
Search Based Testing of
Web Applications

Paolo Tonella
tonella@fbk.eu

Web testing

2

Crawler

Matteo Biagiola, Filippo Ricca, Paolo Tonella: Search Based Path and
Input Data Generation for Web Application Testing. 9th Int. Symposium
on Search Based Software Engineering (SSBSE), pp. 18-32, 2017

Single Page Applications

3

Model based testing

4

<add(1), rem(1)>

<add(1), rem(1), rem(1)>

1) how do we get the model?
2) how do we avoid divergences?
3) how do we reduce execution time?

S0 S1 S2

onLoad

add(n)

add(n)
rem(n)

rem(n)

Divergence

Model Construction

5

class ProductPage extends PageObject {
 void selectProductByName(String name){…}
 double getPrice(){…}
 void updatePrice(double price){…}
 CheckoutPage checkout() {…}
}

Page Object API

HTML Page

product: Headphones
price: 24$

product: DVD-RW
price: 2$

el = find_element(By.XPATH(‘/html/div/h2/table/div[3]’));
el.getText();

el.click();
el.setText(’49.99’);

DOM API

Page Objects

Product
Page

ProductList
Page

Checkout
Page

From Page Objects to Navigation Model

6

ProductsPage
selectProduct

ProductDetailPage

Test derivation

7

1) by graph visit algorithms

3) by search based algorithms
2) by model checking

4) by diversity based algorithms

S0 S1 S2

onLoad

add(n)

add(n)
rem(n)

rem(n)

Depth-first visit

8

S0 S1 S2

onLoad

add(n)

add(n)
rem(n)

rem(n)

<add(57), rem(4)>

<add(1), add(2), rem(102)>

Actual parameter values are
filled with random numbers

TRANS
 case
 action = add:
 next(state) = S2;
 next(items) = items + n; -- server side
 action = rem & state = S2 & items - n > 0 :
 next(state) = S2;
 next(items) = items - n; -- server side
 action = rem & state = S2 & items - n = 0 :
 next(state) = S1;
 next(items) = 0; -- server side
 action = rem & state = S2 & items - n < 0 :
 next(state) = ERROR;
 esac

LTLSPEC G (state = S2 & action = rem -> X state != S2)
LTLSPEC G (state = S2 & action = rem -> X state != S1)

Model checking

9

S0 S1 S2
onLoad

add(n)
add(n)
rem(n)

rem(n)

<add(2), rem(1)>

<add(1), rem(1)>

TRANS
 case
 action = add:
 next(state) = S2;
 -- next(items) = items + n;
 action = rem & state = S2 & items - n > 0 :
 next(state) = S2;
 -- next(items) = items - n;
 action = rem & state = S2 & items - n = 0 :
 next(state) = S1;
 -- next(items) = 0;
 action = rem & state = S2 & items - n < 0 :
 next(state) = ERROR;
 esac

LTLSPEC G (state = S2 & action = rem -> X state != S2)
LTLSPEC G (state = S2 & action = rem -> X state != S1)

Model checking

10

S0 S1 S2
onLoad

add(n)
add(n)
rem(n)

rem(n)

<add(2), rem(1)>

<add(1), rem(2)>

Model checker
sets items to 2

Search based generator

11

P0 -> P1

m1(2)
P1 -> P4

m3()
P4 -> P9

m4(‘a’)
P9 -> P1

m7()

Chromosome:

Fitness function: distance from a yet uncovered navigation
method. Requires test case execution by Selenium on browser.

Genetic operators: crossover and mutation, applied only to
feasible path prefixes

Initialization
Fitness	

assignment	

SelectionReproduction

Crossover: matching tail

12

P0 -> P1
m1(2)

P1 -> P4
m3()

P4 -> P9
m4(‘a’)

P9 -> P1
m7()

P4 -> P1
m9(‘b’)

P1 -> P7
m5()

P7 -> P3
m2(5)

P1 -> P7

m5()
P7 -> P3

m2(5)
P0 -> P1
m1(2)

HEAD 1 TAIL 2

P1 -> P4

m3()
P4 -> P9

m4(‘a’)
P9 -> P1

m7()
P4 -> P1

m9(‘b’)

HEAD 2 TAIL 1

P0 -> P1

m1(2)

HEAD 1
P1 -> P7

m5()
P7 -> P3

m2(5)

TAIL 2

P4 -> P1
m9(‘b’)

HEAD 2
P1 -> P4

m3()
P4 -> P9

m4(‘a’)
P9 -> P1

m7()

TAIL 1

TAIL 2HEAD 1 TAIL 1 HEAD 2

Crossover: non-matching tail

13

P0 -> P1
m1(2)

P1 -> P4
m3()

P4 -> P9
m4(‘a’)

P9 -> P1
m7()

P4 -> P5
m9(‘b’)

P5 -> P7
m5()

P7 -> P3
m2(5)

P0 -> P1
m1(2)

P1 -> P4
m3()

P5 -> P7
m5()

P7 -> P3
m2(5)

P1 -> P3
m8(1,0)

P3 -> P5
m6()

HEAD 1 TAIL 1

P4 -> P5
m9(‘b’)

HEAD 2

P4 -> P9
m4(‘a’)

P9 -> P1
m7()

TAIL 2

P5 -> P4
m11(3)

P5 not reachable
from P4

Mutation: delete and insert

14

P0 -> P1

m1(2)
P1 -> P4

m3()
P4 -> P9

m4(‘a')
P9 -> P1

m7()
P4 -> P11

m8(1,0)

Starting chromosome

P0 -> P1

m1(2)
P1 -> P4

m3()
P4 -> P9

m4()
P9 -> P4

m7()
P4 -> P11

m8(1,0)

Delete

P0 -> P1
m1(2)

P1 -> P4
m3()

P4 -> P11
m8(1,0)

Insert
P11 -> P8
m5()

P8 -> P7
m6()

P7 -> P12
m9(‘b’)

Search based generator

15

S0 S1 S2
onLoad

add(n)
add(n)
rem(n)

rem(n)
<add(2), add(1), rem(1)>

<add(2), rem(2)>

By construction, only non
diverging navigation paths
are kept

Evolving a population of
navigation paths requires many
test case executions

Initialization
Fitness	

assignment	

SelectionReproduction

keep non
diverging
prefixes that
increase coverage

Diversity based generator

16

Initialization	
(1	test	case)

Distance	
assignment

Selection		
(max	distance	
from	prev	tests)

Execution	
(feasible	prefix	is		
kept	if	cov	grows)

Non-diverging prefixes
that increase coverage

D: sequence edit distance
id: input distance

P0 -> P1
m1(1)

P1 -> P4
m5()

P4 -> P9
m4(‘a’)

P0 -> P1
m1(1)

P1 -> P4
m5()

P4 -> P9
m4(‘a’)

Diversity based generator

17

P0 -> P1
m1(6)

P1 -> P4
m8()

P4 -> P9
m9(‘z’)

P0 -> P1
m1(1)

P1 -> P4
m5()

P4 -> P9
m4(‘a’)

P0 -> P1
m1(2)

P1 -> P4
m3()

P4 -> P9
m4(‘a’)

P9 -> P1
m7()

Previously generated
tests

Randomly generated candidates

min d = 2 + 1/2

Select candidate at max min
distance from previously
generated tests and execute it

Several candidates are
evaluated without being
executed; only the selected
candidate is executed

Kolmogorov complexity

18

Initialization	
(1	test	case)

NCD	
assignment

Selection		
(max	distance	
from	prev	tests)

Execution	
(feasible	prefix	is		
kept	if	cov	grows)

Conditional Kolmogorov Complexity K(t1|t2): for a string (test case) t1,
number of bits of the shortest program P(t2) that generates t1.

Normalized Information Distance ID(t1, t2): given two strings (test cases)
t1, t2:

NID(t1, t2) = max(K(t1|t2), K(t2|t1)) / max(K(t1), K(t2))

Normalized Compression Distance NCD(t1, t2): given two strings (test
cases) t1, t2:

NCD(t1, t2) = (C(t1 · t2) - min(C(t1), C(t2))) / max(C(t1), C(t2))

Preliminary results using SB

19

AddressBook

Coverage

20

SubWeb Crawljax

100

95

90

85

80

75
SubWeb produced a smaller navigation graph and smaller
test suites with no divergent test case, and it achieved
significantly higher navigation (transition) coverage

Conclusion and future work

21

• Search based generation of web test cases outperforms
crawling by reducing divergence and increasing coverage, but
it requires execution of all candidates within a browser to select
the fittest candidate.

• Diversity based on edit/input distance does not require test
execution to evaluate the fitness of candidates:

• it is more efficient than search based generation;
• but it does not address divergence directly;
• preliminary results are very encouraging.

• Diversity based on information distance, approximated by
NCD (Normalized Compression Distance), is promising (e.g., it
is potentially less sensitive to repetitions than edit distance), but
we do not have empirical results yet: it will be investigated in
our future work.

