PPGI
UNIRIO

Local optimization of JavaScript code

FABIO FARZAT
MARCIO BARROS
GUILHERME TRAVASSOS

Emphasis

o Break things instead of repairing them

o Syntax tree level manipulation instead of source code lines

o Local search instead of genetic algorithms

@

Marcio Barros
PPGI - UNIRIO

Why should one care about JavaScript?

o The world seems to be committed to JavaScript

o The first version of the programming language was developed in a couple of weeks to

-

allow “non-programmers” handle the structure of a Web page in a browser

o It was designed to provide a better interaction model
between the front- and the back-end of Web apps

o Now, JavaScript is used everywhere ...

@

Marcio Barros
PPGI - UNIRIO

JavaScript is everywhere ...

97% 0.4%

front-end hybrid mobile back-end

https://goo.gl/kWbgsU https://ionicframework.com/survey/2017#trends https://www.similartech.com/technologies/nodejs

@

Marcio Barros

PPGI - UNIRIO

The dangers of JavaScript

o At the same time, a future that depends so much

on JavaScript is worrisome

o JavaScript shows peculiar behavior if a developer
goes beyond the bounds of "normal" programming

@

Marcio Barros
PPGI - UNIRIO

The dangers of JavaScript

B Command Prompt - node — O >

> var ts

> ts

>ts* 1
NEL

>ts |1
1
> 42.toFixed(2)

> 42 .toFixed(2)

https://www.youtube.com/watch?v=2pL28CcEiju
’ https://www.destroyallsoftware.com/talks/wat

Marcio Barros

PPGI - UNIRIO

Objectives

The main objective of our research is to find variants of
a target JavaScript program which are smaller and

functionally-equivalent to the target program.

@

Marcio Barros
PPGI - UNIRIO

Objectives

The main objective of our research is to find variants of
a target JavaScript program which are smaller and

functionally-equivalent to the target program.

Reducing the size of the source code (minified version) will

reduce load and processing times.

@

Marcio Barros
PPGI - UNIRIO

Objectives

The main objective of our research is to find variants of
a target JavaScript program which are smaller and

functionally-equivalent to the target program.

Equivalence as attested by the test suite of the target

program, which acts as our (limited) oracle.

@

Marcio Barros
PPGI - UNIRIO

Important notice

This is an ongoing work!

At the moment, we are interpreting the results collected

from a second round of experiments.

But it all started with an opportunity ...

@

Marcio Barros
PPGI - UNIRIO

Opportunity strikes!

o The university installs a supercomputer
and needs someone to test it!

o Lobo Carneiro

o Cluster-based supercomputer

o 252 processing nodes

o Each node has 24 cores running HT
o 16 Tb of RAM memory

o 720 Tb of disk

Marcio Barros
PPGI - UNIRIO

Opportunity strikes!

o We examined the fitness landscape for JavaScript source code improvement

o We executed a genetic algorithm and a random search over 13 target programs

o Mutation operator that removes nodes from the AST

o 5,000 fitness evaluations/round, 60 rounds for each program

o At top usage, we occupied 2,880 cores and 500 Gb of RAM

@

Marcio Barros
PPGI - UNIRIO

The selected
JavaScript
programs

Heavily-used JavaScript libraries
>= 90% statement coverage
Distinct sizes, from small to large

Researchers had some experience

Program LOC # Tests % Cov Usage Version
Browserify 757 570 99% 1.9 14.3.0
Exectimer 195 37 91% 0.4 n/a
Express-ifttt 160 29 93% 0.2 n/a
Gulp-ccer 525 17 90% 0.1 n/a
jQuery 7,607 937 91% 4.8 3.2.0
Lodash 10,795 2,077 94% 33.8 3.10.1
Minimist 193 140 92% 25.8 1.2.0
Plivo-node 609 26 91% 10.6 n/a
Pug 400 240 98% 356 4.0.0
Tleaf 133 131 96 % 0.2 n/a
Underscore 1.481 198 95% 8,710 1.8.3
UvUID 209 21 91% 11,497 n/a
XML2JS 526 83 93% 3,783 0.4.16

Findings

o Surprisingly, random search outperformed genetic algorithms for all instances

o GA failed to find improved versions in more than 50% of its runs for all programs

o RD fails less frequently and found variants representing from 0.2% to 22% reduction!

o Patches are small and clustered in independent parts of the source code

o The distance between patches is moderately and inversely correlated to program size
o Patch size is strongly and inversely correlated to program size
o The median is always smaller than the average for both measures (a few large values)

o The best variants found by random search had many patches (37% rounds found 5+ patches)

Marcio Barros
PPGI - UNIRIO

Findings: an example

UUIDjs.getTimeFieldValues = function (time) {

var ts = time - Date.UTC(1582, 9, 15);
var hm = ts / 4294967296 =* 10000 & 268435455;

return 1
low: (ts & 268435455) =* 10000 I 4294967296,

1
2
3
4
5
6 mid: hm & 65535
7
8
9
0

hi: hm >>> 16,
timestamp: ts

%

};
Listing 1. function getTimeFieldValues (original version of the source code)

1 UUIDjs.getTimeFieldValues = function () {

2 var ts;

3 var hm:

4 return {

5 low: (ts & 268435455) =+ 10000 % 4294967296,
6 mid: hm & 65535

T };

8 };

Listing 2. function getTimeFieldValues (optimized version of the source code)

UUID library

Marcio Barros
PPGI - UNIRIO

Findings: patch distribution

These findings imply that basic genetic algorithms are
not effective for JavaScript source code reduction
because the chances that recombination merges

independent mutations are very small.

Marcio Barros
PPGI - UNIRIO

Findings: patch distribution

UUIDjs.getTimeFieldValues = function(time) {
var ts = time - Date.UTC(1582, 9, 15);
var hm;
return {
low: (ts & 268435455) * 10000 % 4294967296,
mid: hm & 65535,
hi: hm >>> 16,

\

timestamp: ts
i
}i

Individual 1 (subjected to one mutation)

UUIDjs.getTimeFieldValues = function(time) {
var ts;
var hm = ts / 4294967296 * 10000 & 268435455;
return {
low: (ts & 268435455) * 10000 % 4294967296,
mid: hm & 65535,
hi: hm >>> 16,
timestamp: ts
bi
}i

Individual 2 (subjected to a second mutation)

What are the chances of a one-point crossover that
keeps both building blocks?

Marcio Barros
PPGI - UNIRIO

Findings: patch distribution

UUIDjs.getTimeFieldValues BUIDnstdenTimeRjeldValues = functiBilbimeyefTimeFieldValues = function(time) {

‘ var ts = time - Date.UTC (1va&2,t®; 15); var ts;
var hm; var hm; ' var hm = ts / 4294967296 * 10000 & 268435455;
return { return { return {
low: (ts & 268435455) * 1000W: $(82949562985455) * 10000 % 42D4067286,& 268435455) * 10000 % 4294967296,
mid: hm & 65535, mid: hm & 65535, mid: hm & 65535,
hi: hm >>> 16, hi: hm >>> 16, hi: hm >>> 16,
timestamp: ts timestamp: ts timestamp: ts

}i }i }i
}i bi }i

Rephrasing: what are the chances of selecting these cutting points?

They are inversely proportional to the square of the number of
instructions in the target program.

@

Marcio Barros
PPGI - UNIRIO

So, what is the alternative?

o A systematic transversal of the search space (for instance, a local search) may find
better results than random search

o Local search behaves well if departing from a good solution (the human-written program)
o Optimization is performed by removing nodes from the AST that do not contribute to the test cases

o The key challenge is the size of the neighborhood for any given program

JADE LANGUAGE < jQUEI'V
4,794 chars 86,202 chars
‘ 1,294 instructions 30,601 instructions

Marcio Barros
PPGI - UNIRIO

JavaScript
ECMA-262 Syntax Trees

Which of the 53 different nodes
types are worth examining?

Binding Pattern
ArrayPattern
AssignmentPattern
BindingPattern
RestElement
ObjectPattern

Expression
ThisExpression

|dentifier

Literal
ArrayExpression
SpreadElement
ObjectExpression
Property
FunctionExpression

ArrowFunctionExpression

ClassExpression
ClassBody
MethodDefinition

TaggedTemplateExpression

TemplateElement
Templateliteral
MemberExpression

Super

Meta-Property
NewExpression
CallExpression
UpdateExpression
UnaryExpression
BinaryExpression
LogicalExpression
ConditionalExpression
YieldExpression
AssignmentExpression
SequenceExpression

Statement

BlockStatement
BreakStatement
ContinueStatement
DebuggerStatement
DoWhileStatement
EmptyStatement
ExpressionStatement
ForStatement
ForInStatement
ForOfStatement

FunctionDeclaration
IfStatement
LabeledStatement
ReturnStatement
SwitchStatement
SwitchCase
ThrowStatement
TryStatement
CatchClause
VariableDeclaration
VariableDeclarator
WhileStatement
WithStatement

Imports
ImportDeclaration

ImportSpecifier
ImportDefaultSpecifier

ImportNamespaceSpecifier

ExportAllDeclaration

ExportDefaultDeclaration
ExportNamedDeclaration

Which nodes types are worth examining?

o We determined the topmost node types in the patches found by random search

o We determined the frequency with which node types appear in JavaScript programs
o We have performed a study using ~34,000 JavaScript programs from the NPM repository

o We have calculated a ratio favoring high-frequency nodes that appear as topmost

o Set a minimum threshold that limits which node types are examined by the local search

@

Marcio Barros
PPGI - UNIRIO

JavaScript AST

18 most worth node types for

JavaScript source code size
reduction

Binding Pattern

Expression

|dentifier
Literal
ArrayExpression

ObjectExpression

Property
FunctionExpression

MemberExpression

CallExpression

UnaryExpression
BinaryExpression

ConditionalExpression

AssignmentExpression

Statement

ExpressionStatement

FunctionDeclaration
IfStatement

ReturnStatement

VariableDeclaration
VariableDeclarator

Imports

Which nodes types are worth examining?

o We examine all occurrences of each node type in a First-Ascent HC fashion

o For small instances, we use all node types and reduce the search space to 89%
o For larger ones, we discard MemberExpression and Identifier node types, reducing the space to 34%

o This allows navigating the space several times in a reasonable time frame, even for large instances

@

Marcio Barros
PPGI - UNIRIO

Preliminary results: achieved reduction

Program RD FAHC o A huge difference from former results
browserify 0.19 25.39

exectimer 2.06 26.76 . .

iquery 019 089 o Some results are within an expected range
lodash 0.33 6.23

minimist 0.14 2.68 o Other results ... well, not so much!
plivo-node 0.58 33.24

bre 210 0L o Some results are even curious

tleaf 3.81 67.07
underscore 0.30 10.10

uuid 1.05 23.60

xml2js 0.14 -2.78

But they all pass all test cases! And
we have at least 90% coverage!

@

Marcio Barros
PPGI - UNIRIO

s this any different to dead code removal?

In some cases, not really.

Diff 1: Delete line 1 {left file) w
C:\Users\Marcio*Dropbox\Fitness_Loc"\global-3'd3-nede \HC original js C:\Users\Marcio*Dropbox\Fitness_Loc \global-3'd3-node \HC 0 js
67 return =vg: ~ |49 return =vg: ~
B8] }:
69| ~ experimental method for creating 2d canwvas
70| D3Node prototype.createCanvas = function () 1
71 if {lthis document createElement('canva=s') getContext('2d'))
72 throw new Error{'Install node—canvas for HTHLCanvaszElemen
73
74 if {!lthis document gquerySelector(' canva=s')) {
75 return this document createElenent('canwvas');
76 T else {
77 return this document guerySelector(' canwvas');
78
79 : 50 :
SD I T L B S o T N] r 7 51 Ti2WM—d—~ ot —4rrmm e ama v — Faavm—mba man O r 7
ay) € > ga| € >
8 differences found Added lines Deleted lines Changed lines 'B ExamDiff Pro

A function from the d3-node library which is not exercised by test cases and was removed by the optimizer.

Marcio Barros
PPGI - UNIRIO

s this any different to dead code removal?

But in other cases, yes it does.

Diff 10: Delete line 130 (eft file)

128

war tl = tf low + tick;
_|129 var thawv = tf hi & 4095 | 4096:
130 sequence &= 16383;
131 war cshar = sequence :»> 8 | 128
132 wvar c=l = sequence & 285
133 return new UUIDj=(). fromParts(tl. tf mid. thav. cshar. c=l.
134)
135| M0IDq=.create = function (version)
136 werzion = wersion || 4
137 return this['_create' + version]():
138) .
139 ¢
23 differences found

Warcio“Dropbox\Fitness_Locglobal-3'wu

C:\Users'Marcio\DropboxFitness_Loc\global-3wuid \HCY0 js

110 var tl = tf low + tick: ~
111 war thav = tf hi & 4095 | 4096

112 war cshar = sequence »»> 8 | 128

113 var c=l = =equence & 255

114 return new UDIDj=() . fromParts(tl. tf mid. thaw. cshar. csl. node):

115)

116| TUIDq=.create = function (version)

117 werzion = wersion || 4:

1148 return this['_create' + wersion]():

119) v
120] ¢ 3

Ln 134, Col 3

Added lines Deleted lines Changed lines EE:amD'rff Pro

Bitwise operation from the uuid library that had no effect on test cases, despite being covered by the test suite.

Marcio Barros
PPGI - UNIRIO

Can we help to improve tests or code review?

There seems to be an opportunity to co-evolve test cases and the code.

Diff 1: Delete line 1 {left file) -
CA\Users\MarcioDropbox\Fitness_Locglobal-3exectimer\HC voriginal js C:M\Users\Marcio“Dropbox\Fitness_Loc\global-3\exectimer\HC 0 js

16 ticks: []. ~ 15 ticks=s: []. ~

17 S" 1k e

IR * G2t the median of all ticks. 17 * Get the median of all ticks.

19 * @returns {*} 18 * @returns {*}

20 * 149 *

21 median: function () { 20 median: function () {

22 if {this.ticks. length » 1) { 21 if (thisz. ticks.length » 1) {

23 thiz.ticks sort(function (a. b) {

24 return a &é: b &d a . getDiff{) — b.getDiff

25 i

26 const 1 = this ticks.length; 22 const 1 = this ticks.length;

27 const half = Hath floor(l ~ 2): 23 con=t half = MHath floox(l ~ 2

28 if (1 % 2y { 24 if (1 % 2y

29 return this. ticks[half] getDiff{): 25 return this. ticks[half] getDiff{):

a0 v oelse 4 ¥l 26 v oelse I b

31|« > 27« >

|13d'rﬁ'erencesfound Added lines Deleted lines Changed lines Q’}ExamD'rff Pro |

"Summertime testing" in the exectimer library. All test cases use sorted data.

Marcio Barros
PPGI - UNIRIO

Can we help to improve tests or code review?

“A program does what the programmer commands,

not necessarily what the programmer wants.”

By showing what it can destroy, optimization can help developers
put their assumptions into solid test suites ... and close the gap.

@

Marcio Barros
PPGI - UNIRIO

What is next?

o We are compiling the numbers, strengthening the arguments, and hope to have a
complete version of a paper with our results soon.

Local optimization of JavaScript code

Fabio de A. Farzat, Marcio de O. Barros and Guilherme H. Travassos

Abstract—Contest: JavaScript is now one of the most used languages on the Internet applications development. The number of
libraries available and the complexity of the applications using these libraries brings a concern about performance. Objective: To apply
optimization techniques (that had already shown positive results in other languages) to reduce the size of JavaScript programs and
indirectly improve the performance of thess programs. Method: Run controlled experiments involving genetic algerithms and randorm
search to und 4 the solution land of the JavaScript source code reduction prablem from the perpective of search based
techniques. Results: We observed that genetic algerithms were outperformed by random search due to the distribution and sis= of the
patches that were found to reduce the programs while maintaining their functionality. Therefore, we suggest using a systematic search
procedure based on Hill Climbing to find variants of a target program containing these patches. Conclusion: Our experiments show

that a local search procedure can outperform both random search and genetic algorithms in JavaSeript source code reduction.

Index Terms—SESE, Cenetic Improvement, JavaScript, Hill Climbing

+

1 Introduction

INCE its debut in 1995, JavaSeript has bocome the most to JamSeript code.
S used seripting language on the client-side of Web appli- After applying genetic algorithms and random search to
cations [7]. The need for a more efficient interaction model improve 13 JavaSeript libraries in a set of exploratory
between the client and server sides of Internet systems drove iments designed to draw a rough picture of the JavaS
the quick acceptance of JamScript by software developens. On source code improve: solution land we ohserved
the other hand, the ability to include parts of the appli

tion that typical improvements involved several small changes

Marcio Barros

PPGI - UNIRIO

logic on the client-side resulted in large programs written
in & language that was designed for seripting and provided
limited support. for large-scale programming [8]. These pro-
grams required standardization and shared common features,
leading to th pation of reusable JavaScript libraries, such
ngular]S and Neact. These libraries mst be
emt-side before the application starts and
transfer time is directly related to the stze of their source code.
Large libraries may camse undesired delays if the application is
served over lines with limited bandwidth or to mobile devices
with limited processing capabilities.

clustered in independent parts of the source code instead
of changes that might be easily produced by recombination.
Therefore, we hypothesized that a local search algorithm
might perform better than a population-hased approach, such
as a genetic alporithm, on improving JawmSceript code. Local
search algorithms are usually faster and less demanding on
computing resourees than population-hased algorithms. Thus,
their usage in automated code improvement might allow cop-
ing with larger code bases and require less human intervention

o select parts of the source code to be optimized and subsets
of the test suite to drive the optimization.

Thank you!

