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Cyber-Physical Systems
• A system of collaborating computational elements controlling 

physical entities
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Context
• Projects on verification of cyber-physical systems, control 

systems, autonomous systems, …

• Focus on safety, performance, resource usage …

• Automotive, satellite, energy, manufacturing …
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Controllers
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Decision-Making Components
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Development Process
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Functional modeling: 
• Controllers
• Plant
• Decision

Continuous and discrete 
Simulink models

Model simulation and 
testing

Architecture modelling
• Structure
• Behavior
• Traceability

System engineering modeling 
(SysML)

Analysis: 
• Model execution and 

testing
• Model-based testing
• Traceability and 

change impact 
analysis

• ...

(partial) Code generation

Deployed executables on 
target platform

Hardware (Sensors ...) 
Analog simulators 

Testing (expensive)

Hardware-in-the-Loop 
Stage

Software-in-the-Loop 
StageModel-in-the-Loop Stage



Simulink Models - Simulation

• Simulation Models

• heterogeneous
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Software Plant  
Model

Network Model

• continuous behavior

• are used for 

• algorithm design testing

• comparing design options



Cruise Control: Plant
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Problem 
• How do we automatically verify and test CP functional models 

(e.g., controller, plant, decision) at MiL?

• What types of requirements / properties do we check?

• Commercial tools: 

• Cannot handle continuous operators, floating point models (e.g., SLDV, 
Reactis)

• Based on model structural coverage: low fault detection

• Can only handle linear systems and specific properties  (Linear analysis 
toolbox) 
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Challenges

• Limited work on verification and testing of controllers and 
decision-making components in CP systems

• Space of test input signals is extremely large.

• Model execution, especially when involving plant models, 
is extremely expensive.
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More Challenges

• Test oracles are not simple Boolean properties and easily 
known in advance – they involve analyzing changes in 
value over time (e.g., signal patterns) and assessing levels 
of risk.

• Simulatable plant model of the physical environment is not 
always available or fully accurate and precise.
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Diversity Strategies
• Strategy: Maximize diversity of test cases

• Assumption: “the more diverse the test cases the higher their fault revealing 
capacity”

• Challenge: Define “diversity” in context, pair-wise similarity computation, test 
selection algorithm

• Examples of early work 

• ISSRE 2003, Leon and Podgurski, filtering and prioritizing test cases, relying on code 
coverage 

• FSE 2010, Hemmati et al., Similarity-based test selection applied to model-based testing 
based on state models  for control systems, selection with GA

• Full control on test budget: Maximize fault detection for a given test suite size
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Testing Controllers
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Controllers are Pervasive
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• Supercharger bypass flap controller
üFlap position is bounded within 

[0..1]
üImplemented in MATLAB/Simulink
ü34 (sub-)blocks decomposed into  6 

abstraction levels

Supercharger

Bypass Flap

Supercharger

Bypass Flap

Flap position = 0 (open) Flap position = 1 (closed)

Simple Example
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MiL Test Cases
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-

MiL Testing of Controllers
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Requirements and Test Objectives
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Test Generation Approach 

• We formalize controller’s requirements in terms of 
desired and actual outputs

Smoothness

• We rely on controller’s feedback to automate test 
oracles

desired value
actual value

< Threshold Desired Value 
(Setpoint)

Actual Value (feedback) 

System 
Output+

-

Control 
Signal

Plant
(environment)Controller



A Search-Based Test Approach

Initial Desired (ID)
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Worst Case(s)?

• Search directed by model 
execution feedback

• Finding worst case inputs

• Possible because of automated 
oracle (feedback loop)

• Different worst cases for 
different requirements

• Worst cases may or may not 
violate requirements
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Initial Solution
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Results

• We found much worse scenarios during MiL testing than our 
partner had found so far

• These scenarios are also run at the HiL level, where testing is 
much more expensive: MiL results -> test selection for HiL

• But further research was needed:

• Simulations are expensive 

• Configuration parameters  
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Final Solution

+
Controller 

Model 
(Simulink)

Worst-Case 
Scenarios

List of 
Critical 

PartitionsRegression
Tree

1.Exploration with 
Dimensionality 

Reduction

2.Search with
Surrogate 
Modeling

Objective 
Functions

Domain
Expert

Visualization of the 
8-dimension space 

using regression treesDimensionality 
reduction to identify 

the significant variables
(Elementary Effect Analysis)

Surrogate modeling 
to predict the fitness 

function and 
speed up the search 
(Machine learning)
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Open Loop Controllers

On

Off

CtrlSig

• Mixed discrete-continuous behavior: 
Simulink stateflows

• No plant model: Much quicker simulation 
time

• No feedback loop -> no automated oracle

• The main testing cost is the manual 
analysis of output signals

• Goal: Minimize test suites

• Challenge: Test selection

• Entirely different approach to testing

respectively. In addition, we adapt the whitebox coverage and the
blackbox output diversity selection criteria to Stateflows, and evalu-
ate their fault revealing power for continuous behaviours. Coverage
criteria are prevalent in software testing and have been considered
in many studies related to test suite effectiveness in different appli-
cation domains [?]. In our work, we consider state and transition
coverage criteria [?] for Statflows. Our output diversity criterion is
based on the recent output uniqueness criterion [?] that has been
studied for web applications and has shown to be a useful surro-
gate to whitebox selection techniques. We consider this criterion
in our work because Stateflows have complex internal structures
consisting of differential equations, making them less amenable to
whitebox techniques, while they have rich time-continuous outputs.

In this paper, we make the following contributions:

• We focus on the problem of testing Stateflows with mixed
discrete-continuous behaviours. We propose two new test
case selection criteria output stability and output continuity
with the goal of selecting test inputs that are likely to pro-
duce continuous outputs exhibiting instability and disconti-
nuity failures, respectively.

• We adapt the whitebox coverage and the blackbox output
diversity selection criteria to Stateflows, and evaluate their
fault revealing power for continuous behaviours. The former
is defined based on traditional state and transition coverage
for state machines, and the latter is defined based on the re-
cent output uniqueness criterion [?].

• We evaluate effectiveness of our newly proposed and the
adapted selection criteria by applying them to three Stateflow
case study models: two industrial and one public domain.
Our results show that RESULT.

Organization of the paper.

2. BACKGROUND AND MOTIVATION
Motivating example. We motivate our work using a simplified
Stateflow from the automotive domain which controls a supercharger
clutch and is referred to as the Supercharger Clutch Controller (SCC).
Figure 1(a) represents the discrete behaviour of SCC specifying
that the supercharger clutch can be in two quiescent states [?]: en-
gaged or disengaged. Further, the clutch moves from the disen-
gaged to the engaged state whenever both the engine speed engspd
and the engine coolant temperature tmp respectively fall inside the
specified ranges of [smin..smax] and [tmin..tmax]. The clutch
moves back from the engaged to the disengaged state whenever
either the speed or the temperature falls outside their respective
ranges. The variable ctrlSig in Figure 1(a) indicates the sign and
magnitude of the voltage applied to the DC motor of the clutch
to physically move the clutch between engaged and disengaged
positions. Assigning 1.0 to ctrlSig moves the clutch to the en-
gaged position, and assigning �1.0 to ctrlSig moves it back to
the disengaged position. To avoid clutter in our figures, we use
engageReq to refer to the condition on the Disengaged ! En-
gaged transition, and disengageReq to refer to the condition on
the Engaged ! Disengaged transition.

The discrete transition system in Figure 1(a) assumes that the
clutch movement takes no time, and further, does not provide any
insight on the quality of movement of the clutch. Figure 1(b) ex-
tends the discrete transition system in Figure 1(a) by adding a timer
variable, i.e., time, to explicate the passage of time in the SCC
behaviour. The new transition system in Figure 1(b) includes two

(a) SCC -- Discrete Behaviour

(b) SCC -- Timed Behaviour

EngagedDisengaged

Engaging

(c) Engaging state of SCC -- mixed discrete-continuous behaviour

Disengaging

Disengaged

Engaged

time + +;

[disengageReq]/time := 0

[t
i
m
e

>
5]

[t
i
m
e

>
5]

time + +;

[(engspd > smin � engspd < smax) � (tmp > tmin � tmp < tmax)]/
ctrlSig := 1

[engageReq]/ time := 0

[¬(engspd > smin � engspd < smax) � ¬(tmp > tmin � tmp < tmax)] /
ctrlSig := �1

OnMoving OnSlipping

OnCompleted

time + +;
ctrlSig := f(time)

Engaging

time + +;
ctrlSig := g(time)

time + +;
ctrlSig := 1.0

[¬(vehspd = 0) �
time > 2]

[(vehspd = 0) �
time > 3]

[time > 4]

Figure 1: Supercharge Clutch Controller (SCC) Stateflow.

transient states [?], engaging and disengaging, specifying that mov-
ing from the engaged to the disengaged state and vice versa takes
six milisec. Since this model is simplified, it does not show han-
dling of alterations of the clutch state during the transient states.
In addition to adding the time variable, we note that the variable
ctrlSig, which controls physical movement of the clutch, cannot
abruptly jump from 1.0 to �1.0, or vice versa. In order to ensure
safe and smooth movement of the clutch, the variable ctrlSig has
to gradually move between 1.0 and �1.0 and be described as a
function over time, i.e., a signal. To express the evolution of the
ctrlSig signal over time, we decompose the transient states en-
gaging and disengaging into sub-state machines. Figure 1(c) shows
the sub-state machine related to the engaging state. The one related
to the disengaging state is similar. At beginning (in state OnMov-
ing), the function ctrlSig has a steep grade (i.e., function f ) to
move the stationary clutch from the disengaged state and acceler-
ate it to reach a certain speed in about two milisec. Afterwards (in
state OnSlipping), ctrlSig decreases the speed of clutch based
on the gradual function g until about four milisec. This is to ensure
that the clutch slows down as it gets closer to the crank shaft of
the car. Finally, at state OnCompleted, ctrlSig reaches value 1.0
and remains constant, causing the clutch to get engaged in about
one milisec. When the car is stationary, i.e., vehspd is 0, the clutch
moves based on the steep grade function f for three milisec, and
does not have to go to the OnSlipping phase to slow down before
it reaches the crank shaft at state OnCompleted.
Input and Output. The Stateflow inputs and outputs are signals
(functions over time). Each input/output signal has a data type,
e.g. boolean, enum or float, specifying the range of the signal.
For example, Figure 2 shows an example input (dashed line) and
output (solid line) signals for SCC. The input signal is related to
engageReq and is boolean, while the output signal is related to
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Selection Strategies Based on Search
• White-box structural coverage

• State Coverage

• Transition Coverage

• Input signal diversity

• Output signal diversity

• Failure-Based selection criteria 

• Domain specific failure patterns

• Output Stability

• Output Continuity

S3
t

S3
t
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System 
Output

Input
Signals

Output 
Signals

Controller Plant
(environment)
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instability
failure pattern

discontinuity
failure pattern

output diversity

• We assume test oracles are manual

Test Generation Approach 

• We rely on output signals to produce small test 
suites with high fault-revealing ability 



Output Diversity -- Vector-Based 
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Output Diversity -- Feature-Based
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Output Diversity -- Feature-Based

increasing (n) decreasing (n)constant-value (n, v) 

signal features
derivative second derivative

sign-derivative (s, n) extreme-derivatives

1-sided 
discontinuity

discontinuity

1-sided continuity
with strict local optimum

value 

 instant-value (v)
constant (n) 

discontinuity
with strict local optimum

increasing

C

A

B

Similarity: To which extent any part of a signal is similar to a 
feature



Failure-based Test Generation 
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• Search: Maximizing the likelihood of presence of specific failure 
patterns in output signals

• Domain-specific failure patterns elicited from engineers
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Search
• Whole test suite generation approach

• Used when objective functions characterize the test suite

• Optimize test objective for a given test suite size (budget 
for manual oracles)

• Maximize the minimum distances of each output signal 
vector from the other output signal vectors

• Adaptation of Simulated Annealing
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Faulty Model Output
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Correct Model Output

Fault-Revealing Ability

Covers the fault and Covers the fault but 
is Likely to reveal it is very unlikely to reveal it



Results
• The test cases resulting from  state/transition coverage 

algorithms cover the faulty parts of the models

• However, they fail to generate output signals that are 
sufficiently distinct from expectations, hence yielding a low 
fault revealing rate 

• Diversity strategies significantly outperforms coverage-based 
and random testing

• Output-based algorithms are much more effective, both based 
on diversity and failure patterns
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Results

• Feature-based diversity fares significantly better than 
vector-based diversity

• Strategies based on failure patterns find different types of 
faults than diversity strategies

• Existing commercial tools: Not effective at finding faults, 
not applicable to entire Simulink models, e.g., Simulink 
Design Verifier
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Example Failures
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Example Failures

40

Instability

Discontinuity



Conclusions
• Maximizing output diversity helps identify scenarios 

where the discrepancy between the produced and 
expected signal is large

• Useful when test output signals are analyzed manually 

• Simulink models and their outputs are complex 

• Helps maximize fault detection within a fixed budget

• Properly defining diversity was a challenge
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Reflections on Diversity
• Useful strategy when no precise guidance, directly 

related to the test objectives, is available for the search

• In the general, the key issue is how to define diversity in 
an optimal way given the objectives

• In practice, how diversity is defined also depends on 
what information is available at a reasonable cost

• The time complexity of computing diversity is a major 
cost of the search – it must be accounted for
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