Using Squeeziness to test from Finite State Machines

Manuel Núñez (joint work with Alfredo Ibias and Rob Hierons)

Universidad Complutense de Madrid

CREST Information Theory and Software Testing

What's the meaning of Squeeziness?

What's the meaning of Squeeziness?

Honestly, until a couple of days ago, I had no clue!

What's the meaning of Squeeziness?

Honestly, until a couple of days ago, I had no clue! I did some research for this talk....

Squeeziness is

• According to Wiktionary:

What's the meaning of Squeeziness?

Honestly, until a couple of days ago, I had no clue! I did some research for this talk....

Squeeziness is

• According to Wiktionary: The quality of being squeezy....

What's the meaning of Squeeziness?

Honestly, until a couple of days ago, I had no clue! I did some research for this talk....

Squeeziness is

- According to Wiktionary: The quality of being squeezy....
- Squeezy is: *flexible* or *causing compression*.

What's the meaning of Squeeziness?

Honestly, until a couple of days ago, I had no clue! I did some research for this talk....

Squeeziness is

- According to Wiktionary: The quality of being squeezy....
- Squeezy is: *flexible* or *causing compression*.
- Related to an expression?

What's the meaning of Squeeziness?

Honestly, until a couple of days ago, I had no clue! I did some research for this talk....

Squeeziness is

- According to Wiktionary: The quality of being squeezy....
- Squeezy is: *flexible* or *causing compression*.
- Related to an expression? easy peasy lemon squeezy.

- D. Clark & R. Hierons. *Squeeziness: An information theoretic measure for avoiding fault masking*, IPL, 2012.
- It is a measure designed to quantify the likelihood of Failed Error Propagation.

- D. Clark & R. Hierons. *Squeeziness: An information theoretic measure for avoiding fault masking*, IPL, 2012.
- It is a measure designed to quantify the likelihood of Failed Error Propagation.
- FEP happens when
 - a faulty statement is executed during testing,

- D. Clark & R. Hierons. Squeeziness: An information theoretic measure for avoiding fault masking, IPL, 2012.
- It is a measure designed to quantify the likelihood of Failed Error Propagation.
- FEP happens when

 - a faulty statement is executed during testing.
 - 2 the fault corrupts the internal state of the SUT,

- D. Clark & R. Hierons. *Squeeziness: An information theoretic measure for avoiding fault masking*, IPL, 2012.
- It is a measure designed to quantify the likelihood of Failed Error Propagation.
- FEP happens when
 - a faulty statement is executed during testing,
 - the fault corrupts the internal state of the SUT,
 - Solution the expected output is observed.

What's the meaning of Squeeziness in Information Theory?

- D. Clark & R. Hierons. *Squeeziness: An information theoretic measure for avoiding fault masking*, IPL, 2012.
- It is a measure designed to quantify the likelihood of Failed Error Propagation.
- FEP happens when
 - a faulty statement is executed during testing,
 - the fault corrupts the internal state of the SUT,
 - Solution the expected output is observed.

How bad is FEP?

- FEP can reduce testing effectiveness: we might fail to find a fault despite executing the faulty statement.
- Empirical studies show that many systems suffer from FEP.

3

What's this talk about?

The adaption of Squeeziness to a black box scenario.

This talk in a nutshell

Using Squeeziness to test from Finite State Machines

This talk in a nutshell

Using Squeeziness to test from Finite State Machines

Finite State Machines

Graphs with an initial state where transitions are labelled by a pair (input, output).

Finite State Machines

Graphs with an initial state where transitions are labelled by a pair (input, output).

FSMs: assumptions

- FSMs are deterministic.
- FSMs representing SUTs are input-enabled.

FSMs as functions

An FSM *M* can be seen as a function $f_M : \text{dom}_M \longrightarrow \text{image}_M$ such that for all $\alpha \in \text{dom}_M$ (sequence of inputs performed by *M*) $f_M(\alpha) = \beta$ (sequence of outputs observed after applying α).

FSMs as functions

An FSM *M* can be seen as a function $f_M : \text{dom}_M \longrightarrow \text{image}_M$ such that for all $\alpha \in \text{dom}_M$ (sequence of inputs performed by *M*) $f_M(\alpha) = \beta$ (sequence of outputs observed after applying α).

Collisions

 α_1 and α_2 collide for M if $\alpha_1 \neq \alpha_2$ and $f_M(\alpha_1) = f_M(\alpha_2)$.

9

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

This talk in a nutshell

Using <mark>Squeeziness</mark> to test from Finite State Machines

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Squeeziness as difference of entropies

Entropy of the random variable ξ_A

$$\mathcal{H}(\xi_A) = -\sum_{a \in A} \sigma_{\xi_A}(a) \cdot \log_2(\sigma_{\xi_A}(a))$$

If $f : A \longrightarrow B$ then Squeeziness of f is the loss of information after applying f to A: $\mathcal{H}(A) - \mathcal{H}(B)$.

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Squeeziness for FSMs

We need to define how to group inputs & outputs. Two alternatives:

- A unique random variable for the whole set of inputs/outputs.
- A random variable for each length of sequences of inputs/outputs.

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Squeeziness for FSMs

We need to define how to group inputs & outputs. Two alternatives:

- A unique random variable for the whole set of inputs/outputs.
- A random variable for each length of sequences of inputs/outputs.

We choose the second one because it gives an incremental procedure to compute a sequence of *consecutive values* of Squeeziness.

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Squeeziness as difference of entropies

Let FSM *M*, k > 0 and random variables $\xi_{\text{dom}_{M,k}}$ and $\xi_{\text{image}_{M,k}}$.

$$\operatorname{Sq}_k(M) = \mathcal{H}(\xi_{\operatorname{dom}_{M,k}}) - \mathcal{H}(\xi_{\operatorname{image}_{M,k}})$$

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Squeeziness is not monotonic

Squeeziness for k = 1 is $\log_2(2) = 1$ while for k = 2 is 0. This is bad because we do not have an obvious stopping rule.

		Squeeziness (round 1)
		Finite State Machines
		Squeeziness (round 2)
Evaluating	Squeeziness	s as a collision measure
		Application to testing

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Squeeziness is null for bijective functions

If $f_{M,k}$ is bijective then $\operatorname{Sq}_k(M) = 0$.

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Squeeziness is null for bijective functions

If $f_{M,k}$ is bijective then $\operatorname{Sq}_k(M) = 0$.

Random variables for outputs are determined

Given FSM *M*, k > 0 and $\xi_{\text{dom}_{M,k}}$, the probability distribution of $\xi_{\text{image}_{M,k}}$ is completely determined.

$$\sigma_{\xi_{\mathrm{image}_{M,k}}}(\beta) = \sum_{\alpha \in f_M^{-1}(\beta)} \sigma_{\xi_{\mathrm{dom}_{M,k}}}(\alpha)$$

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Maximum entropy principle

Maximum entropy is obtained with a uniform distribution $\xi_{\text{dom}_{M,k}}$.

$$\operatorname{Sq}_k(M) = \frac{1}{|\operatorname{dom}_{M,k}|} \cdot \sum_{\beta \in \operatorname{image}_{M,k}} |f_M^{-1}(\beta)| \cdot \log_2(|f_M^{-1}(\beta)|)$$

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Maximum entropy principle

Maximum entropy is obtained with a uniform distribution $\xi_{\text{dom}_{M,k}}$.

$$\operatorname{Sq}_k(M) = \frac{1}{|\operatorname{dom}_{M,k}|} \cdot \sum_{\beta \in \operatorname{image}_{M,k}} |f_M^{-1}(\beta)| \cdot \log_2(|f_M^{-1}(\beta)|)$$

Maximum loss of information

Probability distribution maximising Squeeziness: uniformly distributed in the bigger inverse image of an element of the outputs β' and zero otherwise.

$$\sigma_{\xi_{\operatorname{dom}_{M,k}}}(\alpha) = \begin{cases} \frac{1}{|f_M^{-1}(\beta')|} & \text{if } \alpha \in f_M^{-1}(\beta') \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{Sq}_k(M) = \log_2(|f_M^{-1}(\beta')|)$$

Using Squeeziness to test from Finite State Machines

CREST Information Theory and Software Testing

Definition of Squeeziness Properties of Squeeziness Probabilistic Squeeziness

Probabilistic Squeeziness

We divide Squeeziness by its maximum value.

$$\operatorname{PSq}_k(M) = \frac{\mathcal{H}(\xi_{\operatorname{dom}_{M,k}}) - \mathcal{H}(\xi_{\operatorname{image}_{M,k}})}{\log_2(|f_M^{-1}(\beta')|)}$$

This talk in a nutshell

Using Squeeziness to test from Finite State Machines

	Squeeziness (round 1)
	Finite State Machines
	Squeeziness (round 2)
Evaluating Squeeziness	as a collision measure
	Application to testing

Collisions and FEP

Let $m_i = |f_{M,k}^{-1}(\beta_i)|$ and $d = \sum_{i=1}^n m_i$. Assuming a uniform distribution, the probability of having a collision is:

$$extsf{PColl}_k(M) = \sum_{i=1}^n rac{m_i \cdot (m_i-1)}{d \cdot (d-1)}$$

Relation between $PColl_k(M)$ and $PSq_k(M)$ is not monotonic

There exist M_1 and M_2 and k > 0 such that $PSq_k(M_1) < PSq_k(M_2)$ but $PColl_k(M_1) > PColl_k(M_2)$.

	Squeeziness (round 1)
	Finite State Machines
	Squeeziness (round 2)
Evaluating Squeeziness	as a collision measure
	Application to testing

Empirical Evaluation via simulations

Simulations to compute PColl, PSq, Sq assuming uniform distributions over the inputs (methodology similar to [CH12]).

- $d = \text{size of the input space (ranging between 10⁴ and 2 \cdot 10⁹)}.$
- m = maximum subdomain size (ranging between 10² and 10⁴).

	Squeeziness (round 1)
	Finite State Machines
	Squeeziness (round 2)
Evaluating Squeeziness	as a collision measure
	Application to testing

Empirical Evaluation via simulations

Simulations to compute PColl, PSq, Sq assuming uniform distributions over the inputs (methodology similar to [CH12]).

- $d = \text{size of the input space (ranging between 10⁴ and 2 \cdot 10⁹)}.$
- m = maximum subdomain size (ranging between 10² and 10⁴).
- Pearson & Spearman Rank correlation coefficient between PColl and PSq/ Sq. Similar results.
- Strong correlation between PColl and PSq. Values greater than 0.96 for input sets with $5 \cdot 10^6$ or more elements.

	Squeeziness (round 1)
	Finite State Machines
	Squeeziness (round 2)
Evaluating Squeezines	s as a collision measure
	Application to testing

Empirical Evaluation via simulations

Simulations to compute PColl, PSq, Sq assuming uniform distributions over the inputs (methodology similar to [CH12]).

- $d = \text{size of the input space (ranging between 10⁴ and 2 \cdot 10⁹)}.$
- m = maximum subdomain size (ranging between 10² and 10⁴).
- Pearson & Spearman Rank correlation coefficient between PColl and PSq/ Sq. Similar results.
- Strong correlation between PColl and PSq. Values greater than 0.96 for input sets with $5 \cdot 10^6$ or more elements.
- Standard Squeeziness has a better correlation. Still, PSq can be more useful because it is easier to compare results from different machines and lengths of inputs.

	Squeeziness (round 1)
	Finite State Machines
	Squeeziness (round 2)
Evaluating Squeezines	s as a collision measure
	Application to testing

Empirical Evaluation via FSMs: Squeeziness and fault location

- 50 randomly generated FSMs (between 25 and 50 states).
- For each FSM we computed Sq and PSq for all $1 \le k \le 25$.
- We generated 100 valid mutants of *M* presenting FEP.

Empirical Evaluation via FSMs: Squeeziness and fault location

- 50 randomly generated FSMs (between 25 and 50 states).
- For each FSM we computed Sq and PSq for all $1 \le k \le 25$.
- We generated 100 valid mutants of *M* presenting FEP.
- No correlation between where the fault is produced and the Squeeziness and Probabilistic Squeeziness obtained for the length of the input sequence reaching the mutated transition.
- Negative result. We tried something less ambitious.

Empirical Evaluation via FSMs: Squeeziness and probability of FEP

Instead of *predicting* where the fault was, we consider the probability of FEP.

- Same 50 randomly generated FSMs.
- We generated 50 valid mutants of M (with and without FEP).
- We computed the probability of FEP, Sq and PSq for length 25.
- $p(FEP) = \frac{\# \text{ tests reaching wrong state but generating correct output}}{\# \text{ tests reaching wrong state}}$

Empirical Evaluation via FSMs: Squeeziness and probability of FEP

Instead of *predicting* where the fault was, we consider the probability of FEP.

- Same 50 randomly generated FSMs.
- We generated 50 valid mutants of M (with and without FEP).
- We computed the probability of FEP, Sq and PSq for length 25.
- $p(FEP) = \frac{\# \text{ tests reaching wrong state but generating correct output}}{\# \text{ tests reaching wrong state}}$.
- High correlations between probability of having FEP with sequences up to 25 and Sq and PSq for k = 25. All the values were greater than 0.75 and some close to 1.

This talk in a nutshell

Using Squeeziness to test from Finite State Machines

		Squ	ee	ziness	(round 1	
		Fini	te	State	Machine	s
		Squ	ee	ziness	(round 2	
Evaluating	Squeeziness	as a	a c	ollisio	n measur	e
		App	olio	cation	to testin	g

Application to testing

We may consider that 1-PSq gives the *reliability* of tests: it represents the probability that a correct output indicates that no fault was executed.

		Sque	eziness	(round 1)
		Finit	e State	Machines
		Sque	eziness	(round 2)
Evaluating	Squeeziness	as a	collisio	n measure
		App	lication	to testing

Application to testing

We may consider that 1-PSq gives the *reliability* of tests: it represents the probability that a correct output indicates that no fault was executed.

Before running tests, we may compute PSq for different values of k. We can choose a value of k such that PSq is low: this makes is less likely to have FEP.

	Squeeziness (round 1)
	Finite State Machines
	Squeeziness (round 2)
Evaluating Squeezin	ness as a collision measure
	Application to testing

Application to testing

We may consider that 1-PSq gives the *reliability* of tests: it represents the probability that a correct output indicates that no fault was executed.

Before running tests, we may compute PSq for different values of k. We can choose a value of k such that PSq is low: this makes is less likely to have FEP.

Finally, if we have PSq=0 for a certain k, we can use this length of tests as a checkpoint (but remember that we do not have monotonicity).

	Squeeziness (round 1)
	Finite State Machines
	Squeeziness (round 2)
Evaluating Squeeziness	as a collision measure
	Application to testing

Conclusions and future work

• Squeeziness in a black-box framework.

		Sque	ee	ziness	(round 1)
		Finit		State	Machines
		Sque	ee	ziness	(round 2)
Evaluating	Squeeziness	as a		ollisio	n measure
		Арр	lic	cation	to testing

Conclusions and future work

- Squeeziness in a black-box framework.
- No correlation between Squeeziness for k (length of tests) and faults at length k 1.
- Correlation between Squeeziness and probability of FEP.

		Squ	ee	ziness	(round 1)
		Fini	ite	State	Machines
		Squ	ee	ziness	(round 2)
Evaluating	Squeeziness	as a	ас	ollisio	n measure
		Ар	plic	cation	to testing

Conclusions and future work

- Squeeziness in a black-box framework.
- No correlation between Squeeziness for k (length of tests) and faults at length k 1.
- Correlation between Squeeziness and probability of FEP.
- Future work: Consider observable FSMs and experiments on *real* FSMs.

THANKS FOR YOUR ATTENTION!! Questions? Comments?