility and Scalability issues are the same!
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In Mutation Testing
Context (code location and
transformation) matters. ..




Improbable or surprising code is
ikely to be problematic
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Ray et al. On the "naturalness" of bugqgy code ICSE'16




Build a model (learn from existing code)
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Code Locations & Guidance...




These patterns can be used for
identitying interesting locations &
guide evolution
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Control & Data Dependencies

AST Graph elements

Pattern




In mutation testing only a few
mutants (approximately 3%) are
interesting...




Problem

Prioritisation
Problem

Set selection
problem
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Selection Problem




Prediction Modelling




Machine Learning

Mutants Defects set
- S,

Program features M @ -
Extraction *ﬁ_ ;

Classification Training

Classifier




Classifier that predicts mutants’ Utility

Evolution

Classifier




Learning-to-rank Mutants
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Learning-to-rank Mutants
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Features

Depth in the CFG of B

Complexity of S as its number of mutants
Mutant type of M

Types of mutants on Pg

AST type of Pg

Number of predecessor/successor Basic
Blocks of B on the CFG

Number of AST parents of §

Type of B

Type of P’ basic block

Number of mutants on §

Number of mutants of statement control
out-dependent to S

Number of mutants of statement control
in-dependentto S

Number of mutants of statement data out-
dependentto S

Number of mutants of statement data in-
dependentto S

Number of mutants of statement control
out-dependent to Py

Number of mutants of statement control
in-dependent to Pg

Number of mutants of statement data out-
dependent to Pg

Number of mutants of statement data in-
dependent to Pg

Mutant type and statement type of
statement control out-dependent to S
Mutant type and statement type of
statement control in-dependent to S
Mutant type and statement type of
statement data out-dependent to S
Mutant type and statement type of
statement data in-dependent to S

M denotes a mutant on statement S in basic block B. Psdenotes the AST parent (of S)




Learning to Rank
Interesting Mutants

Use Gradient Boosted Decision Trees

LLVM-based mutation tool







Control and Data Dependencies
are the most informative Features




Subsuming mutants and Faults

Killable

Subsuming
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Evaluate Solutions

[ Dynamic - Test-based Evaluation J




Evaluate Solutions

[ Execution Hijack J
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Tsankov et al. Execution Hijacking: Improving Dynamic Analysis by Flying off Course ICST'11
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Proposing & Documenting
Changes
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