
.lu
software verification & validation
VVS

Testing of Cyber-Physical Systems:

Diversity-driven Strategies

Lionel Briand

COW 57, London, UK

Cyber-Physical Systems
• A system of collaborating computational elements controlling

physical entities

2

Context
• Projects on verification of cyber-physical systems, control

systems, autonomous systems, …

• Focus on safety, performance, resource usage …

• Automotive, satellite, energy, manufacturing …

3

Controllers

4

Plant

Controller

Actuator Sensor

Disturbances

Reference Inputs

Decision-Making Components

5

Sensor

Controller

Actuator Decision

Plant

Development Process

6

Functional modeling:
• Controllers
• Plant
• Decision

Continuous and discrete
Simulink models

Model simulation and
testing

Architecture modelling
• Structure
• Behavior
• Traceability

System engineering modeling
(SysML)

Analysis:
• Model execution and

testing
• Model-based testing
• Traceability and

change impact
analysis

• ...

(partial) Code generation

Deployed executables on
target platform

Hardware (Sensors ...)
Analog simulators

Testing (expensive)

Hardware-in-the-Loop
Stage

Software-in-the-Loop
StageModel-in-the-Loop Stage

Simulink Models - Simulation

• Simulation Models

• heterogeneous

8

Software Plant
Model

Network Model

• continuous behavior

• are used for

• algorithm design testing

• comparing design options

Cruise Control: Plant

9

Problem
• How do we automatically verify and test CP functional models

(e.g., controller, plant, decision) at MiL?

• What types of requirements / properties do we check?

• Commercial tools:

• Cannot handle continuous operators, floating point models (e.g., SLDV,
Reactis)

• Based on model structural coverage: low fault detection

• Can only handle linear systems and specific properties (Linear analysis
toolbox)

10

Challenges

• Limited work on verification and testing of controllers and
decision-making components in CP systems

• Space of test input signals is extremely large.

• Model execution, especially when involving plant models,
is extremely expensive.

11

More Challenges

• Test oracles are not simple Boolean properties and easily
known in advance – they involve analyzing changes in
value over time (e.g., signal patterns) and assessing levels
of risk.

• Simulatable plant model of the physical environment is not
always available or fully accurate and precise.

12

Diversity Strategies
• Strategy: Maximize diversity of test cases

• Assumption: “the more diverse the test cases the higher their fault revealing
capacity”

• Challenge: Define “diversity” in context, pair-wise similarity computation, test
selection algorithm

• Examples of early work

• ISSRE 2003, Leon and Podgurski, filtering and prioritizing test cases, relying on code
coverage

• FSE 2010, Hemmati et al., Similarity-based test selection applied to model-based testing
based on state models for control systems, selection with GA

• Full control on test budget: Maximize fault detection for a given test suite size

13

Testing Controllers

14

Controllers are Pervasive

15

• Supercharger bypass flap controller
üFlap position is bounded within

[0..1]
üImplemented in MATLAB/Simulink
ü34 (sub-)blocks decomposed into 6

abstraction levels

Supercharger

Bypass Flap

Supercharger

Bypass Flap

Flap position = 0 (open) Flap position = 1 (closed)

Simple Example

16

MiL Test Cases

17

Model
Simulation

Input
Signals

Output
Signal(s)

S3
t

S2
t

S1
t

S3
t

S2
t

S1
t

Test Case 1

Test Case 2

Initial
Desired Value

Final
Desired Value

time time

Desired Value

Actual Value

T/2 T T/2 T

Test Input Test Output

Plant
Model

Controller
(SUT)

Desired value Error

Actual value

System output+
-

MiL Testing of Controllers

18

Requirements and Test Objectives
In

iti
al

 D
es

ire
d

(ID
)

Desired ValueI (input)
Actual Value (output)

Fi
na

l D
es

ire
d

(F
D

)

time
T/2 T

Smoothness

Responsiveness

Stability

20

21

Test Generation Approach

• We formalize controller’s requirements in terms of
desired and actual outputs

Smoothness

• We rely on controller’s feedback to automate test
oracles

desired value
actual value

< Threshold Desired Value
(Setpoint)

Actual Value (feedback)

System
Output+

-

Control
Signal

Plant
(environment)Controller

A Search-Based Test Approach

Initial Desired (ID)

Fi
na

l D
es

ire
d

(F
D

)

Worst Case(s)?

• Search directed by model
execution feedback

• Finding worst case inputs

• Possible because of automated
oracle (feedback loop)

• Different worst cases for
different requirements

• Worst cases may or may not
violate requirements

22

Initial Solution

HeatMap
Diagram

1. Exploration
List of
Critical
RegionsDomain

Expert

Worst-Case
Scenarios

+
Controller-

plant
model

Objective
Functions
based on

Requirements
2. Single-State

Search

time

Desired Value
Actual Value

0 1 2
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Initial Desired

Final Desired

23

Results

• We found much worse scenarios during MiL testing than our
partner had found so far

• These scenarios are also run at the HiL level, where testing is
much more expensive: MiL results -> test selection for HiL

• But further research was needed:

• Simulations are expensive

• Configuration parameters

24

Final Solution

+
Controller

Model
(Simulink)

Worst-Case
Scenarios

List of
Critical

PartitionsRegression
Tree

1.Exploration with
Dimensionality

Reduction

2.Search with
Surrogate
Modeling

Objective
Functions

Domain
Expert

Visualization of the
8-dimension space

using regression treesDimensionality
reduction to identify

the significant variables
(Elementary Effect Analysis)

Surrogate modeling
to predict the fitness

function and
speed up the search
(Machine learning)

25

Open Loop Controllers

On

Off

CtrlSig

• Mixed discrete-continuous behavior:
Simulink stateflows

• No plant model: Much quicker simulation
time

• No feedback loop -> no automated oracle

• The main testing cost is the manual
analysis of output signals

• Goal: Minimize test suites

• Challenge: Test selection

• Entirely different approach to testing

respectively. In addition, we adapt the whitebox coverage and the
blackbox output diversity selection criteria to Stateflows, and evalu-
ate their fault revealing power for continuous behaviours. Coverage
criteria are prevalent in software testing and have been considered
in many studies related to test suite effectiveness in different appli-
cation domains [?]. In our work, we consider state and transition
coverage criteria [?] for Statflows. Our output diversity criterion is
based on the recent output uniqueness criterion [?] that has been
studied for web applications and has shown to be a useful surro-
gate to whitebox selection techniques. We consider this criterion
in our work because Stateflows have complex internal structures
consisting of differential equations, making them less amenable to
whitebox techniques, while they have rich time-continuous outputs.

In this paper, we make the following contributions:

• We focus on the problem of testing Stateflows with mixed
discrete-continuous behaviours. We propose two new test
case selection criteria output stability and output continuity
with the goal of selecting test inputs that are likely to pro-
duce continuous outputs exhibiting instability and disconti-
nuity failures, respectively.

• We adapt the whitebox coverage and the blackbox output
diversity selection criteria to Stateflows, and evaluate their
fault revealing power for continuous behaviours. The former
is defined based on traditional state and transition coverage
for state machines, and the latter is defined based on the re-
cent output uniqueness criterion [?].

• We evaluate effectiveness of our newly proposed and the
adapted selection criteria by applying them to three Stateflow
case study models: two industrial and one public domain.
Our results show that RESULT.

Organization of the paper.

2. BACKGROUND AND MOTIVATION
Motivating example. We motivate our work using a simplified
Stateflow from the automotive domain which controls a supercharger
clutch and is referred to as the Supercharger Clutch Controller (SCC).
Figure 1(a) represents the discrete behaviour of SCC specifying
that the supercharger clutch can be in two quiescent states [?]: en-
gaged or disengaged. Further, the clutch moves from the disen-
gaged to the engaged state whenever both the engine speed engspd
and the engine coolant temperature tmp respectively fall inside the
specified ranges of [smin..smax] and [tmin..tmax]. The clutch
moves back from the engaged to the disengaged state whenever
either the speed or the temperature falls outside their respective
ranges. The variable ctrlSig in Figure 1(a) indicates the sign and
magnitude of the voltage applied to the DC motor of the clutch
to physically move the clutch between engaged and disengaged
positions. Assigning 1.0 to ctrlSig moves the clutch to the en-
gaged position, and assigning �1.0 to ctrlSig moves it back to
the disengaged position. To avoid clutter in our figures, we use
engageReq to refer to the condition on the Disengaged ! En-
gaged transition, and disengageReq to refer to the condition on
the Engaged ! Disengaged transition.

The discrete transition system in Figure 1(a) assumes that the
clutch movement takes no time, and further, does not provide any
insight on the quality of movement of the clutch. Figure 1(b) ex-
tends the discrete transition system in Figure 1(a) by adding a timer
variable, i.e., time, to explicate the passage of time in the SCC
behaviour. The new transition system in Figure 1(b) includes two

(a) SCC -- Discrete Behaviour

(b) SCC -- Timed Behaviour

EngagedDisengaged

Engaging

(c) Engaging state of SCC -- mixed discrete-continuous behaviour

Disengaging

Disengaged

Engaged

time + +;

[disengageReq]/time := 0

[t
i
m
e

>
5]

[t
i
m
e

>
5]

time + +;

[(engspd > smin � engspd < smax) � (tmp > tmin � tmp < tmax)]/
ctrlSig := 1

[engageReq]/ time := 0

[¬(engspd > smin � engspd < smax) � ¬(tmp > tmin � tmp < tmax)] /
ctrlSig := �1

OnMoving OnSlipping

OnCompleted

time + +;
ctrlSig := f(time)

Engaging

time + +;
ctrlSig := g(time)

time + +;
ctrlSig := 1.0

[¬(vehspd = 0) �
time > 2]

[(vehspd = 0) �
time > 3]

[time > 4]

Figure 1: Supercharge Clutch Controller (SCC) Stateflow.

transient states [?], engaging and disengaging, specifying that mov-
ing from the engaged to the disengaged state and vice versa takes
six milisec. Since this model is simplified, it does not show han-
dling of alterations of the clutch state during the transient states.
In addition to adding the time variable, we note that the variable
ctrlSig, which controls physical movement of the clutch, cannot
abruptly jump from 1.0 to �1.0, or vice versa. In order to ensure
safe and smooth movement of the clutch, the variable ctrlSig has
to gradually move between 1.0 and �1.0 and be described as a
function over time, i.e., a signal. To express the evolution of the
ctrlSig signal over time, we decompose the transient states en-
gaging and disengaging into sub-state machines. Figure 1(c) shows
the sub-state machine related to the engaging state. The one related
to the disengaging state is similar. At beginning (in state OnMov-
ing), the function ctrlSig has a steep grade (i.e., function f) to
move the stationary clutch from the disengaged state and acceler-
ate it to reach a certain speed in about two milisec. Afterwards (in
state OnSlipping), ctrlSig decreases the speed of clutch based
on the gradual function g until about four milisec. This is to ensure
that the clutch slows down as it gets closer to the crank shaft of
the car. Finally, at state OnCompleted, ctrlSig reaches value 1.0
and remains constant, causing the clutch to get engaged in about
one milisec. When the car is stationary, i.e., vehspd is 0, the clutch
moves based on the steep grade function f for three milisec, and
does not have to go to the OnSlipping phase to slow down before
it reaches the crank shaft at state OnCompleted.
Input and Output. The Stateflow inputs and outputs are signals
(functions over time). Each input/output signal has a data type,
e.g. boolean, enum or float, specifying the range of the signal.
For example, Figure 2 shows an example input (dashed line) and
output (solid line) signals for SCC. The input signal is related to
engageReq and is boolean, while the output signal is related to

28

Selection Strategies Based on Search
• White-box structural coverage

• State Coverage

• Transition Coverage

• Input signal diversity

• Output signal diversity

• Failure-Based selection criteria

• Domain specific failure patterns

• Output Stability

• Output Continuity

S3
t

S3
t

29

System
Output

Input
Signals

Output
Signals

Controller Plant
(environment)

30

instability
failure pattern

discontinuity
failure pattern

output diversity

• We assume test oracles are manual

Test Generation Approach

• We rely on output signals to produce small test
suites with high fault-revealing ability

Output Diversity -- Vector-Based

31

Output

Time
Output Signal 2
Output Signal 1

Normalized Euclidian
Distance

32

Output Diversity -- Feature-Based

increasing (n) decreasing (n)constant-value (n, v)

signal features
derivative second derivative

sign-derivative (s, n) extreme-derivatives

1-sided
discontinuity

discontinuity

1-sided continuity
with strict local optimum

value

 instant-value (v)
constant (n)

discontinuity
with strict local optimum

increasing

C

A

B

33

Output Diversity -- Feature-Based

increasing (n) decreasing (n)constant-value (n, v)

signal features
derivative second derivative

sign-derivative (s, n) extreme-derivatives

1-sided
discontinuity

discontinuity

1-sided continuity
with strict local optimum

value

 instant-value (v)
constant (n)

discontinuity
with strict local optimum

increasing

C

A

B

Similarity: To which extent any part of a signal is similar to a
feature

Failure-based Test Generation

34

Instability Discontinuity

0.0 1.0 2.0
-1.0

-0.5

0.0

0.5

1.0

Time

C
tr

lS
ig

 O
ut
pu
t

• Search: Maximizing the likelihood of presence of specific failure
patterns in output signals

• Domain-specific failure patterns elicited from engineers

0.0 1.0 2.0
Time

0.0

0.25

0.50

0.75

1.0

C
tr

lS
ig

 O
ut
pu
t

Search
• Whole test suite generation approach

• Used when objective functions characterize the test suite

• Optimize test objective for a given test suite size (budget
for manual oracles)

• Maximize the minimum distances of each output signal
vector from the other output signal vectors

• Adaptation of Simulated Annealing

35

Faulty Model Output

36

Correct Model Output

Fault-Revealing Ability

Covers the fault and Covers the fault but
is Likely to reveal it is very unlikely to reveal it

Results
• The test cases resulting from state/transition coverage

algorithms cover the faulty parts of the models

• However, they fail to generate output signals that are
sufficiently distinct from expectations, hence yielding a low
fault revealing rate

• Diversity strategies significantly outperforms coverage-based
and random testing

• Output-based algorithms are much more effective, both based
on diversity and failure patterns

37

Results

• Feature-based diversity fares significantly better than
vector-based diversity

• Strategies based on failure patterns find different types of
faults than diversity strategies

• Existing commercial tools: Not effective at finding faults,
not applicable to entire Simulink models, e.g., Simulink
Design Verifier

38

Example Failures

39

Example Failures

40

Instability

Discontinuity

Conclusions
• Maximizing output diversity helps identify scenarios

where the discrepancy between the produced and
expected signal is large

• Useful when test output signals are analyzed manually

• Simulink models and their outputs are complex

• Helps maximize fault detection within a fixed budget

• Properly defining diversity was a challenge

41

Reflections on Diversity
• Useful strategy when no precise guidance, directly

related to the test objectives, is available for the search

• In the general, the key issue is how to define diversity in
an optimal way given the objectives

• In practice, how diversity is defined also depends on
what information is available at a reasonable cost

• The time complexity of computing diversity is a major
cost of the search – it must be accounted for

42

Acknowledgements

• Shiva Nejati

• Reza Matinnejad

• Delphi Automotive Systems, Luxembourg

43

References
• R. Matinnejad et al., “MiL Testing of Highly Configurable Continuous Controllers:

Scalable Search Using Surrogate Models”, IEEE/ACM ASE 2014 (Distinguished paper
award)

• R. Matinnejad et al., “Effective Test Suites for Mixed Discrete-Continuous Stateflow
Controllers”, ACM ESEC/FSE 2015 (Distinguished paper award)

• R. Matinnejad et al., “Automated Test Suite Generation for Time-continuous
Simulink Models“, IEEE/ACM ICSE 2016

• R. Matinnejad et al., “Test Generation and Test Prioritization for Simulink Models
with Dynamic Behavior“, under minor revision with IEEE TSE

44

.lu
software verification & validation
VVS

Testing of Cyber-Physical Systems:

Diversity-driven Strategies

Lionel Briand

COW 57, London, UK

