Á la carte Entropy

Derek M. Jones

derek@knosof.co.uk

Background

Researchers' go to topic when they have no idea what else to talk about

- http://shape-of-code.coding-guidelines.com/2015/o4/o4/entropy-software-researchers-go-to-topic-when-they-have-no-idea-what-else-to-talk-about/

Reasons to ignore a SE paper

- "...major indicators of clueless nonsense..."
- http://shape-of-code.coding-guidelines.com/2016/06/10/finding-the-gold-nugget-papers-in-software-engineering-research/

Source of pretentious techno-babble

Aggregating a list of probabilities

- $D_{1}=(0.1,0.3,0.5,0.7,0.9) / 2.5$
- $D_{2}=(0.2,0.4,0.6,0.8) / 2$

Which aggregation algorithm is best?

Geometric mean: $\left(\prod_{i}^{n} p_{i}\right)^{\frac{1}{n}}$

- $D_{1}=0.16$
- $D_{2}=0.22$

Shannon entropy: $\sum_{i}^{n} p_{i} \log \frac{1}{p_{i}}$

- $D_{1}=1.43$
- $D_{2}=1.28$
$\log \frac{1}{\prod_{i}^{n} p_{i}^{p_{i}}}$

Shannon: leading brand of entropy

Figure 1. Buying the brand leader

Other brands of entropy are available

Generalized entropy

- Rényi entropy: $\frac{1}{1-q} \log \left(\sum_{i}^{n} p_{i}^{q}\right)$
- Tsallis entropy: $\frac{1}{q-1}\left(1-\sum_{i}^{n} p_{i}^{q}\right)$

Bespoke entropy

- "Generalised information and entropy measures in physics" by Christian Beck
- Quadratic entropy

Probability weights

Figure 2. Weightings used by Shannon and Renyi/Tsallis

Shannon assumptions

Equilibrium state

Additive, i.e., $H(A, B)=H(A)+H(B)$

Other assumptions

Non-equilibrium state

Non-additive, i.e., $H(A+B)=H(A)+H(B)+(1-q) H(A) H(B)$

Not-Shannon processes

Long-range interactions

- memory usage
- "Initial Results of Testing Some Statistical Properties of Hard Disks Workload in Personal Computers in Terms of Non-Extensive Entropy and Long-Range Dependencies" by Dominik Strzalka

Preferential attachment

- not in equilibrium
- measurements showing a power law
- $1<q \leq 2$

Password guessing

- $q=2$ (collision entropy)

Suck it and see

- "Using entropy measures for comparison of software traces" Miranskyy, Davison, Reesor, and Murtaza

Underlying characteristics of the problem

- data suggests a power law

Take-away

Entropy? Really nothing else to talk about?

Shannon mean-value may be non-optimal

