_LEAKWATCH: MEASURING POINT-TO-POINT
NFORMATION LEAKAGE IN SMALL
PROBABILISTIC JAVA PROGRAMS.

Tom Chothia

My Co-Authors

Yusuke Kawamoto mep

Apratim Guha

Chris Novakovic \

Introduction

- We adapt the classic information leakage model to allow
us to tag any variables in a program as “observable” or
“secret”.

- Correlation, Mutual information, Min-entropy leakage, g-leakage

- We build a formal model that measures what the
observable values tell us about the secrets.

- We discuss leakage from non-terminating programs.

- LeakWatch: a Framework for statistical measuring
leakage from Java programs.

-
Standard Leakage Model

High Level High Level
Inputs Outputs
Low Level Low Level
Inputs Outputs

Correlation

-0.4

0.4

0.8

Image from wikipedia

Mutual Information

- Given X and Y we can ask how much does one tell us
about another? How much information “leaks” from X to
Y?

- Mutual Information 1(X;Y) is the reduction of uncertainty
you get in X if you know Y:

I(X:Y)=H(X)-H(X1Y)

_ log| PEY))
xEXE,yEYp(X) Og(p(x)p()’)

e
Guessing Entropy

- For a distribution X order the probabillities p1,...,pn such
thatthatp1=p2=---2pn.

- Guessing entropy is defined as:

n
E[G(X)]=) ip,
- Number of guesses the attacker needs to guess X.

- Ordering requirements means it's hard to generalise and
estimate.

-
Min-entropy

- Min-entropy of X is the uncertainty in guessing X in one

try:
H..(X) = - log(max(p(x)))

- The uncertainty in guessing X after having observed Y is:

)
H.(X1Y)=~log|) p(y)max(p(x!y))

yey /

- Min-entropy leakage tells you how easier a system makes
it to guess X in one try after seeing Y.

LX:Y)=H_(X)-H_(X1Y)

g-leakage

- g-leakage uses a “gain function” the measure how good a
guess is for the attacks

V(1) = maxyew) m(@)gw,x)

yEeY

Vy(m,C) =) p() Yy (xy)

yeY

- g-leakage equals:
Ly(m, C) =logV,(m,C) —logV, (1)

or
Li(m, C) =logV,(m, C) — logV, (1)

Example 1

new rand :={0-0.5,1-0.5};

observe rand:
new sec :={0-0.5,1-0.5%};

secret sec:
new out := sec xor rand:
observe out;

- We need to measure the information leakage to all
observables, before and after the secret, together.

Example 2

new secl :={0-0.5,1-0.5};
secret secl;
new sec2 :={0-0.5,1-0.5};
secret secl;
new out := secl xor sec?Z;
observe out;

- We need to measure the leakage from all secrets
together.

Example 3

new result := 0,1 := 0;
while (i < 4) {
observe result;
new sec := {1 - 0.5, 2 - 0.5 };
secret sec;
if(i==2) { result := sec; }
1 =1 +1;

L

- We must measure the leakage form all data produced

inside a loop to anywhere in the program (could be
infinite).

Example 4

new coin := {1 - 0.5, 2 -0.5 };
observe(coin);
if(coin==1) {
new creditCard:= {1 - 0.5, 2 - 0.5 };
secret(creditCard);
} else {
new cash:= {1 - 0.5, 2 - 0.5 };

secret(cash);

} We decided to say this is a
leak of 1 bit.

You would be free to
disagree.

Formalising this model (with Dave Parker)

Syntax Semantics
C ::= new V:=p - Discrete-time Markov chain
Vi=p semantics

if(B) {C} else {C} (C,0,5,0)= (C',0,8,0)
while(B) { C }

C;C Where:
. int & expressions | - C: commands to be run
| secret (V) - 0: list of variable scopes
| observe (V) - S: previous secret mappings

- O: previous observed values

Rule for random new variables

(new V :=p; C,0::0,8,0) 2An), (C,{V+—n}Uo):0,850)

C: newx:={0—~03,1—~07} ...
o ({y—0})

v X

o ({xr—>0y|—>0})} [0: ({xr—>1y|—>0})]

Secret Rules

N.B. A list of mapping

This reflects the
examples above.

(secret V; C,0,S,0) EN (C,0,8 :: (V — [V]o),O)

- C. secret X; ... { Co.
o ({x—1,y—0}) » o ({x— 1y~ 0}
S: () S: (x> 1)

Observation Rule:

N.B. A list values

The attack only see the
value, nothing else.

\

(observe V; C,0,S,0) LN (C,0,8,0 :: [V]o)

- observe y; ... \ Co..
o {x—=1y+— 0} » o ({x—1y+—0})
L O: () , ‘ O: (0)

Leakage

- The semantics gives us a distribution on (S,0).

- We can then measure the leakage from S to O, i.e. what
was an attacker learn about S from observing O?

- Popular measure of leakage include mutual information |
and min-entropy leakage L.:

I(X;Y) = Ep(x,y)log(pLx.y))

p(x)p(y)
L(X;Y)= logEm)c(zx p(x,y)-log mgxzp(x,y)

Do we actually want to measure?

The “worst possible program” is one in which every
“secret” is replaced with “print to name and value to
attacker”.

- l.e. attacker sees the exact values we are trying to hide.

Theorem: Our semantics measures how much an
attacker learns about this “worst possible program” by
observing the real program.

Proof. Define semantics for this “worst possible
program” & induction on the semantic rules.

An Infinite Number of Outputs
(Finite Secrets)

- We have now defined leakage for finite inputs and
outputs, but not infinite.

- Does it make sense to measure leakage to a infinite
number of outputs?

An Infinite Number of Outputs (Finite
Secrets)

Define Sec" and Obs" to be the distribution on secrets
and observations after n steps (may be empty).

We can define the leakage as:

Leakage = lim I(Sec™, Obs™)

n—00

Bounded above (finite secrets) and increasing therefore
converges.

@ Grab File Edit Capture Window Help @ = 51 ™ ¢) 1043 Tuelldd Q

10.664150960527 . I

0.664063798611 RevisignNotes
ghughes- ghuhes-

0.664052204959
wifisy..b1cl0 wifisy..3c02d airsyn NGNS PEL YL N

Termina more 49x22

e 0.664172611324
10.66725456727

0.666868547818
0.666900744648
0.667032046252

jll 0.666914852586

0.666813163684
0.666941671637
0.66863280836

0.667059074827
0.666881887502
0.667049716095
0.666866243056
0.666810020827
0.666874344644
0.666799614476
0.666862820833
0.667165931983
0.666850808133
0.667085404989
0.666840052577
0.666899138298
0.666754916058
0.666493919199
0.666897811314

8 0.6668839129

0.666919671634

b 0. 667089735148

" intern...l

0.666699252559

0.664241474824
0.663794700164
0.663926281133
0.66409704306

0.663998008127
0.66452363359

0.664031531941
0.664551500261
0.664800484419
0.663821798581
0.664303703404
0.663882770017
0.664116319253
0.665012522541
0.664054858928
66424727165

. 664009462096
663918947799
664055347817
664104446235
664054789086
664250554191
66432751928

.664077417661
0.664021474796

LSS B~ I~ R~ B~ I~ L~ L~

0.666725659267
0.667090300583
0.667369735539
0.667064249786
0.666273017939
0.666943983104
0.666932529134
0.6674112911
0.666973665647
0.667115722808
0.667233684728
0.667145964082
0.667039456132
0.667085830741
0.667863164173
0.66719010377
0.667355208553
0.667090510107
0.667052237086
0.666985748189

Case for
support New

Java_card_kit
conne.. .09 jar

mapa_censura
_inter...30.jpg

Continuous Mutual Information

I(X;Y) = zz:p(x,y) ‘g <pzzgp}(]3)’))
Xy

- We let the resolution of y tented to O
p(x,y))
I(X;Y) = , V) 1 d
o=, J P iog (P52 ay

- Attacker with arbitrary accuracy:

- Information leak: how much easier it is to guess after
observing the system

-
Kernel Estimation

We estimate the value

of p(_|x)aty by Epanechnikov kernel:
looking at each 3
observation and K(u) = 2(1 - UZ)X{M <T}

deciding how much
that should affect the

estimate
h = bandwidth

n 1 Y-y 1
P(y|X)=m72K(h) h=1.06x SOY)x N >

Lebesgue vs Riemann Integration

We know how to reason about leakage from the
infinite domain of real numbers, using Riemann
Integration:

I(X;Y) = fx j

but the output of a non-terminating program is not
Riemann Integrable ®

Lebesgue vs Riemann Integration

- But, the output of a non-terminating program is Lebesgue
Integrable.

Lebesgue vs Riemann Integration

We define the leakage of a non-terminating program as
the Lebesgue integral of the mutual information:

. dPy
I(X;Y)= [|og(AP, x Py)) dP,,

Radon-Nikodym /

derivative

J

An Infinite Number of Secret Values

For infinite secrets values we use a rate:

. p"(x,y)
Al—r}olo #secrets z 2 pr(x,y)log (p"(x)p”@))

“#secrets’ is the number of secret values defined so far.

Pros: a useful measure.

Cons: Doesn’t always converge,
Doesn't match finite version,
More secrets, less leakage.

Summary

- AIM: calculate information leakage from Java Programs
using statistical methods.

- 18t Step: formally define the leakage model.

- 2nd Step: statistical estimation results for probabilistic
mutual information and min-entropy leakage.

- 3"d Step: a Java Framework

- RESULT: Estimation of information leakage for complex
Java Programs (but small secret domains).

Estimating mutual information

- We need to know how the estimated values of mutual information
relates to the real value.

- We have done this when p(x) is know and p(y|x) is estimated.

- Moddemejer (1989) and Brillinger (2004), have already done this for
both X & Y unknown. Estimates I(X;Y) have:

Ix; v)+ #X 12)’(7#3’ V.o (i)

o Pyy (x o Py (x 2
% (Z"’y Prv(x,y)log? (5 325505) = (S Prvlo) og (535505))) +0 ()

Collecting data from programs

- Java or C? We picked Java.

- Collecting samples: Rewrite “secret” and “observable™ and
execute the program many time??

‘No!!

- We found that start a JVM is VERY, VERY slow.

- This stops calling “Java program” many times from being
practical.

Collecting data from Java

- S0 we used the Java Classloader to
repeatedly load and execute the Java
main method.

- Problem?

- Java caches the Object that contains the
main method.

- Static variables are presented from one run
to the next.

-
Leak\WWatch

- We have written our own custom Java classloader.
- Class being tested are always reload (not cached).
- System classes with no static values are cached.

- Copies of the test program are run in parallel to take
advantage of multicore machines.

Leakwatch Overview

AN
N

Core Java
classes

System classloader

D LeakWatch classes

Java
extension LeakWatch LeakWatch LeakWatch

classes classloader (1) classloader (2) classloader (3)

~ Target Target Target
N program program program
~ classes classes classes
Other

classes in
classpath

Ne—

Conclusion

- We adapted the classic information leakage model to

allow us to tag any variables in a program as “observable”
or “secret’.

- Correlation, Mutual information, Min-entropy leakage, g-leakage

- We built a formal model that measures what the
observable values tell us about the secrets.

- We discussed leakage from non-terminating programs.

- LeakWatch: a Framework for statistical measuring
leakage from Java programs.

