
The Impact of
Continuous Integration on

Other Software Development Practices:
A Large-Scale Empirical Study

Yangyang Alexander Yuming Vladimir Bogdan
Zhao Serebrenik Zhou Filkov Vasilescu

Nanjing U TU Eindhoven Nanjing U DECAL

at UC Davis

STRUDEL
at CMU

@aserebrenik @vfilkov @b_vasilescu

Interventions are common in
software engineering

• SVN —> git

• push —> pull request

• ? —> continuous integration

• …

How to measure effects
using trace data?

Evaluating the effects of an
intervention: before vs. after

change in slope

t-test no difference

change in slope

Evaluating the effects of an
intervention: before vs. after

change in level

Evaluating the effects of an
intervention: before vs. after

change in level

t-test no difference

Evaluating the effects of an
intervention: before vs. after

Today

Methodology to
empirically study the

effects of an intervention

(continuous integration)

Interrupted time series

slope
before

slope
after

change
in level

Multiple regression w/
controls for confounds

slope
before slope

after

change
in level

time: 1 2 3 … … … 100 101 102 … … … 200

 intervention: F F F … … … T T T … … … T

time after
intervention: 0 0 0 … … … 0 1 2 … … … 100

time: 1 2 3 … … … 100 101 102 … … … 200

 intervention: F F F … … … T T T … … … T

time after
intervention: 0 0 0 … … … 0 1 2 … … … 100

yi = α + β · timei +
ɣ · interventioni +
δ · time_after_interventioni + εi

β β + δ

ɣ

31/10/17 01:22

Page 1 of 1file:///Users/bogdanv/CMUGDrive/ase-2017-slides/table.html

Dependent variable:

y

time 0.991***

intervention -48.678***

time_after_intervention -1.500***

Constant 1.007

Observations 200
R2 0.967

Adjusted R2 0.967
Residual Std. Error 4.844 (df = 196)
F Statistic 1,924.910*** (df = 3; 196)

Note: *p<0.1; **p<0.05; ***p<0.01

β β + δ
ɣ

yi = β · timei +

ɣ · interventioni +

δ · time_after_interventioni +

εi

• β ~ 1

• ɣ ~ -50

• β + δ ~ -0.5

lm in R

Effects of
adopting

Travis CI

https://martinfowler.com/articles/originalContinuousIntegration.html

Why CI?

Lots of folklore, e.g., Martin Fowler:

• Everyone Commits To the Mainline Every Day

• Fix Broken Builds Immediately

• Keep the Build Fast

• …

time

Travis CI adoption
(first .travis.yml commit)

-15
days

+15
days

-1… …-12 +1 +12

+45
days

+375
days

-375
days

-45
days

Unstable period excluded

Starting sample:

165,549 GitHub projects using Travis

24 active periods

x

7 programming languages

Adoption of Travis CI

More frequent
commits

Smaller code
changes

Quick pull requests
resolution

More issues and
pull requests closed

RQsImpact on
automated

testing?

Churn
Churn in

non-merge commits
Churn in

merge commits
Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**

Churn in

non-merge commits

Churn in

merge commits

Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**

Control variables

Churn

Churn in

non-merge commits

Churn in

merge commits

Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**

Control variables

n.s.

Churn in non-merge commits is not affected by time or Travis CI

Churn

Churn in

non-merge commits

Churn in

merge commits

Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**

n.s.

Churn in non-merge commits is not affected by time or Travis CI

Churn
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●●●

●

●
●

●

●
●

●
●
●
●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●●

●

●

●
●●●

●

●

●

●
●

●

●

●●●

●

●

●
●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●●

●

●●●
●

●

●

●
●

●●

●

●

●●

●●
●

● ●

●

●

●

●

●
●
●

●● ●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●●

●●
●
●●●

●

● ●●
●
●●

●

●
●
●

●

●
●●

●

●

●

●

●●

●
●
●

●
●
●

●
●●
●

●

●

●●

●

●
●

●

●

●●
●

●●●

●
●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●●

●

●

●

●
●●
●

●

●

●

●

●●

●

●
●●●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

1

5
10
20
50

100
200
500

5000

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12
Month index w.r.t. Travis CI adoption

M
ea

n
no

n−
m

er
ge

 c
hu

rn
 (L

O
C

)
Churn in non-merge commits

Churn in

non-merge commits

Churn in

merge commits

Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**

Control variables

n.s.

Churn in non-merge commits is not affected by time or Travis CI
Discontinuity in merge com.: preparation for transition, clean-up

Churn

Churn in

non-merge commits

Churn in

merge commits

Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**

Control variables

n.s.

Churn in non-merge commits is not affected by time or Travis CI

Decrease in churn in merge commits is amplified by Travis CI
Discontinuity in merge com.: preparation for transition, clean-up

Churn

Churn in

non-merge commits

Churn in

merge commits

Intercept (α) 1,336*** -1,297**

log(TotalCommits) 0,529** 1,113**

AgeAtTravis -0,003* -0,005**

log(NumAuthors) -0,233** -0,522**

time (β) -0,007 -0,012*

interventionTrue (ɣ) 0,071 0,220**

time_after_intervention (δ) -0,009 -0,022**

Control variables

n.s.

Churn in non-merge commits is not affected by time or Travis CI

Decrease in churn in merge commits is amplified by Travis CI
Discontinuity in merge com.: preparation for transition, clean-up

Churn

●● ●

●●●●

● ●
●
●
●
●

●
●●●● ● ●

●

●

●

●●●

●
●
●● ●●●

●●
●

●●●●●●●●● ●
●
●

●

●
●

●

●

●●
● ● ●

●
●

●●

●

●

●

●

●●●●
●
●1

5
10
20
50

100
200
500

5000

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12
Month index w.r.t. Travis CI adoption

M
ea

n
m

er
ge

 c
hu

rn
 (L

O
C

)
Churn in merge commits

55

introduced Travis to their projects

Triangulation: user survey

R4: “commits became smaller and
more frequent, to check the build;
pull requests became easier to
check”

Decrease in churn
in merge commits
is amplified by
Travis CI

Discontinuity in
merge commits:
preparation for
transition, clean-up

R25: “contributors couldn’t be
trusted to run test suite on their
own”

R38: Travis as “a part of
automated package/release
effort”

Quality and Productivity Outcomes Relating to
Continuous Integration in GitHub

Bogdan Vasilescu†⇤ ,Yue Yu‡†⇤,Huaimin Wang‡,Premkumar Devanbu†,Vladimir Filkov†

†Department of Computer Science ‡College of Computer
University of California, Davis National University of Defense Technology

Davis, CA 95616, USA Changsha, 410073, China
{vasilescu, ptdevanbu, vfilkov}@ucdavis.edu {yuyue, hmwang}@nudt.edu.cn

ABSTRACT
Software processes comprise many steps; coding is followed
by building, integration testing, system testing, deployment,
operations, among others. Software process integration and
automation have been areas of key concern in software engi-
neering, ever since the pioneering work of Osterweil; market
pressures for Agility, and open, decentralized, software de-
velopment have provided additional pressures for progress in
this area. But do these innovations actually help projects?
Given the numerous confounding factors that can influence
project performance, it can be a challenge to discern the ef-
fects of process integration and automation. Software project
ecosystems such as GitHub provide a new opportunity in
this regard: one can readily find large numbers of projects
in various stages of process integration and automation, and
gather data on various influencing factors as well as produc-
tivity and quality outcomes. In this paper we use large,
historical data on process metrics and outcomes in GitHub
projects to discern the e↵ects of one specific innovation in
process automation: continuous integration. Our main find-
ing is that continuous integration improves the productivity
of project teams, who can integrate more outside contribu-
tions, without an observable diminishment in code quality.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Experimentation, Human Factors

Keywords
Continuous integration, GitHub, pull requests

⇤Bogdan Vasilescu and Yue Yu are both first authors, and
contributed equally to the work.

1. INTRODUCTION
Innovations in software technology are central to economic

growth. People place ever-increasing demands on software,
in terms of features, security, reliability, cost, and ubiquity;
and these demands come at an increasingly faster rate. As
the appetites grow for ever more powerful software, the hu-
man teams working on them have to grow, and work more
e�ciently together.

Modern games, for example, require very large bodies of
code, matched by teams in the tens and hundreds of devel-
opers, and development time in years. Meanwhile, teams
are globally distributed, and sometimes (e.g., with open
source software development) even have no centralized con-
trol. Keeping up with market demands in an agile, orga-
nized, repeatable fashion, with little or no centralized con-
trol, requires a variety of approaches, including the adop-
tion of technology to enable process automation. Process
Automation per se is an old idea, going back to the pio-
neering work of Osterweil [32]; but recent trends such as
open-source, distributed development, cloud computing, and
software-as-a-service, have increased demands for this tech-
nology, and led to many innovations. Examples of such in-
novations are distributed collaborative technologies like git
repositories, forking, pull requests, continuous integration,
and the DEVOPS movement [36]. Despite rapid changes, it
is di�cult to know how much these innovations are helping
improve project outcomes such as productivity and quality.
A great many factors such as code size, age, team size, and
user interest can influence outcomes; therefore, teasing out
the e↵ect of any kind of technological or process innovation
can be a challenge.

The GitHub ecosystem provides a very timely opportu-
nity for study of this specific issue. It is very popular (in-
creasingly so) and hosts a tremendous diversity of projects.
GitHub also comprises a variety of technologies for dis-
tributed, decentralized, social software development, com-
prising version control, social networking features, and pro-
cess automation. The development process on GitHub is
more democratic than most open-source projects: anyone
can submit contributions in the form of pull requests. A pull
request is a candidate, proposed code change, sometimes
responsive to a previously submitted modification request
(or issue). These pull requests are reviewed by project in-
siders (aka core developers, or integrators), and accepted if
deemed of su�cient quality and utility. Projects that are
more popular and widely used can be expected to attract
more interest, and more pull requests; these will have to be

ESEC/FSE ‘15

Closed PRs
Among others:

• On average, more PRs are
being closed per unit time
after adopting Travis CI

Closed PRs

●●●●●●

●
●

●●
● ●

● ●

1

5
10
20

50
100
200

500

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12
Month index w.r.t. Travis CI adoption

N
um

 c
lo

se
d

PR
s

N
um

be
r

●
●
●

●

●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●
●

●
●

●●

●

●
●●
●●
●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●●

●

●
●●

●

●

●

●
●
●

●

●

●
●
●
●
●

●

●

1
5

10
20
50

100
200
500

5000

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10 11 12
Month index w.r.t. Travis CI adoption

M
ea

n
PR

 la
te

nc
y

La
te

nc
y

Increasing trend only before adopting Travis CI

More frequent
commits

Smaller code
changes

Quick pull requests
resolution

Impact on
automated

testing?
RQs

Both before
and after

Travis

Affected only
for merge
commits

increases pre-Travis,
flattened out by Travis

duration not affected

Increasing trend
slowed down

↓missing files/dep

↑comp/exec errors

↑failed tests

More issues and
pull requests closed

More frequent
commits

Smaller code
changes

Quick pull requests
resolution

Impact on
automated

testing?

RQs

Not
affected by

Travis

Affected only
for merge
commits

increases pre-Travis,
flattened out by Travis
duration not affected

increasing
trend slowed

down

↓missing files/dep
↑comp/exec errors

↑failed tests

More issues and
pull requests closed

Yangyang Zhao

Alexander Serebrenik

Yuming Zhou

Vladimir Filkov

Bogdan Vasilescu

Awards:
1717415,
1717370

Award:
BK20130014

Interrupted time series

slope
before

slope
after

change
in level

yi = α + β · timei +
ɣ · interventioni +
δ · time_after_interventioni + εi

