

Michele Boreale, David Clark, Daniele Gorla, Héctor D. Menéndez

Department of Computer Science University College London

30th January 2018

Why do we need output diversity?

How can we generate diverse outputs?

How effective is output diversity?

Why do we need output diversity?

How can we generate diverse outputs?

How effective is output diversity?

Why Output Diversity?

We want a **diverse test suite** that takes into account **semantic information** of the program.

Why Output Diversity?

We want a **diverse test suite** that takes into account **semantic information** of the program.

What do we understand by diversity?

Why Output Diversity?

We want a **diverse test suite** that takes into account **semantic information** of the program.

What do we understand by diversity?

How the semantic information propagates to the output?

What's diversity

Low Similarity (Normalized Information Distance)

High Entropy

Héctor D. Menéndez (UCL)

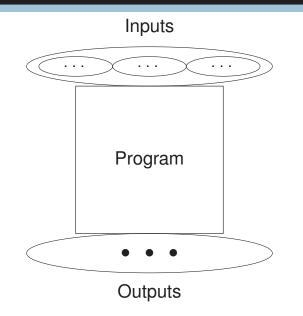
Entropy and diverse tests

We want a **generator** creating **diverse tests** for programs

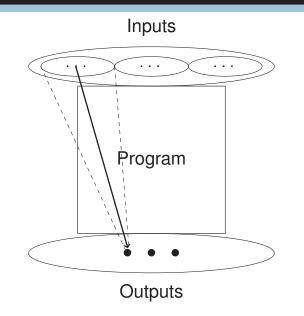
The generator create tests sampling from a **maximum entropy** probability distribution

This probability distribution can only be a $\operatorname{\mathcal{U}}$ distribution

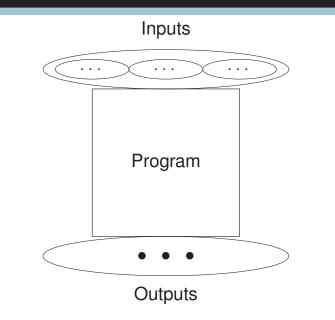
The output semantics

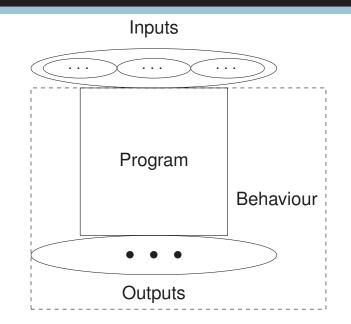

Considering deterministic programs, the I/O behavior works as a map.

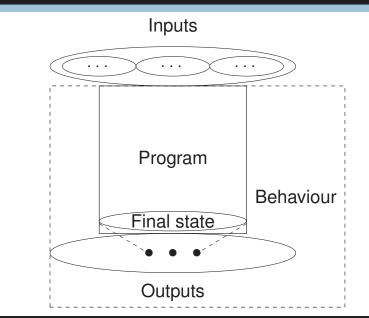
The **squeeziness** directly affects to this map


We will need to balance **squeeziness** and **coverage**.

57TH CREST OPEN WORKSHOP




57TH CREST OPEN WORKSHOP



57TH CREST OPEN WORKSHOP

Héctor D. Menéndez (UCL)

Why do we need output diversity?

How can we generate diverse outputs?

How effective is output diversity?

Output Diversity Approaches

Output-uniqueness: generate diverse inputs and filter by output uniqueness

Output-similarity: search for inputs improving a diversity metric based on similarity of outputs

What happens with the distribution?

Our goal is to maximize entropy, or create an **uniform** distribution on the output set

Roughly speaking, every output has the **same probability** to appear

The effect of the **squeeziness** attacks output uniqueness and search

The output diverse generator (I)

Chakraborty, Meel and Vardi created a diverse input generator based on **SAT solver**

The SUT is considered as a **formula** for a SAT solver (semantics)

They use the solver to create **inputs** through **witnesses** of this formula

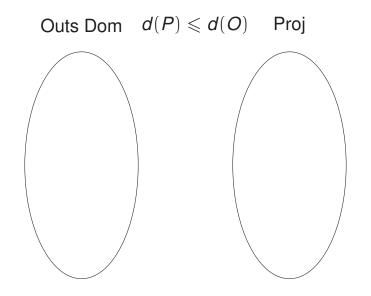
The output diverse generator (II)

But the solver uses heuristics and it is **adversarial** in terms of uniformity

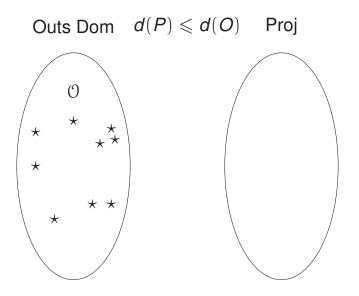
They improved uniformity through **universal hash func**tions

They divide the inputs space into **cells** and select cells and witnesses uniformly at random

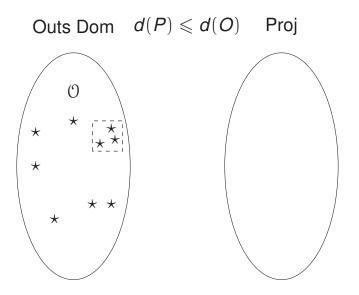
The output diverse generator (III)

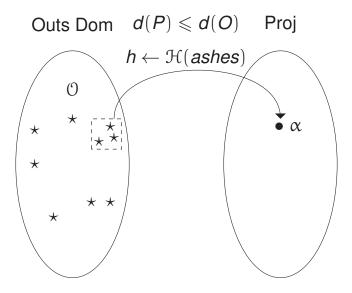

We adapted this idea to the **outputs space**, keeping the ability of include extra information

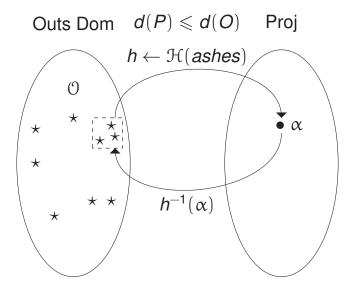
We transform a **program** into a set of **constraints** and, using **bit-vector arithmetic**, we can also adapt their approach to **SMT solvers**

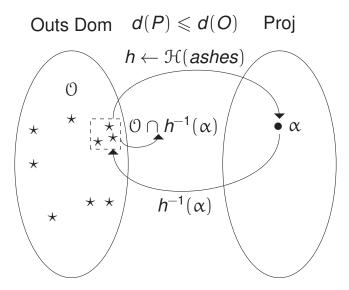


Outs Dom $d(P) \leq d(O)$ Proj









Did we reach uniformity?

No! But, we are closer. We proved **near-uniformity**.

There is a factor on the cell selection process that produces **intersection of cells**

The **Central Limit Theorem** affects within these intersections

Why do we need output diversity?

How can we generate diverse outputs?

How effective is output diversity?

Héctor D. Menéndez (UCL)

Experimentation

We used CodeFlaws for our experiments

We compared with a human test suite, CBMC and CAVM

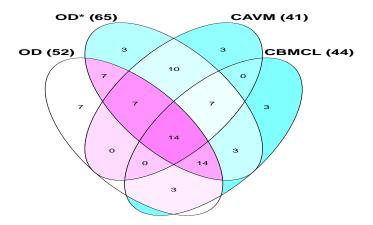
Our measure focused on **coverage**, **mutations** and **faults detected**

Coverage

Testing Method	Lines	Branch
Original TS (main)	$100\%\pm~6.9$	$100\%\pm11.6$
OD (main)	$\mathbf{69.2\%} \pm 19.5$	$50.0\%\pm25.0$
OD (main + final state)	$100\%\pm11.2$	$100\%\pm16.7$
CBMC (Lines)	$100\%\pm12.0$	$96.9\%\pm22.5$
CBMC (Branch)	$100\%\pm12.1$	$100\%\pm23.3$
CBMC (Condition)	$100\%\pm13.9$	$100\%\pm18.3$
CBMC (Decision)	$100\%\pm13.5$	$100\%\pm21.3$
CBMC (MCDC)	$100\%\pm14.4$	$100\%\pm19.1$
CAVM	$100\%\pm~0.0$	$100\%\pm12.0$

Killing mutants

Testing Method	Killed	Not Killed
Original TS	90.80%	9.20%
OD	71.43%	28.57%
OD (+ final state)	87.50%	12.50%
CBMC (Line)	78.57%	21.43%
CBMC (Branch)	78.57%	21.43%
CBMC (Condition)	85.71%	14.29%
CBMC (Decision)	81.48%	18.52%
CBMC (MCDC)	85.71%	14.29%
CAVM	77.78%	22.22%



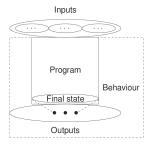
Fault detection

Testing Method	Found	Not Found	
Original TS	98%	2%	
OD	52%	48%	
OD (+ final state)	65%	35%	
CBMC (Line)	44%	56%	
CBMC (Branch)	31%	69%	
CBMC (Condition)	37%	63%	
CBMC (Decision)	31%	69%	
CBMC (MCDC)	34%	66%	
CAVM	41%	59%	

Fault detection

Why do we need output diversity?

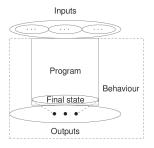
How can we generate diverse outputs?

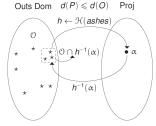

How effective is Output Diversity?

Why do we need output diversity?

How can we generate diverse outputs?

How effective is Output Diversity?

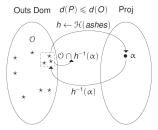


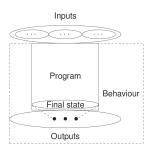


Why do we need output diversity?

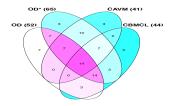
How can we generate diverse outputs?

How effective is Output Diversity?





Why do we need output diversity?


How can we generate diverse outputs?

How effective is Output Diversity?

Fault detection

14TH TAROT SUMMER SCHOOL 2018 on Software Testing, Verification, UCL, London – 2-6th July 2018						
	TAROT 2018 Committees	Registration Spea	kers Accommodation	Venue		
	_					
The Old London	The New	London	Uni	versity College London (UCL)		

https://wp.cs.ucl.ac.uk/tarot2018/

Héctor D. Menéndez (UCL)

InfoTestSS

UC