
Is Coincidental Correctness Less

Prevalent in Unit Testing?

Wes Masri

American University of Beirut
Electrical and Computer Engineering Department

Outline
 Definitions – Weak CC vs. Strong CC

 Causes of Coincidental Correctness

 Prevalence of CC – previous study

 Relation to Dependence Analysis

 Impact on Coverage-based Techniques – CBFL and TSR

 CC and Unit Testing – Defects4J

 Test Cases Breakdown – True Passing, Failing, Weak CC, Strong CC

 Propagation Analysis

 Bug Classification

Definitions (1)

Coincidental Correctness arises when the program produces the
correct output, while:

1) Reachability -- is met

The defect is executed

2) Infection -- is met

The program has transitioned into an infectious state

3) Propagation -- is not met

The infection has propagated to the output

Weak CC

Strong CC

2 definitions for a reason…

Definitions (1I)

 CC might be perceived as a good thing!
 The program is working correctly… so why worry?

 Two Problems:

 Strong CC - results in overestimating the reliability of

programs: it hides defects that subsequently might

surface following unrelated code modifications

 Weak CC & Strong CC - reduce the effectiveness of

coverage-based techniques

Causes of Strong CC (1)

 Case when

The Infection fails to Propagate to the Output

 Consider x that takes on the values [1, 5], such that the program gets

infected when x = 4

s1 : y = x * 3;

• There is a clear one-to-one mapping between the x values and y

values: {13, 26, 39, 4*
12*, 515}

• When x is infected, the corresponding y value, which is unique,

will successfully propagate the infection past s1

• That is, the infection x=4 leads to the infection y=12.

Causes of Strong CC (2)

s2 : if (x >= 3) {

y = 1;

} else {

y = 0;

}

 Here the mapping is {10, 20, 31, 4*
1, 51}

 There is no unique value of y that captures the infection

 y=1 is not an infection since it also results from x=3 and x=5

 The infection was nullified by the execution of s2

 Constructs similar to s2 are pervasive prevalence of strong CC

Prevalence of CC

 From previous study:

 148 versions of ten Java programs (NanoXML and Siemens)

 Test suite sizes ranged from 140 to 4130, with a total of 19,873

 Strong CC: 3,120 tests (15.7%)

 Weak CC: 11,208 tests (56.4%)

 20 versions had more than 60% of their tests as strong CC

 86 versions had more than 60% of their tests as weak CC.

 One version had 99.3% of its tests as strong CC

 Failure Checkers: mostly trivial… seeded bugs

Strong CC and Dependence Analysis (1)

Forms of Dependence Analysis: Static Dynamic Strength-based

 Basic Assumption of Dynamic Dependence Analysis:

If two variables are connected by a sequence of dynamic data
and/or control dependences, then information actually flows

between them

 To empirically validate this assumption, we used an information theoretic

measure to answer the following questions:

 Does dynamic program dependence always imply information flow?

 Is the Length of an Information Flow indicative of its Strength?

 Which Dependences are Stronger? Data or Control?

Strong CC and Dependence Analysis (II)

 Does dynamic program dependence always imply information flow?

In 90%+ of the cases, dynamic dependences did not channel any

information!!! …Unexpected

0.01

0.1

1

10

100

0.0 0.6 1.3 1.9 2.6 3.2 3.8 4.5 5.1 5.8 6.4

Flow Strength (Entropy)

%
 F

lo
w

s

Xerces

JTidy

Tomcat 3.0

Tomcat 3.2.1

Jigsaw

NanoXM L

Strong CC and Dependence Analysis (III)

 Is the Length of an Information Flow indicative of its Strength?

Many long flows were strong

Many short flows were weak …Unexpected

0

0.4

0.8

1.2

1.6

2

1 10 100 1000 10000F low Lengt h

S
t
r
e
n

g
t
h

 (
E

n
t
r
o

p
y
)

Xerces

NanoXML

JTidy

Tomcat 3.2.1

Jigsaw

Tomcat 3.0

Strong CC and Dependence Analysis (IV)

 Which Dependences are Stronger? Data or Control?

Flows due to data dependences alone are stronger, on average, than

flows due to control dependences alone … rather expected…

0

5

10

15

20

25

30

35

40

Xerces Jtidy jigsaw Tomcat 3.0 Tomcat 3.2.1 NanoXM L

Entropy > 1.0

%
 N

o
n
-w

e
a
k
 F

lo
w

s

Unrestricted flows DD-flows CD-flows

Strong CC and Dependence Analysis (V)

In 90%+ of the cases, dynamic dependences did not channel any information!!!

Suggests that many infectious states might get cancelled

and not propagate to the output, thus, leading to a

potentially high rate of Strong CC

Impact on Coverage-based Fault Localization

CC Underestimates the Suspiciousness of Faulty Program Elements

 Example: Tarantula suspiciousness metric

M(e) = F / (F + P)

e = faulty program element

F = % of failing runs that executed e

P = % of passing runs that executed e

Given n coincidentally correct tests, n should be taken out from P and added to F to

arrive at :

M’ (e) = F’ / (F’ + P’)

It could be easily shown that M’ (e) ≥ M(e)

That is, not accounting for CC would underestimate the suspiciousness of

the faulty program element

CC is a Safety reducing factor in CBFL

Impact on Test Suite Reduction (I)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

%
 D

e
fe

ct
s

Tests

BB

BBE

DUP

ALL

JTidy, 1000 test cases, 5 defects, 24 failures

23 CC tests

Impact on Test Suite Reduction (II)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

%
 D

e
fe

ct
s

Tests

BB

BBE

DUP

ALL

JTidy, 977 test cases, 5 defects, 24 failures

0 CC tests

Impact on Test Suite Reduction (III)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

%
 D

e
fe

ct
s

Tests

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

%
 D

e
fe

ct
s

Tests

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

%
 D

e
fe

ct
s

Tests

BB

BBE

DUP

ALL

Math, 1857 test cases, 5 defects, 42 failures

57 CC tests

Impact on Test Suite Reduction (IV)

Math, 1800 test cases, 5 defects, 42 failures

0 CC tests

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

%
 D

e
fe

ct
s

Tests

BB

BBE

DUP

ALL

Impact on Test Suite Reduction (V)

Impact on Test Suite Reduction (VI)

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350
%

 D
e
fe

ct
s

Tests

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400

%
 D

e
fe

ct
s

Tests

Defects4J

 De facto benchmark in program repair research and other

 Consists of 395 real bugs distributed over 6 libraries

Library Number of bugs

Closure compiler 133

Apache Commons Math 106

Apache Commons Lang 65

Mockito 38

JodaTime 27

JFreeChart 26

Targeted in this

presentation

Source: https://github.com/rjust/defects4j

[] René Just, Darioush Jalali, Michael D. Ernst. Defects4J: a database of existing faults to enable

controlled testing studies for Java programs. ISSTA 2014: 437-440.

https://github.com/rjust/defects4j

Identifying CC Tests within Defects4J: Why?

 CC is a confounding factor

 When evaluating new techniques, researchers using

Defects4J will be able to factor out the impact of

Coincidental Correctness (by discarding CC tests or treating them as failing)

 Determining whether CC is as prevalent at the unit

testing level (than at higher levels of testing)

 If less prevalent

 An argument for conducting CBFL and other coverage-based

techniques at the unit testing level

 An additional argument in favor of Test-Driven Development

Lang Library

 Provides helper utilities for the java.lang API

 String manipulation methods

 Basic numerical methods

 Object reflection

 Concurrency

 …

 Number of defects: 65

Source: https://commons.apache.org/proper/commons-lang/

https://commons.apache.org/proper/commons-lang/

Commons Math Library

 Provides mathematical and statistical components:

 Complex numbers

 Matrices

 …

 Number of defects: 106

Source: http://commons.apache.org/proper/commons-math/

http://commons.apache.org/proper/commons-math/

How to identify the CCs in Defect4J
Consult issue tracking

system

Add failure checkers

(oracles) to the buggy

version to detect

Reachability and Infection

Inspect difference

between buggy and fixed

version

Repeat 395

times!

Buggy Version with oracles:
...else {

subtract(tmp1, 0, x, xOffset, tmp2, 0);
divide(y, yOffset, tmp2, 0, tmp1, 0);
atan(tmp1, 0, tmp2, 0);
result[resultOffset] = ((tmp2[0] <= 0) ? -FastMath.PI :

FastMath.PI) - 2 * tmp2[0];
for (int i = 1; i < tmp2.length; ++i) {

result[resultOffset + i] = -2 * tmp2[i];
}

System.out.println("\nWeak Oracle 10");
if (result[resultOffset] != FastMath.atan2(y[yOffset], x[xOffset])) {

System.out.println("\nStrong Oracle 10");
}

}
}

Buggy Version:
...else {

subtract(tmp1, 0, x, xOffset, tmp2, 0);
divide(y, yOffset, tmp2, 0, tmp1, 0);
atan(tmp1, 0, tmp2, 0);
result[resultOffset] = ((tmp2[0] <= 0) ? -FastMath.PI :

FastMath.PI) - 2 * tmp2[0];
for (int i = 1; i < tmp2.length; ++i) {

result[resultOffset + i] = -2 * tmp2[i];
}

}

Augmenting buggy versions with oracles

to identify CCs (trivial)

Fixed Version:
...else {

subtract(tmp1, 0, x, xOffset, tmp2, 0);
divide(y, yOffset, tmp2, 0, tmp1, 0);
atan(tmp1, 0, tmp2, 0);
result[resultOffset] = ((tmp2[0] <= 0) ? -FastMath.PI :

FastMath.PI) - 2 * tmp2[0];
for (int i = 1; i < tmp2.length; ++i) {

result[resultOffset + i] = -2 * tmp2[i];
}

result[resultOffset] = FastMath.atan2(y[yOffset], x[xOffset]);

}
}

Math library, bug #10: DSCompiler.java

Buggy Version with oracles:
if (str == null || searchStr == null) {

return false;

}

boolean result = contains(str.toUpperCase(),

searchStr.toUpperCase());

System.out.println("\nWeak Oracle 40");

boolean fixedResult = false;

int len = searchStr.length();

int max = str.length() - len;

for (int i = 0; i <= max; i++) {

if (str.regionMatches(true, i, searchStr, 0, len)) {

fixedResult = true;

break;

}

}

if (result != fixedResult) {

System.out.println("\nStrong Oracle 40");

}

return result;

Augmenting buggy versions with oracles

to identify CCs (non-trivial)

Fixed Version:
if (str == null || searchStr == null) {

return false;

}

int len = searchStr.length();

int max = str.length() - len;

for (int i = 0; i <= max; i++) {

if (str.regionMatches(true, i, searchStr, 0, len)) {

return true;

}

}

return false;

Lang library, bug #40: StringUtils.java

Buggy Version:
if (str == null || searchStr == null) {

return false;

}

boolean result = contains(str.toUpperCase(),

searchStr.toUpperCase());

return result;

Test Cases Breakdown

Lang analysis includes version 34 to 65 only

156
45 70

2018

0

500

1000

1500

2000

2500

Lang*

Weak CC Strong CC Failing True Passing

344

166

0

50

100

150

200

250

300

350

400

Math

M
issin

g
 W

eak
 C

C

M
issin

g
T

ru
e P

assin
g

|Strong CC| > |Failing||Strong CC| ~ |Failing|

|Weak CC| > |Failing|

5449 tests2289 tests

CC propagation analysis

 Following metrics gathered from the moment the oracle

is reached (i.e., infection happens) till the test exits to get

a sense of the propagation:

 Statements executed

 Conditionals executed

 Method calls executed

 Modulo operation executed

 Multiply operation executed

 Divide operation executed

Lang Library CC analysis: Statements

executed

Lang Library CC analysis: Conditional

branches executed

Lang Library CC analysis: Modulo

operations executed

Lang Library CC analysis: Multiplication

operations executed

Lang Library CC analysis: Division

operations executed

Lang Library CC analysis: method calls

Math Library CC analysis: Statements

executed

Note: some outliers have been omitted from the bottom graph for visualization purposes
(x103)

Math Library CC analysis: Conditional

branches executed

Note: some outliers have been omitted from the bottom graph for visualization purposes

Math Library CC analysis:

Multiplication operations executed

Note: some outliers have been omitted from the bottom graph for visualization purposes

Math Library CC analysis: Division

operations executed

Note: some outliers have been omitted from the bottom graph for visualization purposes

Math Library CC analysis: method calls

Note: some outliers have been omitted from the bottom graph for visualization purposes

Bug Classification

9%

34%

0%

46%

9%

3%

0% 0%

4%

31%

2%

43%

2%

7%
9%

1%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Cast/Reflection Corner case Heap space

out of memory

Logic Null pointer Overflow Precision Constant error

Bug categories per library (% of total bugs in library)

Lang* Math

Lang analysis includes bugs 34 to 65 only

Logic Error Example (40%+)
double sumWts = 0; // Added Oracles

double oracleSumWts = 0;

for (int i = 0; i < weights.length; i++) {

sumWts += weights[i];

if (i >= begin && i < (begin+length)) {

oracleSumWts += weights[i];

}

}

System.out.println("\nWeak Oracle 41");

if (Double.compare(sumWts, oracleSumWts) != 0)
{

System.out.println("\nStrong Oracle 41");

}

double sumWts = 0; // Buggy

for (int i = 0; i < weights.length; i++) {

sumWts += weights[i];

}

double sumWts = 0; // Fixed

for (int i = begin; i < begin + length; i++) {

sumWts += weights[i];

}

Corner Case Error Example (30%+)

double foo(double[] a, double[] b) { // Added Oracles

final int len = a.length;

System.out.println("\nWeak Oracle 3");

if (len == 1) {

System.out.println("\nStrong Oracle 3");

}

final double[] prodHigh = new double[len];

double foo(double[] a, double[] b) { // Buggy

final int len = a.length;

final double[] prodHigh = new double[len];

double foo(double[] a, double[] b) { // Fixed

final int len = a.length;

if (len == 1) {

// Revert to scalar multiplication.

return a[0] * b[0];

}

final double[] prodHigh = new double[len];

Null Pointer Check Example (10%+)

for (int i = 0; i < sList.length; i++) { // Added Oracles

System.out.println("\nWeak Oracle 39");

if (sList[i] == null || rList[i] == null) {

System.out.println("\nStrong Oracle 39");

}

greater = rList[i].length() - sList[i].length();

…

}

for (int i = 0; i < sList.length; i++) { // Buggy

greater = rList[i].length() - sList[i].length();

…

}

for (int i = 0; i < sList.length; i++) { // Fixed

if (sList[i] == null || rList[i] == null) {

continue;

}

greater = rList[i].length() - sList[i].length();

…

}

Is Coincidental Correctness Less

Prevalent in Unit Testing?

Prevalent?

YES

Less Prevalent than in other Higher Levels of Testing?

Don’t Know Yet

