LEAKWATCH: MEASURING POINT-TO-POINT INFORMATION LEAKAGE IN SMALL PROBABILISTIC JAVA PROGRAMS.

Tom Chothia

Introduction

- We adapt the classic information leakage model to allow us to tag any variables in a program as "observable" or "secret".
 - Correlation, Mutual information, Min-entropy leakage, g-leakage
- We build a formal model that measures what the observable values tell us about the secrets.
- We discuss leakage from non-terminating programs.
- LeakWatch: a Framework for statistical measuring leakage from Java programs.

Standard Leakage Model

Correlation

Image from wikipedia

Mutual Information

- Given X and Y we can ask how much does one tell us about another? How much information "leaks" from X to Y?
- Mutual Information I(X;Y) is the reduction of uncertainty you get in X if you know Y:

$$I(X;Y) = H(X) - H(X | Y)$$
$$= \sum_{x \in X, y \in Y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

Guessing Entropy

- For a distribution X order the probabilities p1,...,pn such that that p1 ≥ p2 ≥ · · · ≥ pn.
- Guessing entropy is defined as:

$$E[G(X)] = \sum_{i=1}^{n} ip_i$$

- Number of guesses the attacker needs to guess X.
- Ordering requirements means it's hard to generalise and estimate.

Min-entropy

 Min-entropy of X is the uncertainty in guessing X in one try:

$$H_{\infty}(X) = -\log(\max_{x \in X}(p(x)))$$

- The uncertainty in guessing X after having observed Y is: $H_{\infty}(X | Y) = -\log\left(\sum_{y \in Y} p(y) \max_{x \in X} (p(x | y))\right)$
- Min-entropy leakage tells you how easier a system makes it to guess X in one try after seeing Y.

$$L(X;Y) = H_{\infty}(X) - H_{\infty}(X | Y)$$

g-leakage

 g-leakage uses a "gain function" the measure how good a guess is for the attacks

$$V_g(\pi) = \max_{w \in W} \sum_{y \in Y} \pi(x) g(w, x)$$
$$V_g(\pi, C) = \sum_{y \in Y} p(y) V_g(p_{X|y})$$

• g-leakage equals:

$$L_g(\pi, C) = \log V_g(\pi, C) - \log V_g(\pi)$$

or

$$L_g^+(\pi, C) = \log V_g(\pi, C) - \log V_g(\pi)$$

```
new rand :={0→0.5,1→0.5};
observe rand;
new sec :={0→0.5,1→0.5};
secret sec;
new out := sec xor rand;
observe out;
```

• We need to measure the information leakage to all observables, before and after the secret, together.

```
new sec1 :={0→0.5,1→0.5};
secret sec1;
new sec2 :={0→0.5,1→0.5};
secret sec1;
new out := sec1 xor sec2;
observe out;
```

• We need to measure the leakage from all secrets together.

```
new result := 0,i := 0;
while (i < 4) {
    observe result;
    new sec := {1 → 0.5, 2 → 0.5 };
    secret sec;
    if(i==2) { result := sec; }
    i :=i +1;
```

}

• We must measure the leakage form all data produced inside a loop to anywhere in the program (could be infinite).

```
new coin := \{1 \rightarrow 0.5, 2 \rightarrow 0.5\};
observe(coin);
if(coin==1) {
       new creditCard:= \{1 \rightarrow 0.5, 2 \rightarrow 0.5\};
       secret(creditCard);
} else {
       new cash:= \{1 \rightarrow 0.5, 2 \rightarrow 0.5\};
       secret(cash);
                                We decided to say this is a
}
                                       leak of 1 bit.
```

You would be free to disagree.

Formalising this model (with Dave Parker)

Syntax

- C ::= new V:=ρ | V:=ρ
- i if(B) {C} else {C}
 while(B) { C }
- C;C
- ... int & expressions
 | secret (V)
 - observe (V)

Semantics

 Discrete-time Markov chain semantics

$$(C,\sigma,S,O) \rightarrow (C',\sigma',S',O')$$

Where:

- C: commands to be run
- σ: list of variable scopes
- S: previous secret mappings
- O: previous observed values

Rule for random new variables

(new
$$V := \rho$$
; $C, o :: \sigma, S, O$) $\xrightarrow{\rho(n)} (C, (\{V \mapsto n\} \cup o) :: \sigma, S, O)$

Observation Rule:

N.B. A list values The attack only see the value, nothing else.

(observe V; $C, \sigma, S, \mathcal{O}$) $\xrightarrow{1}$ ($C, \sigma, S, \mathcal{O} :: \llbracket V \rrbracket \sigma$)

 $\begin{array}{ccc} C: & \text{observe } y; \dots \\ \sigma: & \langle \{x \mapsto 1, y \mapsto 0\} \rangle \\ \mathcal{O}: & \langle \rangle \end{array} \xrightarrow{\begin{array}{ccc} 1 \end{array}} \begin{array}{ccc} C: & \dots \\ \sigma: & \langle \{x \mapsto 1, y \mapsto 0\} \rangle \\ \mathcal{O}: & \langle 0 \rangle \end{array}$

Leakage

- The semantics gives us a distribution on (S,O).
- We can then measure the leakage from S to O, i.e. what was an attacker learn about S from observing O?
- Popular measure of leakage include mutual information I and min-entropy leakage L:

1

$$I(X;Y) = \sum_{Y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$
$$L(X;Y) = \log\sum_{Y} \max_{X} p(x,y) - \log\max_{X} \sum_{Y} p(x,y)$$

Do we actually want to measure?

- The "*worst possible program*" is one in which every "secret" is replaced with "print to name and value to attacker".
 - i.e. attacker sees the exact values we are trying to hide.
- **Theorem**: Our semantics measures how much an attacker learns about this "worst possible program" by observing the real program.
- **Proof**: Define semantics for this "worst possible program" & induction on the semantic rules.

An Infinite Number of Outputs (Finite Secrets)

- We have now defined leakage for finite inputs and outputs, but not infinite.
- Does it make sense to measure leakage to a infinite number of outputs?

An Infinite Number of Outputs (Finite Secrets)

Define Secⁿ and Obsⁿ to be the distribution on secrets and observations after n steps (may be empty).

We can define the leakage as:

$$Leakage = \lim_{n \to \infty} I(Sec^n, Obs^n)$$

Bounded above (finite secrets) and increasing therefore converges.

🗯 Grab File Edit Capture Window	Help		Q 🛜 🔢 🔳 🐠 ((0:43) Tue 11:44 Q
ghughes- ghughes- gh	 .0.664150960527 0.664063798611 0.664052204959 0.664172611324 	Terminal — more — 49×31	RevisionNotes Terminal — more — 49×22	StarCräft II
Winsy51C10 wiftsy3c02d airst 0.666868547818 0.666900744648 0.6669046252 0.666914852586	yn, 0.664127424016 0.664241474824 0.663794700164 0.663926281133 0.66409704306 0.663998008127	0.66725456727 0.666725659267 0.667090300583 0.667369735539 0.667064249786 0.666273017939		SDcard
0.666813163684 0.666941671637 0.66863280836 0.667059074827 0.666881887502 0.667049716095	0.66452363359 0.664031531941 0.664551500261 0.664800484419 0.663821798581 0.664303703404	0.666943983104 0.666932529134 0.6674112911 0.666973665647 0.667115722808 0.667233684728		Demo
0.666866243056 0.666810020827 0.666874344644 0.666799614476 0.666862820833	0.663882770017 0.664116319253 0.665012522541 0.664054858928 0.66424727165 0.664009462096	0.667145964082 0.667039456132 0.667085830741 0.667863164173 0.66719010377 0.667355208553		java_card_kit- conne09.jar
0.667165931983 0.666850808133 0.667085404989 0.666840052577 0.666899138298 0.666754916058	0.663918947799 0.664055347817 0.664104446235 0.664054789086 0.664250554191	0.667090510107 0.667052237086 0.666985748189 :		Erica
 0.666493919199 0.666897811314 0.6668839129 0.666919671634 0.6667089735148 0.666699252559 	0.664077417661 0.664021474796 :	0		hacking
:		*		 mapa_censura inter30.ipg

Continuous Mutual Information

$$I(X;Y) = \sum_{x} \sum_{y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right)$$

• We let the resolution of y tented to 0

$$I(X;Y) = \sum_{x} \int_{y} p(x,y) \log\left(\frac{p(x,y)}{p(x)p(y)}\right) dy$$

- Attacker with arbitrary accuracy:
 - Information leak: how much easier it is to guess after observing the system

Kernel Estimation

We estimate the value of p(_ | x) at y by looking at each observation and deciding how much that should affect the estimate

Epanechnikov kernel:

$$K(u) = \frac{3}{4}(1 - u^2)\chi\{|u| \le 1\}$$

$$\hat{p}(y \mid x) = \frac{1}{N.h} \sum_{x} K\left(\frac{Y_i - y}{h}\right) \quad h = 1.06 \times SD(Y) \times N^{-\frac{1}{5}}$$

Lebesgue vs Riemann Integration

We know how to reason about leakage from the infinite domain of real numbers, using Riemann Integration:

but the output of a non-terminating program is not Riemann Integrable 🛞

Lebesgue vs Riemann Integration

• But, the output of a non-terminating program is Lebesgue Integrable.

Lebesgue vs Riemann Integration

We define the leakage of a non-terminating program as the Lebesgue integral of the mutual information:

$$I(X;Y) = \int \log\left(\frac{dP_{XY}}{d(P_X \times P_Y)}\right) dP_{XY}$$

Radon-Nikodym
derivative

An Infinite Number of Secret Values

For infinite secrets values we use a rate:

$$\lim_{n \to \infty} \frac{1}{\#secrets} \sum_{x} \sum_{y} p^n(x, y) \log\left(\frac{p^n(x, y)}{p^n(x)p^n(y)}\right)$$

"#secrets" is the number of secret values defined so far.

Pros: a useful measure.

Cons: Doesn't always converge, Doesn't match finite version, More secrets, less leakage.

• AIM: calculate information leakage from Java Programs using statistical methods.

- 1st Step: formally define the leakage model.
- 2nd Step: statistical estimation results for probabilistic mutual information and min-entropy leakage.
- 3rd Step: a Java Framework
- RESULT: Estimation of information leakage for complex Java Programs (but small secret domains).

Estimating mutual information

- We need to know how the estimated values of mutual information relates to the real value.
 - We have done this when p(x) is know and p(y|x) is estimated.
- Moddemejer (1989) and Brillinger (2004), have already done this for both X & Y unknown. Estimates I(X;Y) have:

Mean

$$I(X;Y) + \frac{(\#\mathcal{X}-1)(\#\mathcal{Y}-1)}{2n} + O\left(\frac{1}{n^2}\right)$$

Variance

$$\frac{1}{n} \left(\sum_{x,y} \hat{P}_{XY}(x,y) \log^2 \left(\frac{\hat{P}_{XY}(x,y)}{\hat{P}_X(x)\hat{P}_Y(y)} \right) - \left(\sum_{x,y} \hat{P}_{XY}(x,y) \log \left(\frac{\hat{P}_{XY}(x,y)}{\hat{P}_X(x)\hat{P}_Y(y)} \right) \right)^2 \right) + O\left(\frac{1}{n^2} \right)$$

Collecting data from programs

• Java or C? We picked Java.

 Collecting samples: Rewrite "secret" and "observable" and execute the program many time??

•No!!

- We found that start a JVM is VERY, VERY slow.
 - This stops calling "java program" many times from being practical.

Collecting data from Java

 So we used the Java Classloader to repeatedly load and execute the Java main method.

- Problem?
 - Java caches the Object that contains the main method.
 - Static variables are presented from one run to the next.

LeakWatch

- We have written our own custom Java classloader.
- Class being tested are always reload (not cached).
- System classes with no static values are cached.
- Copies of the test program are run in parallel to take advantage of multicore machines.

Leakwatch Overview

Conclusion

- We adapted the classic information leakage model to allow us to tag any variables in a program as "observable" or "secret".
 - Correlation, Mutual information, Min-entropy leakage, g-leakage
- We built a formal model that measures what the observable values tell us about the secrets.
- We discussed leakage from non-terminating programs.
- LeakWatch: a Framework for statistical measuring leakage from Java programs.