
PPGI
UNIRIO

PPGI
UNIRIO

Local optimization of JavaScript code
FÁBIO FARZAT
MÁRCIO BARROSMÁRCIO BARROSMÁRCIO BARROSMÁRCIO BARROS
GUILHERME TRAVASSOS



Márcio Barros

PPGI - UNIRIO

Emphasis

o Break things instead of repairing them

o Syntax tree level manipulation instead of source code lines

o Local search instead of genetic algorithms

2



Márcio Barros

PPGI - UNIRIO

Why should one care about JavaScript?

o The world seems to be committed to JavaScript

o The first version of the programming language was developed in a couple of weeks to 

allow “non-programmers” handle the structure of a Web page in a browser

3

o It was designed to provide a better interaction model 

between the front- and the back-end of Web apps

o Now, JavaScript is used everywhere …



Márcio Barros

PPGI - UNIRIO

JavaScript is everywhere …

4

95%
front-end

97%
hybrid mobile

0.4%
back-end

https://goo.gl/kWbgsU https://ionicframework.com/survey/2017#trends https://www.similartech.com/technologies/nodejs



Márcio Barros

PPGI - UNIRIO

The dangers of JavaScript
o At the same time, a future that depends so much 

on JavaScript is worrisome

o JavaScript shows peculiar behavior if a developer 

goes beyond the bounds of "normal" programming

5

JavaScript !?



Márcio Barros

PPGI - UNIRIO

The dangers of JavaScript

6

> var ts

undefined

> ts

undefined

> ts * 1

NaN

> ts |1

1

> 42.toFixed(2)

SyntaxError: Invalid or unexpected token

> 42 .toFixed(2)

‘42.00’

https://www.youtube.com/watch?v=2pL28CcEijU

https://www.destroyallsoftware.com/talks/wat



Márcio Barros

PPGI - UNIRIO

Objectives

The main objective of our research is to find variants of 

a target JavaScript program which are smaller and 

functionally-equivalent to the target program.

7



Márcio Barros

PPGI - UNIRIO

Objectives

The main objective of our research is to find variants of 

a target JavaScript program which are smaller and 

functionally-equivalent to the target program.

8

Reducing the size of the source code (minified version) will 

reduce load and processing times.



Márcio Barros

PPGI - UNIRIO

Objectives

The main objective of our research is to find variants of 

a target JavaScript program which are smaller and 

functionally-equivalent to the target program.

9

Equivalence as attested by the test suite of the target 

program, which acts as our (limited) oracle.



Márcio Barros

PPGI - UNIRIO

Important notice

10

This is an ongoing work!

At the moment, we are interpreting the results collected 

from a second round of experiments.

But it all started with an opportunity …



Márcio Barros

PPGI - UNIRIO

Opportunity strikes!

o The university installs a supercomputer 

and needs someone to test it!

o Lobo Carneiro

o Cluster-based supercomputer

o 252 processing nodes

o Each node has 24 cores running HT

o 16 Tb of RAM memory

o 720 Tb of disk



Márcio Barros

PPGI - UNIRIO

Opportunity strikes!

o We examined the fitness landscape for JavaScript source code improvement

o We executed a genetic algorithm and a random search over 13 target programs

o Mutation operator that removes nodes from the AST

o 5,000 fitness evaluations/round, 60 rounds for each program

o At top usage, we occupied 2,880 cores and 500 Gb of RAM

12



The selected 
JavaScript 
programs

Heavily-used JavaScript libraries

>= 90% statement coverage

Distinct sizes, from small to large

Researchers had some experience

13



Márcio Barros

PPGI - UNIRIO

Findings

o Surprisingly, random search outperformed genetic algorithms for all instances

o GA failed to find improved versions in more than 50% of its runs for all programs

o RD fails less frequently and found variants representing from 0.2% to 22% reduction!

o Patches are small and clustered in independent parts of the source code

o The distance between patches is moderately and inversely correlated to program size

o Patch size is strongly and inversely correlated to program size

o The median is always smaller than the average for both measures (a few large values)

o The best variants found by random search had many patches (37% rounds found 5+ patches)



Márcio Barros

PPGI - UNIRIO

Findings: an example

15

UUID library



Márcio Barros

PPGI - UNIRIO

Findings: patch distribution

These findings imply that basic genetic algorithms are 

not effective for JavaScript source code reduction 

because the chances that recombination merges 

independent mutations are very small.

16



Márcio Barros

PPGI - UNIRIO

Findings: patch distribution

17

UUIDjs.getTimeFieldValues = function(time) {
var ts = time - Date.UTC(1582, 9, 15);
var hm;
return {
low: (ts & 268435455) * 10000 % 4294967296,
mid: hm & 65535,
hi: hm >>> 16,
timestamp: ts

};
};

UUIDjs.getTimeFieldValues = function(time) {
var ts;
var hm = ts / 4294967296 * 10000 & 268435455;
return {
low: (ts & 268435455) * 10000 % 4294967296,
mid: hm & 65535,
hi: hm >>> 16,
timestamp: ts

};
};

Individual 1 (subjected to one mutation) Individual 2 (subjected to a second mutation)

What are the chances of a one-point crossover that 

keeps both building blocks?



Márcio Barros

PPGI - UNIRIO

Findings: patch distribution

18

UUIDjs.getTimeFieldValues = function(time) {
var ts = time - Date.UTC(1582, 9, 15);
var hm;
return {
low: (ts & 268435455) * 10000 % 4294967296,
mid: hm & 65535,
hi: hm >>> 16,
timestamp: ts

};
};

UUIDjs.getTimeFieldValues = function(time) {
var ts;
var hm = ts / 4294967296 * 10000 & 268435455;
return {
low: (ts & 268435455) * 10000 % 4294967296,
mid: hm & 65535,
hi: hm >>> 16,
timestamp: ts

};
};

UUIDjs.getTimeFieldValues = function(time) {
var ts;
var hm;
return {
low: (ts & 268435455) * 10000 % 4294967296,
mid: hm & 65535,
hi: hm >>> 16,
timestamp: ts

};
};

Rephrasing: what are the chances of selecting these cutting points?

They are inversely proportional to the square of the number of 

instructions in the target program.



Márcio Barros

PPGI - UNIRIO

So, what is the alternative?

o A systematic transversal of the search space (for instance, a local search) may find 

better results than random search

o Local search behaves well if departing from a good solution (the human-written program)

o Optimization is performed by removing nodes from the AST that do not contribute to the test cases

o The key challenge is the size of the neighborhood for any given program

19

4,794 chars

1,294 instructions

86,202 chars

30,601 instructions



JavaScript
ECMA-262 Syntax Trees

Which of the 53 different nodes 

types are worth examining?

20

Binding PatternBinding PatternBinding PatternBinding Pattern
ArrayPattern
AssignmentPattern
BindingPattern
RestElement
ObjectPattern

ExpressionExpressionExpressionExpression
ThisExpression
Identifier
Literal
ArrayExpression
SpreadElement
ObjectExpression
Property
FunctionExpression
ArrowFunctionExpression
ClassExpression
ClassBody
MethodDefinition
TaggedTemplateExpression
TemplateElement
TemplateLiteral
MemberExpression

Super
Meta-Property
NewExpression
CallExpression
UpdateExpression
UnaryExpression
BinaryExpression
LogicalExpression
ConditionalExpression
YieldExpression
AssignmentExpression
SequenceExpression

StatementStatementStatementStatement
BlockStatement
BreakStatement
ContinueStatement
DebuggerStatement
DoWhileStatement
EmptyStatement
ExpressionStatement
ForStatement
ForInStatement
ForOfStatement

FunctionDeclaration
IfStatement
LabeledStatement
ReturnStatement
SwitchStatement
SwitchCase
ThrowStatement
TryStatement
CatchClause
VariableDeclaration
VariableDeclarator
WhileStatement
WithStatement

ImportsImportsImportsImports
ImportDeclaration
ImportSpecifier
ImportDefaultSpecifier
ImportNamespaceSpecifier
ExportAllDeclaration
ExportDefaultDeclaration
ExportNamedDeclaration



Márcio Barros

PPGI - UNIRIO

Which nodes types are worth examining?

o We determined the topmost node types in the patches found by random search

o We determined the frequency with which node types appear in JavaScript programs

o We have performed a study using ~34,000 JavaScript programs from the NPM repository

o We have calculated a ratio favoring high-frequency nodes that appear as topmost

o Set a minimum threshold that limits which node types are examined by the local search

21



JavaScript AST
18 most worth node types for 

JavaScript source code size 

reduction

22

Binding PatternBinding PatternBinding PatternBinding Pattern
ArrayPattern
AssignmentPattern
BindingPattern
RestElement
ObjectPattern

ExpressionExpressionExpressionExpression
ThisExpression
Identifier
Literal
ArrayExpression
SpreadElement
ObjectExpression
Property
FunctionExpression
ArrowFunctionExpression
ClassExpression
ClassBody
MethodDefinition
TaggedTemplateExpression
TemplateElement
TemplateLiteral
MemberExpression

Super
Meta-Property
NewExpression
CallExpression
UpdateExpression
UnaryExpression
BinaryExpression
LogicalExpression
ConditionalExpression
YieldExpression
AssignmentExpression
SequenceExpression

StatementStatementStatementStatement
BlockStatement
BreakStatement
ContinueStatement
DebuggerStatement
DoWhileStatement
EmptyStatement
ExpressionStatement
ForStatement
ForInStatement
ForOfStatement

FunctionDeclaration
IfStatement
LabeledStatement
ReturnStatement
SwitchStatement
SwitchCase
ThrowStatement
TryStatement
CatchClause
VariableDeclaration
VariableDeclarator
WhileStatement
WithStatement

ImportsImportsImportsImports
ImportDeclaration
ImportSpecifier
ImportDefaultSpecifier
ImportNamespaceSpecifier
ExportAllDeclaration
ExportDefaultDeclaration
ExportNamedDeclaration



Márcio Barros

PPGI - UNIRIO

Which nodes types are worth examining?

o We examine all occurrences of each node type in a First-Ascent HC fashion

o For small instances, we use all node types and reduce the search space to 89%

o For larger ones, we discard MemberExpression and Identifier node types, reducing the space to 34%

o This allows navigating the space several times in a reasonable time frame, even for large instances

23



Márcio Barros

PPGI - UNIRIO

Preliminary results: achieved reduction

ProgramProgramProgramProgram RDRDRDRD FAHCFAHCFAHCFAHC
browserify 0.19 25.39
exectimer 2.06 26.76
jquery 0.19 79.89
lodash 0.33 6.23
minimist 0.14 2.68
plivo-node 0.58 33.24
pug 3.16 39.17
tleaf 3.81 67.07
underscore 0.30 10.10
uuid 1.05 23.60
xml2js 0.14 -2.78

But they all pass all test cases! And 

we have at least 90% coverage!

o A huge difference from former results

o Some results are within an expected range

o Other results … well, not so much!

o Some results are even curious …

24



Márcio Barros

PPGI - UNIRIO

Is this any different to dead code removal?

In some cases, not really.

A function from the d3-node library which is not exercised by test cases and was removed by the optimizer.

25



Márcio Barros

PPGI - UNIRIO

Is this any different to dead code removal?

But in other cases, yes it does.

Bitwise operation from the uuid library that had no effect on test cases, despite being covered by the test suite.

26



Márcio Barros

PPGI - UNIRIO

Can we help to improve tests or code review?

There seems to be an opportunity to co-evolve test cases and the code.

"Summertime testing" in the exectimer library. All test cases use sorted data.

27



Márcio Barros

PPGI - UNIRIO

Can we help to improve tests or code review?

28

“A program does what the programmer commands, 

not necessarily what the programmer wants.”

By showing what it can destroy, optimization can help developers 

put their assumptions into solid test suites ... and close the gap.



Márcio Barros

PPGI - UNIRIO

What is next?

29

o We are compiling the numbers, strengthening the arguments, and hope to have a 

complete version of a paper with our results soon.



Márcio Barros

PPGI - UNIRIO

Thank you!


