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Interventions are common in 
software engineering

• SVN —> git


• push —> pull request


• ? —> continuous integration


• …

How to measure effects 
using trace data?



Evaluating the effects of an 
intervention: before vs. after

change in slope
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intervention: before vs. after



Today

Methodology to 
empirically study the 

effects of an intervention

(continuous integration)



Interrupted time series 

slope 
before

slope 
after

change 
in level

Multiple regression w/ 
controls for confounds



slope 
before slope 

after

change 
in level

time:                  1   2   3 … … … 100  101  102 … … …  200

  intervention:     F   F   F … … …   T      T      T   … … …   T

time after 
intervention:     0   0   0 … … …   0      1      2   … … …  100



time:                  1   2   3 … … … 100  101  102 … … …  200

  intervention:     F   F   F … … …   T      T      T   … … …   T

time after 
intervention:     0   0   0 … … …   0      1      2   … … …  100

yi = α + β · timei +  
ɣ · interventioni +  
δ · time_after_interventioni + εi

β β + δ

ɣ 
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Dependent variable:

y

time 0.991***

intervention -48.678***

time_after_intervention -1.500***

Constant 1.007

Observations 200
R2 0.967

Adjusted R2 0.967
Residual Std. Error 4.844 (df = 196)
F Statistic 1,924.910*** (df = 3; 196)

Note: *p<0.1; **p<0.05; ***p<0.01

β β + δ
ɣ 

yi =  β · timei + 

ɣ · interventioni + 

δ · time_after_interventioni + 

εi

• β ~ 1

• ɣ ~ -50 

• β + δ ~ -0.5

lm in R



Effects of 
adopting 

Travis CI



https://martinfowler.com/articles/originalContinuousIntegration.html

Why CI?

Lots of folklore, e.g., Martin Fowler: 


• Everyone Commits To the Mainline Every Day


• Fix Broken Builds Immediately


• Keep the Build Fast


• …



time

Travis CI adoption
(first .travis.yml commit)

-15 
days

+15 
days

-1… …-12 +1 +12

+45 
days

+375 
days

-375 
days

-45 
days

Unstable period excluded

Starting sample: 

165,549 GitHub projects using Travis

24 active periods 

x


7 programming languages

Adoption of Travis CI



More frequent 
commits

Smaller code 
changes

Quick pull requests 
resolution

More issues and 
pull requests closed

RQsImpact on 
automated 

testing?



Churn
Churn in 


non-merge commits
Churn in 


merge commits
Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**
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55

introduced Travis to their projects

Triangulation: user survey



R4: “commits became smaller and 
more frequent, to check the build; 
pull requests became easier to 
check”

Decrease in churn 
in merge commits 
is amplified by 
Travis CI

Discontinuity in 
merge commits: 
preparation for 
transition, clean-up

R25: “contributors couldn’t be 
trusted to run test suite on their 
own”

R38: Travis as “a part of 
automated package/release 
effort”
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ABSTRACT
Software processes comprise many steps; coding is followed
by building, integration testing, system testing, deployment,
operations, among others. Software process integration and
automation have been areas of key concern in software engi-
neering, ever since the pioneering work of Osterweil; market
pressures for Agility, and open, decentralized, software de-
velopment have provided additional pressures for progress in
this area. But do these innovations actually help projects?
Given the numerous confounding factors that can influence
project performance, it can be a challenge to discern the ef-
fects of process integration and automation. Software project
ecosystems such as GitHub provide a new opportunity in
this regard: one can readily find large numbers of projects
in various stages of process integration and automation, and
gather data on various influencing factors as well as produc-
tivity and quality outcomes. In this paper we use large,
historical data on process metrics and outcomes in GitHub
projects to discern the e↵ects of one specific innovation in
process automation: continuous integration. Our main find-
ing is that continuous integration improves the productivity
of project teams, who can integrate more outside contribu-
tions, without an observable diminishment in code quality.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Experimentation, Human Factors

Keywords
Continuous integration, GitHub, pull requests

⇤Bogdan Vasilescu and Yue Yu are both first authors, and
contributed equally to the work.

1. INTRODUCTION
Innovations in software technology are central to economic

growth. People place ever-increasing demands on software,
in terms of features, security, reliability, cost, and ubiquity;
and these demands come at an increasingly faster rate. As
the appetites grow for ever more powerful software, the hu-
man teams working on them have to grow, and work more
e�ciently together.

Modern games, for example, require very large bodies of
code, matched by teams in the tens and hundreds of devel-
opers, and development time in years. Meanwhile, teams
are globally distributed, and sometimes (e.g., with open
source software development) even have no centralized con-
trol. Keeping up with market demands in an agile, orga-
nized, repeatable fashion, with little or no centralized con-
trol, requires a variety of approaches, including the adop-
tion of technology to enable process automation. Process
Automation per se is an old idea, going back to the pio-
neering work of Osterweil [32]; but recent trends such as
open-source, distributed development, cloud computing, and
software-as-a-service, have increased demands for this tech-
nology, and led to many innovations. Examples of such in-
novations are distributed collaborative technologies like git
repositories, forking, pull requests, continuous integration,
and the DEVOPS movement [36]. Despite rapid changes, it
is di�cult to know how much these innovations are helping
improve project outcomes such as productivity and quality.
A great many factors such as code size, age, team size, and
user interest can influence outcomes; therefore, teasing out
the e↵ect of any kind of technological or process innovation
can be a challenge.

The GitHub ecosystem provides a very timely opportu-
nity for study of this specific issue. It is very popular (in-
creasingly so) and hosts a tremendous diversity of projects.
GitHub also comprises a variety of technologies for dis-
tributed, decentralized, social software development, com-
prising version control, social networking features, and pro-
cess automation. The development process on GitHub is
more democratic than most open-source projects: anyone
can submit contributions in the form of pull requests. A pull
request is a candidate, proposed code change, sometimes
responsive to a previously submitted modification request
(or issue). These pull requests are reviewed by project in-
siders (aka core developers, or integrators), and accepted if
deemed of su�cient quality and utility. Projects that are
more popular and widely used can be expected to attract
more interest, and more pull requests; these will have to be

ESEC/FSE ‘15

Closed PRs
Among others:


• On average, more PRs are 
being closed per unit time 
after adopting Travis CI
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for merge 
commits

# increases pre-Travis, 
flattened out by Travis

duration not affected 
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↓missing files/dep

↑comp/exec errors


↑failed tests

More issues and 
pull requests closed
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