
LEAKWATCH: MEASURING POINT-TO-POINT
INFORMATION LEAKAGE IN SMALL
PROBABILISTIC JAVA PROGRAMS.

Tom Chothia

My Co-Authors
Yusuke Kawamoto

Chris Novakovic

Apratim Guha

Introduction
• We adapt the classic information leakage model to allow

us to tag any variables in a program as “observable” or
“secret”.
• Correlation, Mutual information, Min-entropy leakage, g-leakage

• We build a formal model that measures what the
observable values tell us about the secrets.

• We discuss leakage from non-terminating programs.

• LeakWatch: a Framework for statistical measuring
leakage from Java programs.

Standard Leakage Model

Program

High Level
Inputs

Low Level
Inputs

High Level
Outputs

Low Level
Outputs

Correlation

Image from wikipedia

Mutual Information
• Given X and Y we can ask how much does one tell us

about another? How much information “leaks” from X to
Y?

• Mutual Information I(X;Y) is the reduction of uncertainty
you get in X if you know Y:

I(X;Y) = H (X)−H (X |Y)

= p(x, y)log p(x, y)
p(x)p(y)

⎛

⎝
⎜

⎞

⎠
⎟

x∈X,y∈Y
∑

Guessing Entropy
• For a distribution X order the probabilities p1,...,pn such

that that p1 ≥ p2 ≥ · · · ≥ pn.

• Guessing entropy is defined as:

• Number of guesses the attacker needs to guess X.

• Ordering requirements means it’s hard to generalise and
estimate.

E[G(X)]= ipii=1

n
∑

Min-entropy
• Min-entropy of X is the uncertainty in guessing X in one

try:

• The uncertainty in guessing X after having observed Y is:

• Min-entropy leakage tells you how easier a system makes
it to guess X in one try after seeing Y.

L(X;Y) = H∞(X)−H∞(X |Y)

H∞(X) = − log(maxx∈X
(p(x)))

H∞(X |Y) = − log p(y)max
x∈X

y∈Y
∑ (p(x | y))
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

g-leakage
• g-leakage uses a “gain function” the measure how good a

guess is for the attacks

!" # = %&'(∈*+# ' ,(., ')
1∈2

!" #, 3 = +4 5
1∈2

!"(46|1)

• g-leakage equals:
8" #, 3 = log!" #, 3 − log!" #

or
8"= #, 3 = log!" #, 3 − log!" #

Example 1

new rand :={0→0.5,1→0.5};
observe rand;
new sec :={0→0.5,1→0.5};
secret sec;
new out := sec xor rand;
observe out;

• We need to measure the information leakage to all
observables, before and after the secret, together.

Example 2

new sec1 :={0→0.5,1→0.5};
secret sec1;
new sec2 :={0→0.5,1→0.5};
secret sec1;
new out := sec1 xor sec2;
observe out;

• We need to measure the leakage from all secrets
together.

Example 3
new result := 0,i := 0;
while (i < 4) {

observe result;
new sec := {1 → 0.5, 2 → 0.5 };
secret sec;
if(i==2) { result := sec; }
i :=i +1;

}
• We must measure the leakage form all data produced
inside a loop to anywhere in the program (could be
infinite).

Example 4
new coin := {1 → 0.5, 2 →0.5 };
observe(coin);
if(coin==1) {

new creditCard:= {1 → 0.5, 2 → 0.5 };
secret(creditCard);

} else {
new cash:= {1 → 0.5, 2 → 0.5 };
secret(cash);

} We decided to say this is a
leak of 1 bit.

You would be free to
disagree.

Formalising this model (with Dave Parker)

Syntax

C ::= new V:=ρ
| V:=ρ
| if(B) {C} else {C}
| while(B) { C }
| C;C
... int & expressions
| secret (V)
| observe (V)

Semantics

• Discrete-time Markov chain
semantics

(C,σ,S,O) → (C’,σ’,S’,O’)

Where:

• C: commands to be run

• σ: list of variable scopes

• S: previous secret mappings

• O: previous observed values

Rule for random new variables

Secret Rules

Observation Rule:

Leakage
• The semantics gives us a distribution on (S,O).

• We can then measure the leakage from S to O, i.e. what
was an attacker learn about S from observing O?

• Popular measure of leakage include mutual information I
and min-entropy leakage L:

I(X;Y) = p(x, y)log p(x, y)
p(x)p(y)

!

"
#

$

%
&∑

L(X;Y) = log max
X

p(x, y)
Y
∑ − logmax

X
p(x, y)

Y
∑

Do we actually want to measure?

The “worst possible program” is one in which every
“secret” is replaced with “print to name and value to
attacker”.
• i.e. attacker sees the exact values we are trying to hide.

Theorem: Our semantics measures how much an
attacker learns about this “worst possible program” by
observing the real program.

Proof: Define semantics for this “worst possible
program” & induction on the semantic rules.

• We have now defined leakage for finite inputs and
outputs, but not infinite.

• Does it make sense to measure leakage to a infinite
number of outputs?

An Infinite Number of Outputs
(Finite Secrets)

An Infinite Number of Outputs (Finite
Secrets)

Define Secn and Obsn to be the distribution on secrets
and observations after n steps (may be empty).

We can define the leakage as:

!"#$#%" = 	 lim+→- .(0"1
+, 234+)

Bounded above (finite secrets) and increasing therefore
converges.

Numbers screen shot

Continuous Mutual Information

! "; $ = 	''(), +
,-

./0 ((), +)
() ((+) 	

• We let the resolution of y tented to 0

! "; $ = 	' 	3 ((), +)
,-

./0 (), +
() ((+) 4+	

• Attacker with arbitrary accuracy:
• Information leak: how much easier it is to guess after

observing the system

Kernel Estimation
We estimate the value
of p(_ | x) at y by
looking at each
observation and
deciding how much
that should affect the
estimate

Epanechnikov kernel:

h = bandwidth

Lebesgue vs Riemann Integration
We know how to reason about leakage from the
infinite domain of real numbers, using Riemann
Integration:

! "; $ = 	' ' ((*, ,)
.

(* ((,)
((*, ,) 	

/
0*	0,

but the output of a non-terminating program is not
Riemann Integrable L

Lebesgue vs Riemann Integration
• But, the output of a non-terminating program is Lebesgue

Integrable.

Lebesgue

Riemann

stolen from
wikipedia

Lebesgue vs Riemann Integration

We define the leakage of a non-terminating program as
the Lebesgue integral of the mutual information:

Radon-Nikodym
derivative

An Infinite Number of Secret Values
For infinite secrets values we use a rate:

lim
$→&

1
#)*+,*-)../$ 0, 2

34
567 /$(0, 2)

/$(0)/$(2)

“#secrets” is the number of secret values defined so far.

Pros: a useful measure.

Cons: Doesn’t always converge,
Doesn't match finite version,
More secrets, less leakage.

Summary
• AIM: calculate information leakage from Java Programs

using statistical methods.

• 1st Step: formally define the leakage model.

• 2nd Step: statistical estimation results for probabilistic
mutual information and min-entropy leakage.

• 3rd Step: a Java Framework

• RESULT: Estimation of information leakage for complex
Java Programs (but small secret domains).

Estimating mutual information
• We need to know how the estimated values of mutual information

relates to the real value.
• We have done this when p(x) is know and p(y|x) is estimated.

• Moddemejer (1989) and Brillinger (2004), have already done this for
both X & Y unknown. Estimates I(X;Y) have: ^

Collecting data from programs

• Java or C? We picked Java.

• Collecting samples: Rewrite “secret” and “observable” and
execute the program many time??

•No!!

• We found that start a JVM is VERY, VERY slow.
• This stops calling “java program” many times from being

practical.

Collecting data from Java
• So we used the Java Classloader to
repeatedly load and execute the Java
main method.

• Problem?
• Java caches the Object that contains the
main method.

• Static variables are presented from one run
to the next.

LeakWatch

• We have written our own custom Java classloader.

• Class being tested are always reload (not cached).

• System classes with no static values are cached.

• Copies of the test program are run in parallel to take
advantage of multicore machines.

Leakwatch Overview

Conclusion
• We adapted the classic information leakage model to

allow us to tag any variables in a program as “observable”
or “secret”.
• Correlation, Mutual information, Min-entropy leakage, g-leakage

• We built a formal model that measures what the
observable values tell us about the secrets.

• We discussed leakage from non-terminating programs.

• LeakWatch: a Framework for statistical measuring
leakage from Java programs.

