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Cyber-Physical Systems

A system of collaborating computational elements controlling
physical entities
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Context

e Projects on verification of cyber-physical systems, control
systems, autonomous systems, ...

« Focus on safety, performance, resource usage ...

e Automotive, satellite, energy, manufacturing ...
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Decision-Making Components
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Development Process
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Simulink Models - Simulation

e Simulation Models
Software Plant

e heterogeneous

e continuous behavior

e are used for

» algorithm design testing Network Model

e comparing design options
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Problem

e How do we automatically verify and test GP functional models
(e.g., controller, plant, decision) at MiL?

o What types of requirements / properties do we check?

e Commercial tools:

o Cannot handle continuous operators, floating point models (e.g., SLDV,
Reactis)

e Based on model structural coverage: low fault detection

e Can only handle linear systems and specific properties (Linear analysis

toolbox)
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Challenges

 Limited work on verification and testing of controllers and
decision-making components in CP systems

» Space of test input signals Is extremely large.

e Model execution, especially when involving plant models,
Is extremely expensive.
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More Challenges

e Test oracles are not simple Boolean properties and easily
known in advance - they involve analyzing changes in
value over time (e.g., signal patterns) and assessing levels
of risk.

e Simulatable plant model of the physical environment is not
always available or fully accurate and precise.
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Diversity Strategies

 Strategy: Maximize diversity of test cases

» Assumption: “the more diverse the test cases the higher their fault revealing
capacity”

o Challenge: Define “diversity” in context, pair-wise similarity computation, test
selection algorithm

o Examples of early work

» ISSRE 2003, Leon and Podgurski, filtering and prioritizing test cases, relying on code
coverage

o FSE 2010, Hemmati et al., Similarity-based test selection applied to model-based testing
based on state models for control systems, selection with GA

 Full control on test budget: Maximize fault detection for a given test suite size
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Testing Controllers
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Controllers are Pervasive
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Simple Example

» Supercharger bypass flap controller
v'Flap position is bounded within

[0..1]

DE L PHII

v Implemented in MATLAB/Simulink
v'34 (sub-)blocks decomposed into 6

abstraction levels
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Test Case 1

Test Case 2

MiL Test Cases

Input Model Output
Signals Simulation Signal(s)
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MiL Testing of Controllers
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Requirements and Test Objectives
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Test Generation Approach

- We formalize controller’s requirements in terms of
desired and actual outputs

- We rely on controller’s feedback to automate test
oracles

Desired Value Ct_)ntrol System
(Setpoint) 4 Signal - Output
—O—p| Controller - (environment) 7 —P
desired value — — —
actual value @ —— Actual Value (feedback)

Smoothness
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A Search-Based Test Approach

o Search directed by model
execution feedback

 Finding worst case inputs

e Possible because of automated
oracle (feedback loop)

Final Desired (FD)

o Different worst cases for
different requirements

Initial Desired (ID)

 Worst cases may or may not
violate requirements
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Initial Solution
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Results

e We found much worse scenarios during MiL testing than our
partner had found so far

e These scenarios are also run at the HiL level, where testing is
much more expensive: MiL results -> test selection for HiL

 But further research was needed:
e Simulations are expensive
 Configuration parameters
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Final Solution

Objective K N l.:;)
Functions 1.Exploration with VAN N\
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Open Loop Controllers

Engaging

!

OnMoving

time + +;
trlSig := f(time)

[-(vehspd = 0) A
time > 2]

Mixed discrete-continuous behavior:
Simulink stateflows

OnSlipping

time 4 +;
ctrlSig := g(time

No plant model: Much quicker simulation
time

[(vehspd = 0) A [time > 4]

time > 3|

OnCompleted

time + +;
ctrlSig:=1.0

No feedback loop -> no automated oracle

The main testing cost is the manual
analysis of output signals

Goal: Minimize test suites CtrlSig \\ \\

Challenge: Test selection
On —_—

Entirely different approach to testing

Off
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Selection Strategies Based on Search

o White-box structural coverage

o State Coverage

o Transition Coverage 33 I N
 Input signal diversity t

e Output signal diversity

e Failure-Based selection criteria

Domain specific failure patterns S3
Output Stability N

Output Continuity
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Test Generation

Approach

- We assume test oracles are manual

- We rely on output signals to produce small test
suites with high fault-revealing ability
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Output Diversity -- Vector-Based
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Output Diversity -- Feature-Based

signal features
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Output Diversity -- Feature-Based

signal features
| .
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Failure-based Test Generation

» Search: Maximizing the likelihood of presence of specific failure

patterns in output signals

» Domain-specific failure patterns elicited from engineers
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Search

e Whole test suite generation approach
e Used when objective functions characterize the test suite

 Optimize test objective for a given test suite size (budget
for manual oracles)

e Maximize the minimum distances of each output signal
vector from the other output signal vectors

» Adaptation of Simulated Annealing
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Fault-Revealing Ability

Covers the fault and Covers the fault but
IS Likely to reveal it Is very unlikely to reveal it

Faulty Model Qutput
Correct Model Output ===—-
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Results

e The test cases resulting from state/transition coverage
algorithms cover the faulty parts of the models

» However, they fail to generate output signals that are
sufficiently distinct from expectations, hence yielding a low
fault revealing rate

e Diversity strategies significantly outperforms coverage-based
and random testing

e Qutput-based algorithms are much more effective, both based
on diversity and failure patterns
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Results

 Feature-based diversity fares significantly better than
vector-based diversity

o Strategies based on failure patterns find different types of
faults than diversity strategies

e Existing commercial tools: Not effective at finding faults,
not applicable to entire Simulink models, e.g., Simulink
Design Verifier
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Signal Value

Example Failures

(a) Delay Buffer
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Signal Value

Example Failures
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Conclusions

o Maximizing output diversity helps identify scenarios
where the discrepancy between the produced and
expected signal is large

 Useful when test output signals are analyzed manually
e Simulink models and their outputs are complex
 Helps maximize fault detection within a fixed budget

e Properly defining diversity was a challenge
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Reflections on Diversity

e Useful strategy when no precise guidance, directly
related to the test objectives, is available for the search

e In the general, the key issue is how to define diversity In
an optimal way given the objectives

e In practice, how diversity is defined also depends on
what information is available at a reasonable cost

e The time complexity of computing diversity is a major
cost of the search — it must be accounted for
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