
Avoiding Groundhog Day 
A practitioner's daily mentoring through 

code reviews

Michael Tautschnig



Caveats
1. This is my area of practice, not research. 

2. My academic background is formal verification.



What I thought:
Code review is a quality-assurance step. 

(And I thought: it's a poor quality-assurance step.)



https://en.wikipedia.org/wiki/Code_review



Over the last 28 months I 
have ...

• Submitted > 260 + 324 pull requests for review. 

• Received > 1600 + 1090 pull requests for review. 

• Commented on 500? + 549 pull requests. 

• Learnt that code review is 1) more useful than I 
thought and 2) useful in a very different way.



What I learned:
Code review is a communication tool.



https://medium.com/@Andela/whats-the-real-essence-of-code-review-a5867109a1e1



Why Pull Requests?
• Synchronisation point 

• What changes? 

• Why does it change? 

• How does the code change? 

• Enables review with limited context



The ideal PR+CR Process
• React quickly, both with reviews and replies / refinements: Preserve 

momentum, minimise human context switches 

• Involve stake-holders and domain experts, spread load 

• Ping people if necessary 

• Help reviewers decide whether your change is good 

• Clean code 

• Good description 

• Demonstrate soundness (simple is better, testing) 

• Be respectful of reviewers' time → make it easy



Good PR Patterns
• Small, incremental changes: One PR per feature 

• Break up long PRs 

• Clean-ups (whitespace, typos, coding style) 

• Refactoring changes 

• Functional changes 

• (Almost) no too small CR 

• Preserve bisectability: each commit should compile and run 

• Sensible testing → context-free judgment of correctness 

• Early idea → Mark PR as RFC 

• Good commit messages

https://dev.to/bosepchuk/optimal-pull-request-size-600



Good Commit Messages
• Good description 

http://chris.beams.io/posts/git-commit/ 

• Meant for eternity, read-mostly (optimise for that) 

• Expression, grammar, spelling, capitalisation 

• Why & what in message, how in diff 

• Linux-style git workflow, chain-of-custody tags 
https://www.kernel.org/doc/Documentation/
SubmittingPatches

https://www.kernel.org/doc/Documentation/SubmittingPatches
https://www.kernel.org/doc/Documentation/SubmittingPatches


https://medium.com/@Andela/whats-the-real-essence-of-code-review-a5867109a1e1

Why code review?

• To facilitate knowledge sharing across the code base and 
across the team. 

• To ensure maintainability of code — hence the project, 
especially when a team member has to leave the project. 

• To learn new technologies and techniques, as we’re never 
always on the same level of knowledge with all of our 
teammates. 

• To reduce code smells.



... and to avoid 
Groundhog Day



Code review is educating



http://softwareandotherthings.blogspot.ie/2015/08/make-your-code-reviews-agile.html



Code review is architecting



Code review is learning



http://dilbert.com/strip/2013-02-24

http://dilbert.com/strip/2013-02-24


• Code review is communication 

• Opportunity for learning, education, knowledge 
sharing 

• I still think code review alone is an insufficient 
quality-assurance mechanism. 

• Could someone please fix the Wikipedia page?


