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Introduction
• We adapt the classic information leakage model to allow 

us to tag any variables in a program as “observable” or 
“secret”.
• Correlation, Mutual information, Min-entropy leakage, g-leakage

• We build a formal model that measures what the 
observable values tell us about the secrets.

• We discuss leakage from non-terminating programs.

• LeakWatch: a Framework for statistical measuring 
leakage from Java programs.
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Mutual Information
• Given X and Y we can ask how much does one tell us 

about another? How much information “leaks” from X to 
Y?

• Mutual Information I(X;Y) is the reduction of uncertainty 
you get in X if you know Y:

I(X;Y ) = H (X)−H (X |Y )

= p(x, y)log p(x, y)
p(x)p(y)
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Guessing Entropy
• For a distribution X order the probabilities p1,...,pn such 

that that p1 ≥ p2 ≥ · · · ≥ pn. 

• Guessing entropy is defined as:

• Number of guesses the attacker needs to guess X.

• Ordering requirements means it’s hard to generalise and 
estimate. 

E[G(X)]= ipii=1

n
∑



Min-entropy
• Min-entropy of X is the uncertainty in guessing X in one 

try:

• The uncertainty in guessing X after having observed Y is:

• Min-entropy leakage tells you how easier a system makes 
it to guess X in one try after seeing Y. 

L(X;Y ) = H∞(X)−H∞(X |Y )

H∞(X) = − log(maxx∈X
(p(x)))

H∞(X |Y ) = − log p(y)max
x∈X

y∈Y
∑ (p(x | y))
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g-leakage
• g-leakage uses a “gain function” the measure how good a 

guess is for the attacks

!" # = %&'(∈*+# ' ,(., ')
1∈2

!" #, 3 = +4 5
1∈2
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• g-leakage equals:
8" #, 3 = log!" #, 3 − log!" #

or
8"= #, 3 = log!" #, 3 − log!" #



Example 1

new rand :={0→0.5,1→0.5}; 
observe rand;
new sec :={0→0.5,1→0.5}; 
secret sec; 
new out := sec xor rand; 
observe out; 

• We need to measure the information leakage to all 
observables, before and after the secret, together. 



Example 2

new sec1 :={0→0.5,1→0.5}; 
secret sec1; 
new sec2 :={0→0.5,1→0.5}; 
secret sec1; 
new out := sec1 xor sec2; 
observe out; 

• We need to measure the leakage from all secrets 
together.



Example 3
new result := 0,i := 0; 
while (i < 4) { 

observe result;
new sec := {1 → 0.5, 2 → 0.5 }; 
secret sec;
if(i==2) { result := sec; }
i :=i +1; 

} 
• We must measure the leakage form all data produced 
inside a loop to anywhere in the program (could be 
infinite).



Example 4
new coin := {1 → 0.5, 2 →0.5 }; 
observe(coin);
if(coin==1) { 

new creditCard:= {1 → 0.5, 2 → 0.5 }; 
secret(creditCard);

} else {
new cash:= {1 → 0.5, 2 → 0.5 }; 
secret(cash);

} We decided to say this is a 
leak of 1 bit.

You would be free to 
disagree. 



Formalising this model (with Dave Parker)

Syntax

C ::= new V:=ρ
| V:=ρ
| if(B) {C} else {C} 
| while( B ) { C } 
| C;C 
... int & expressions 
| secret (V) 
| observe (V)

Semantics

• Discrete-time Markov chain 
semantics

(C,σ,S,O) → (C’,σ’,S’,O’) 

Where:

• C: commands to be run

• σ: list of variable scopes

• S: previous secret mappings

• O: previous observed values 



Rule for random new variables



Secret Rules



Observation Rule: 



Leakage
• The semantics gives us a distribution on (S,O). 

• We can then measure the leakage from S to O, i.e. what 
was an attacker learn about S from observing O?

• Popular measure of leakage include mutual information I 
and min-entropy leakage L:

I(X;Y ) = p(x, y)log p(x, y)
p(x)p(y)
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L(X;Y ) = log max
X

p(x, y)
Y
∑ − logmax
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Do we actually want to measure?

The “worst possible program”  is one in which every 
“secret” is replaced with “print to name and value to 
attacker”.
• i.e. attacker sees the exact values we are trying to hide.

Theorem: Our semantics measures how much an 
attacker learns about this “worst possible program” by 
observing the real program.

Proof:  Define semantics for this “worst possible 
program” & induction on the semantic rules.



• We have now defined leakage for finite inputs and 
outputs, but not infinite.

• Does it make sense to measure leakage to a infinite 
number of outputs?

An Infinite Number of Outputs 
(Finite Secrets)



An Infinite Number of Outputs (Finite 
Secrets)

Define Secn and Obsn to be the distribution on  secrets 
and observations after n steps (may be empty). 

We can define the leakage as:

!"#$#%" = 	 lim+→- .(0"1
+, 234+)

Bounded above (finite secrets) and increasing therefore 
converges. 



Numbers screen shot



Continuous Mutual Information
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• We let the resolution of y tented to 0
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• Attacker with arbitrary accuracy:
• Information leak: how much easier it is to guess after 

observing the system



Kernel Estimation
We estimate the value 
of p( _ | x ) at y by 
looking at each 
observation and 
deciding how much 
that should affect the 
estimate 

Epanechnikov kernel:

h = bandwidth



Lebesgue vs Riemann Integration 
We know how to reason about leakage from the 
infinite domain of real numbers, using Riemann 
Integration:
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but the output of a non-terminating program is not 
Riemann Integrable L



Lebesgue vs Riemann Integration 
• But, the output of a non-terminating program is Lebesgue 

Integrable.

Lebesgue 

Riemann 

stolen from 
wikipedia



Lebesgue vs Riemann Integration 

We define the leakage of a non-terminating program as 
the Lebesgue integral of the mutual information:

Radon-Nikodym
derivative



An Infinite Number of Secret Values
For infinite secrets values we use a rate:

lim
$→&

1
#)*+,*-)../$ 0, 2

34
567 /$(0, 2)

/$(0)/$(2)

“#secrets” is the number of secret values defined so far.

Pros: a useful measure. 

Cons: Doesn’t always converge, 
Doesn't match finite version,
More secrets, less leakage. 



Summary
• AIM: calculate information leakage from Java Programs 

using statistical methods. 

• 1st Step: formally define the leakage model.

• 2nd Step: statistical estimation results for probabilistic 
mutual information and min-entropy leakage. 

• 3rd Step: a Java Framework

• RESULT: Estimation of information leakage for complex 
Java Programs (but small secret domains). 



Estimating mutual information
• We need to know how the estimated values of mutual information 

relates to the real value.
• We have done this when p(x) is know and p(y|x) is estimated. 

• Moddemejer (1989) and Brillinger (2004), have already done this for 
both X & Y unknown. Estimates I(X;Y) have: ^



Collecting data from programs

• Java or C? We picked Java. 

• Collecting samples: Rewrite “secret” and “observable” and 
execute the program many time??

•No!!

• We found that start a JVM is VERY, VERY slow. 
• This stops calling “java program” many times from being 

practical.



Collecting data from Java
• So we used the Java Classloader to 
repeatedly load and execute the Java 
main method.

• Problem? 
• Java caches the Object that contains the 
main method. 

• Static variables are presented from one run 
to the next.



LeakWatch

• We have written our own custom Java classloader. 

• Class being tested are always reload (not cached). 

• System classes with no static values are cached. 

• Copies of the test program are run in parallel to take 
advantage of multicore machines. 



Leakwatch Overview



Conclusion
• We adapted the classic information leakage model to 

allow us to tag any variables in a program as “observable” 
or “secret”.
• Correlation, Mutual information, Min-entropy leakage, g-leakage

• We built a formal model that measures what the 
observable values tell us about the secrets.

• We discussed leakage from non-terminating programs.

• LeakWatch: a Framework for statistical measuring 
leakage from Java programs.


