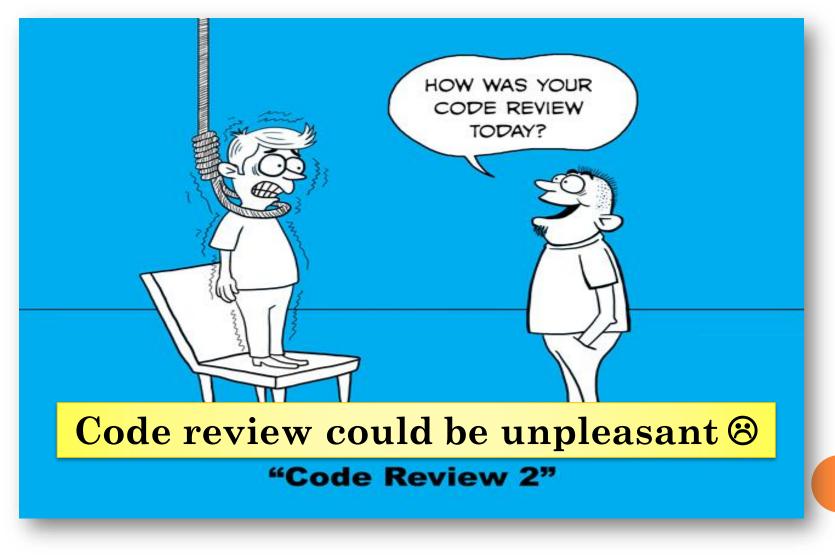
56th COW: Code Review and Continuous Inspection/Integration

TOWARDS AUTOMATED SUPPORTS FOR CODE REVIEWS USING REVIEWER RECOMMENDATION AND REVIEW QUALITY MODELLING

Mohammad Masudur Rahman, <u>Chanchal K. Roy</u>, Raula G. Kula, Jason Collins, and Jesse Redl

University of Saskatchewan, Canada, Osaka University, Japan Vendasta Technologies, Canada

CODE REVIEW



RECAP ON CODE REVIEW

Modern code review (MCR)

Code review is a systematic examination of source code for detecting **bugs** or **defects** and **coding rule violations**.

Early bug **detection**

Stop coding rule violation

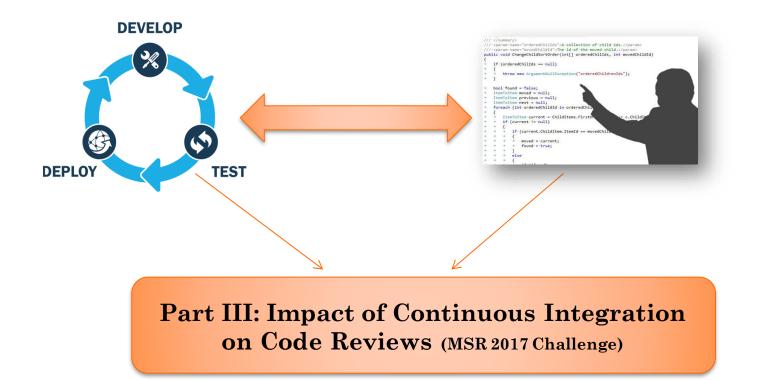
Enhance developer skill

TODAY'S TALK OUTLINE

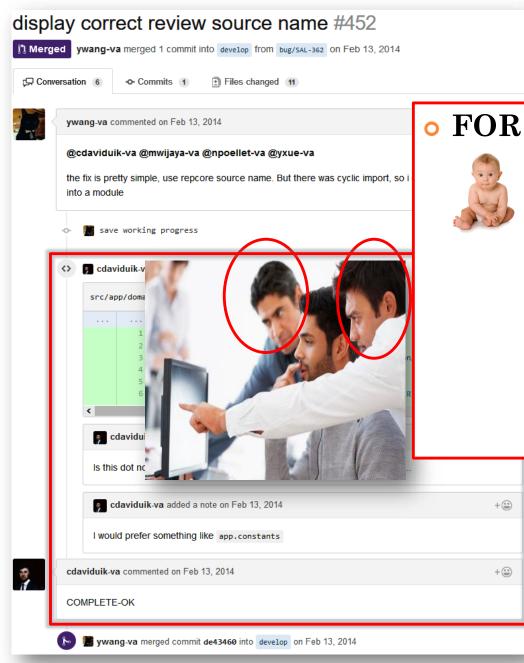
Part I: Code Reviewer Recommendation System (ICSE-SEIP 2016)

Part II: Prediction Model for Review Usefulness (MSR 2017)

TODAY'S TALK OUTLINE



Part I: Code Reviewer Recommendation (ICSE-SEIP 2016)



.U

Novice developers

Distributed software development

Delayed 12 days (Thongtanunam et al, SANER 2015)

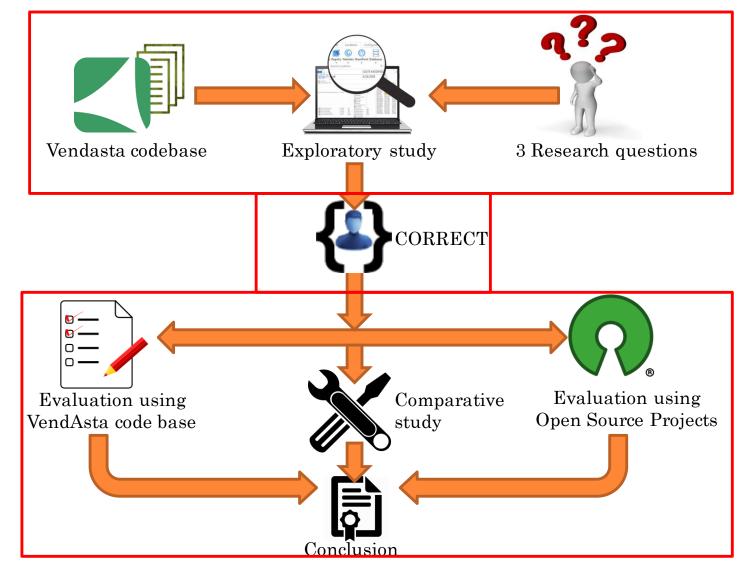
EXISTING LITERATURE

- ReviewBot (Balachandran, ICSE 2013)
- File Path Similarity (FPS)
- Issues & Limitations
- o Library & Technology Similarity

Library

Technology

OUTLINE OF THIS STUDY



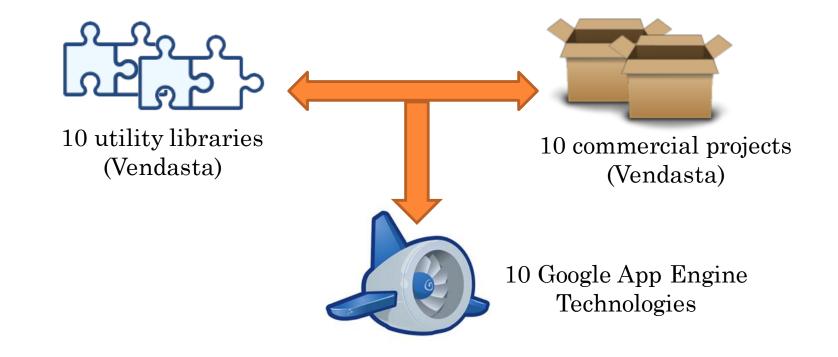
EXPLORATORY STUDY (3 RQS)

• RQ₁: How frequently do the commercial software projects reuse external libraries from within the codebase?

• RQ₂: Does the experience of a developer with such libraries matter in code reviewer selection by other developers?

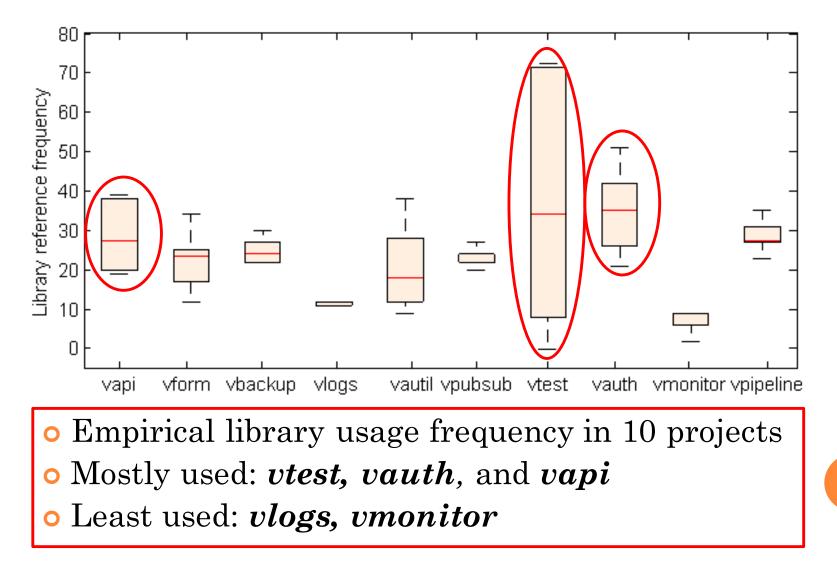
• RQ₃: How frequently do the commercial projects adopt specialized technologies (e.g., taskqueue, mapreduce, urlfetch)?

DATASET: EXPLORATORY STUDY

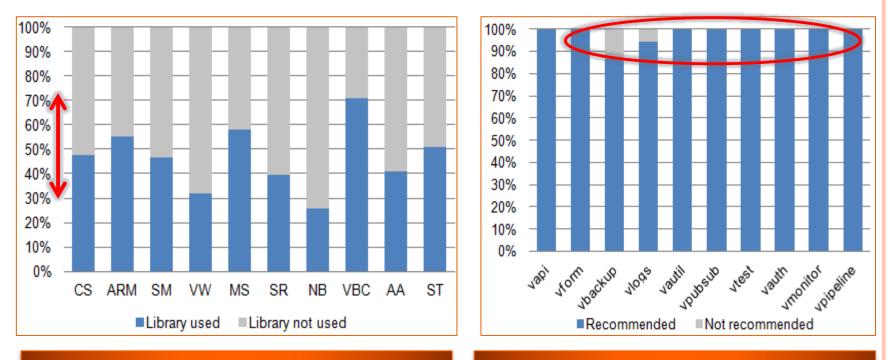


- Each project has at least **750 closed** pull requests.
- Each library is **used** at least **10** times on average.
- Each technology is **used** at least **5** times on average.

LIBRARY USAGE IN COMMERCIAL PROJECTS (ANSWERED: $Exp-RQ_1$)



LIBRARY USAGE IN PULL REQUESTS (ANSWERED: EXP-RQ₂)



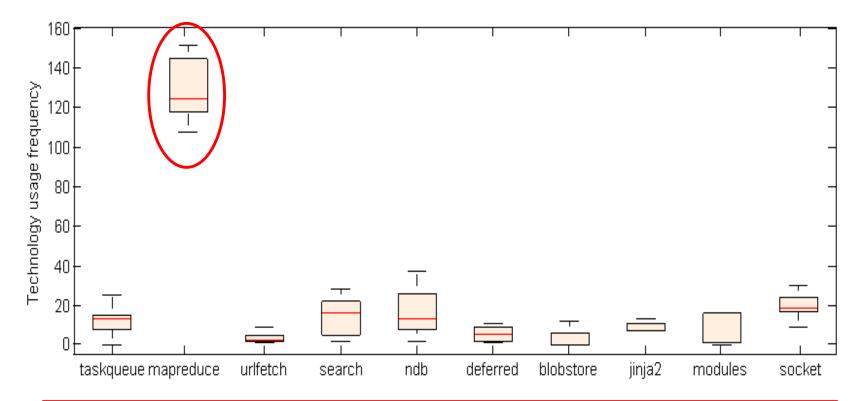
% of PR using selected libraries

% of library authors as code reviewers

- **30%-70%** of pull requests used at least one of the 10 libraries
- 87%-100% of library authors recommended as **code reviewers** in the projects using those libraries
- Library experience really matters!

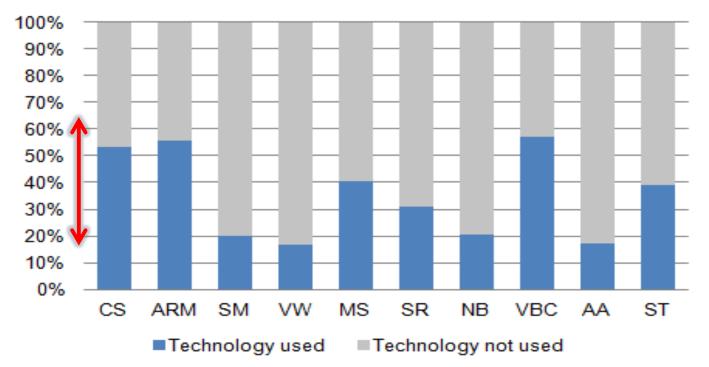
 $\mathbf{13}$

SPECIALIZED TECHNOLOGY USAGE IN PROJECTS (ANSWERED: EXP-RQ₃)



- Empirical technology usage frequency in top 10 commercial projects
- Champion technology: *mapreduce*

TECHNOLOGY USAGE IN PULL REQUESTS (ANSWERED: EXP-RQ3)



- 20%-60% of the pull requests used at least one of the 10 specialized technologies.
- Mostly used in: **ARM**, **CS** and **VBC**

SUMMARY OF EXPLORATORY FINDINGS

About 50% of the pull requests use one or more of the selected libraries. $(Exp-RQ_1)$

About **98%** of the library authors were later recommended as pull request reviewers. (Exp-RQ₂)

About 35% of the pull requests use one or more specialized technologies. (Exp-RQ₃)

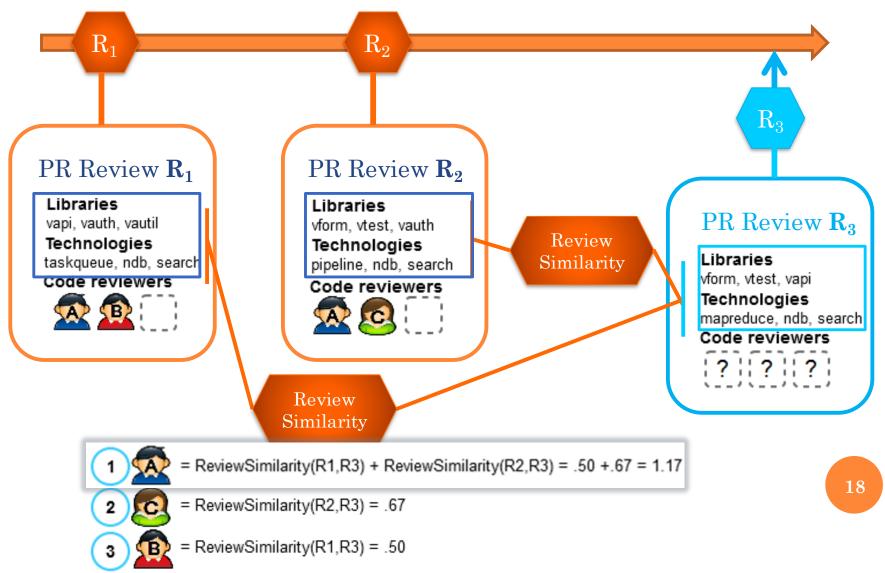
Library experience and Specialized technology experience really matter in code reviewer selection/recommendation

11

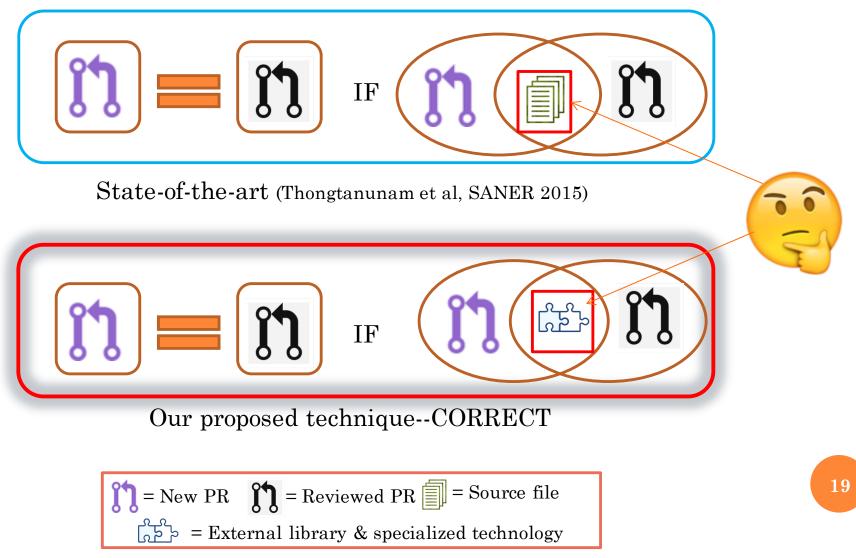
16

CORRECT: CODE REVIEWER RECOMMENDATION IN GITHUB USING CROSS-PROJECT & TECHNOLOGY EXPERIENCE

CORRECT: CODE REVIEWER RECOMMENDATION



OUR CONTRIBUTIONS



EVALUATION OF CORRECT

• **Two** evaluations using-- (1) Vendasta codebase (2) Open source software projects

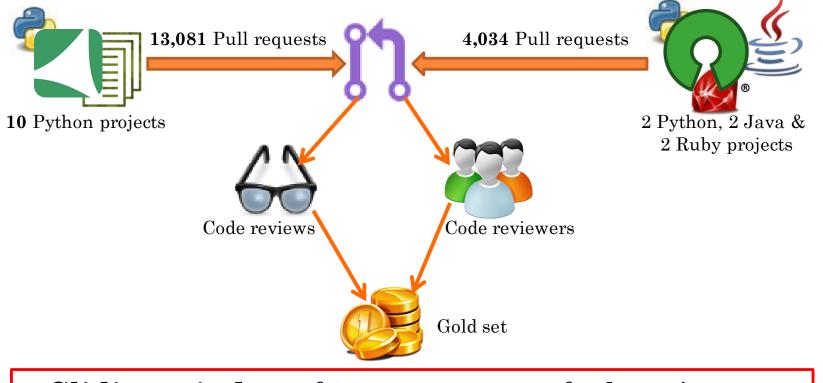
1: Are **library experience** and **technology experience** useful proxies for code review skills?

2: Does CoRReCT **outperform** the baseline technique for reviewer recommendation?

3: Does CoRReCT perform **equally/comparably** for both private and public codebase?

4: Does CoRReCT show **bias** to any of the development frameworks

EXPERIMENTAL DATASET



- Sliding window of 30 past requests for learning.
- Metrics: Top-K Accuracy, Mean Precision (MP), Mean Recall (MR), and Mean Reciprocal rank (MRR).

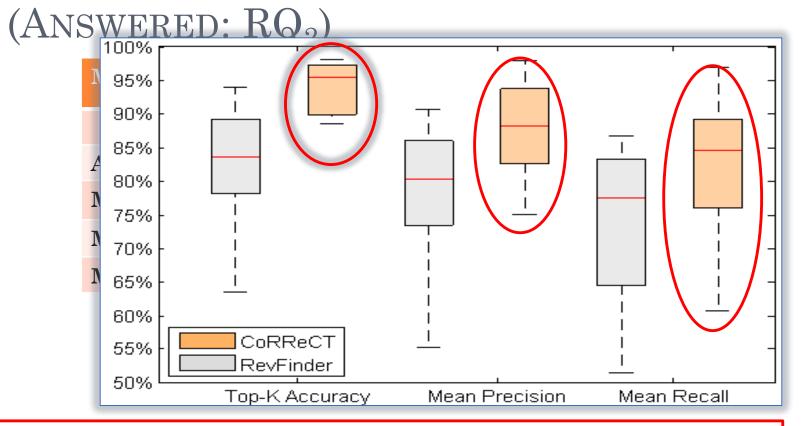
LIBRARY EXPERIENCE & TECHNOLOGY EXPERIENCE (ANSWERED: RQ_1)

Metric	Library Sin	nilarity	Technology	Similarity	Combined Similarity		
	Top-3	Top-5	Top-3	Top-5	Top-3	Top-5	
Accuracy	83.57%	92.02%	82.18%	91.83%	83.75%	92.15%	
MRR	0.66	0.67	0.62	0.64	0.65	0.67	
MP	65.93%	85.28%	62.99%	83.93%	65.98%	85.93%	
MR	58.34%	80.77%	55.77%	79.50%	58.43%	81.39%	

[MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank]

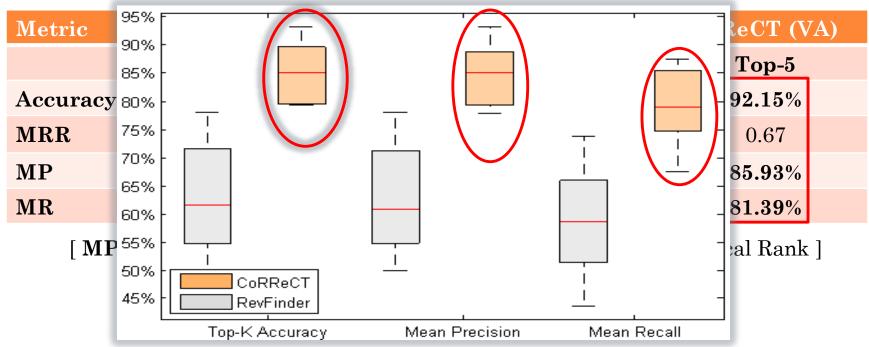
- Both **library experience** and **technology experience** are found as good proxies, provide over **90% accuracy**.
- Combined experience provides the **maximum** performance.
- 92.15% recommendation accuracy with 85.93% precision and 81.39% recall.
- Evaluation results align with exploratory study findings.

COMPARATIVE STUDY FINDINGS



- **CoRReCT** performs better than the competing technique in **all metrics** (*p-value*=0.003<0.05 for Top-5 accuracy)
- Performs better both **on average** and **on individual** projects.
- RevFinder uses **PR similarity** using source file **name** and file's **directory** matching

COMPARISON ON OPEN SOURCE PROJECTS (ANSWERED: RQ_3)



- In **OSS** projects, CoRReCT also **performs better** than the baseline technique.
- 85.20% accuracy with 84.76% precision and 78.73% recall, and not significantly different than earlier (*p*-value=0.239>0.05 for precision)
- Results for **private** and **public** codebase are **quite close**.

24

Comparison on Different Platforms (Answered: RQ_4)

Metrics	Python		Java		Ruby				
	Beets	St2	Avg.	OkHttp	Orientdb	Avg.	Rubocop	Vagrant	Avg.
Accuracy	93.06%	79.20%	86.13%	88.77%	81.27%	85.02%	89.53%	79.38%	84.46%
MRR	0.82	0.49	0.66	0.61	0.76	0.69	0.76	0.71	0.74
MP	93.06%	77.85%	85.46%	88.69%	81.27%	84.98%	88.49%	79.17%	83.83%
MR	87.36%	74.54%	80.95%	85.33%	76.27%	80.80%	81.49%	67.36%	74.43%

[MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank]

- In OSS projects, results for **different platforms** look **surprisingly close** except the recall.
- Accuracy and precision are close to **85%** on average.
- CORRECT **does NOT** show **any bias** to any particular platform.

THREATS TO VALIDITY

• Threats to Internal Validity

• *Skewed dataset:* Each of the 10 selected projects is medium sized (i.e., 1.1K PR) except **CS.**

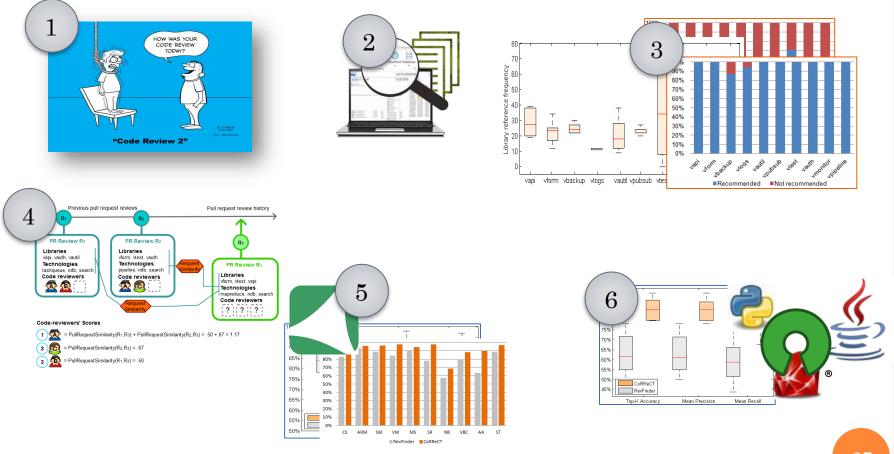
• Threats to External Validity

- *Limited OSS dataset:* Only 6 OSS projects considered—not sufficient for generalization.
- *Issue of heavy PRs:* PRs containing hundreds of files can make the recommendation **slower**.

• Threats to Construct Validity

• *Top-K Accuracy:* Does the metric represent *effectiveness* of the technique? Widely used by relevant literature (Thongtanunam et al, SANER 2015)

TAKE-HOME MESSAGES (PART I)

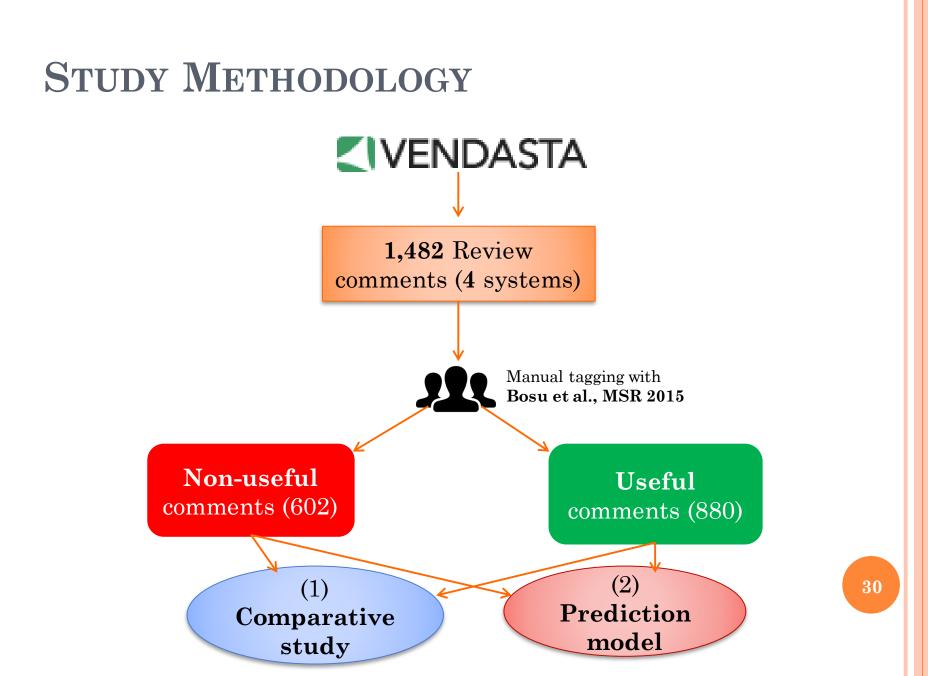


27

Part II: Prediction Model for Code Review Usefulness (MSR 2017)

RESEARCH PROBLEM: USEFULNESS OF CODE REVIEW COMMENTS

test/domain/	social_post_test.py	View full changes	src/app/views/base.py	View full outdated diff	
384 385 386 387 388 389 390	+ facebook_serv + + mention = Twi + result = ment + self.maxDiff	<pre>ce_2 = TwitterUser(user_id="user_id", account_id="accour ice = FacebookPage("page_id", "user_id", account_id="acc tterMention(RAW_TW_MENTION, postable_services=[twitter_s ion.to_dict() = None ual({'scheduledDateTime': None,</pre>	c 61 + """ initialize the whitelabel data """ 62 + if not pid:		
	added a note on Jun 10, 2 postable services?	(a)	I don't think we need 2 ways to call get_partner_whitelabel_config as man default.	+ (i)	
	2	 useful or non- 34.5% of review useful at Micr No automated 	v comments are non-	_id=None): fig(pid, market_id=market_id) fig(pid) pid, market_id=market_id) 29	



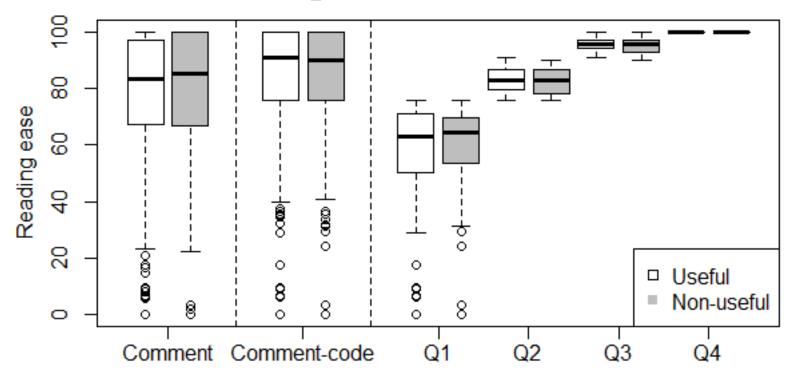
COMPARATIVE STUDY: VARIABLES

- Contrast between useful and non-useful comments.
- Two paradigms-comment texts, and commenter's/developer's experience
- Answers **two RQs** related to two paradigms.

Independent Variables (Response Variable (1)	
Reading Ease	Textual	
Stop word Ratio	Textual	
Question Ratio	Textual	
Code Element Ratio	Textual	Comment Usefulness
Conceptual Similarity	Textual	(Yes / No)
Code Authorship	Experience	
Code Reviewership	Experience	
External Lib. Experience	Experience	

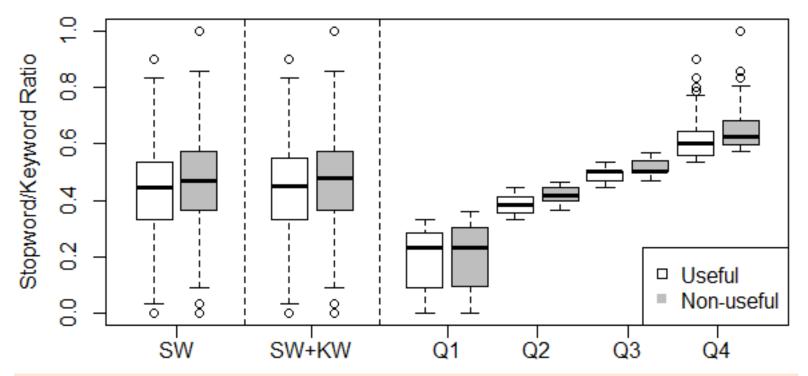
31

ANSWERING RQ₁: READING EASE



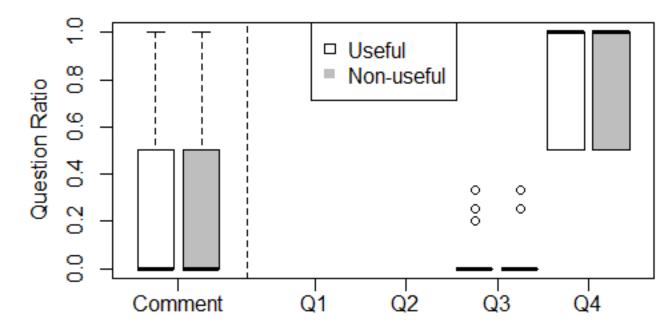
- Flesch-Kincaid Reading Ease applied.
- No significant difference between useful and non-useful review comments.

ANSWERING **RQ**₁: **STOP WORD RATIO**



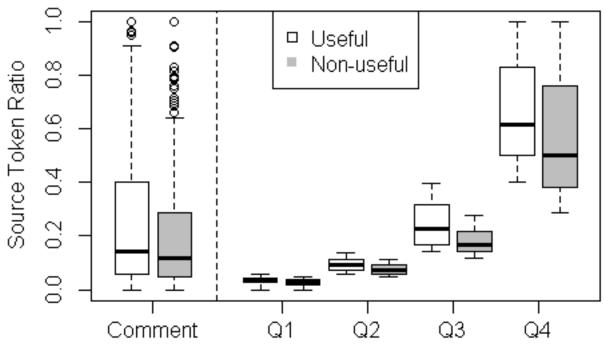
- Used Google stop word list and Python keywords.
- Stop word ratio = #stop or keywords/#all words from a review comment
- Non-useful comments contain more stop words than useful comments, i.e., *statistically significant*.

ANSWERING RQ₁: QUESTION RATIO



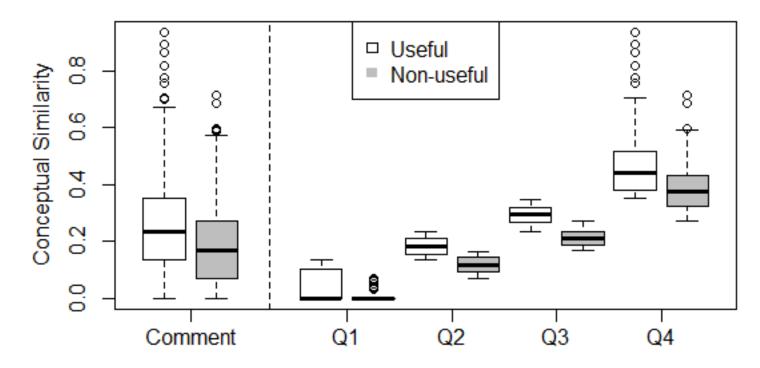
- Developers treat **clarification questions** as non-useful review comments.
- **Question ratio = #questions/#sentences** of a comment.
- No significant difference between useful and non-useful comments in question ratio.

Answering RQ₁: Code Element Ratio



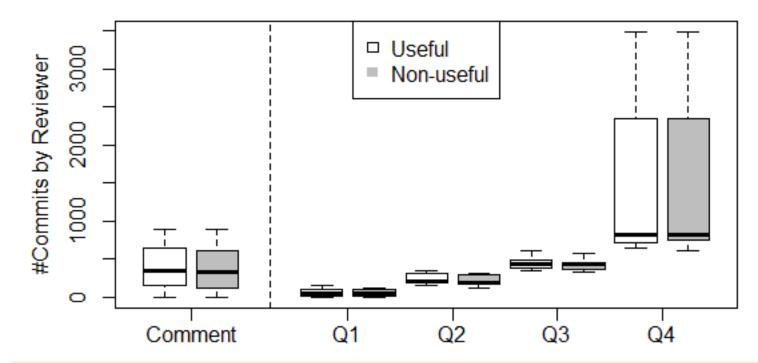
- Important code elements (e.g., identifiers) in the comments texts, possibly trigger the code change.
- o Code element ratio = #source tokens/#all tokens
- **Useful comments > non-useful comments** for code element ratio, i.e., *statistically significant*.

ANSWERING **RQ**₁: **CONCEPTUAL SIMILARITY** BETWEEN **COMMENTS & CHANGED CODE**



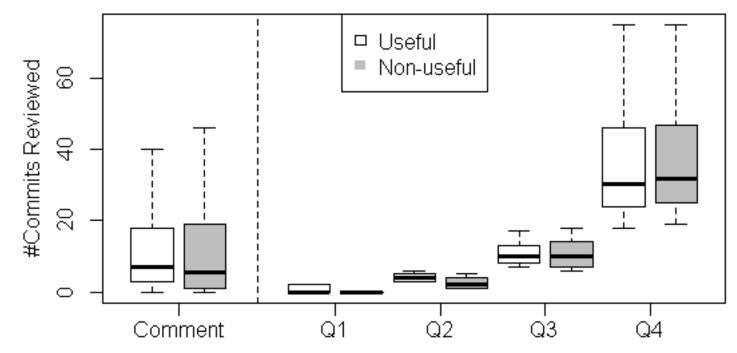
- How **relevant** the **comment** is with the **changed code**?
- Do comments & changed code **share vocabularies**?
- Yes, useful comments **do more sharing** than non-useful ones, i.e., *statistically significant*.

ANSWERING RQ₂: CODE AUTHORSHIP



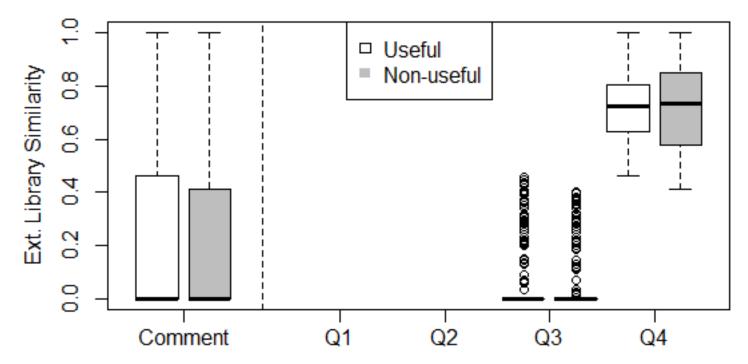
- File level authorship did not make much difference, a bit counter-intuitive.
- **Project level authorship** differs between useful and non-useful comments, mostly for Q2 and Q3

Answering RQ₂: Code Reviewership



- Does **reviewing experience** matter in providing **useful comments**?
- Yes, it does. File level reviewing experience matters. Especially true for Q2 and Q3.
- **Experienced reviewers** provide more useful comments than non-useful comments.

ANSWERING RQ₂: EXT. LIB. EXPERIENCE

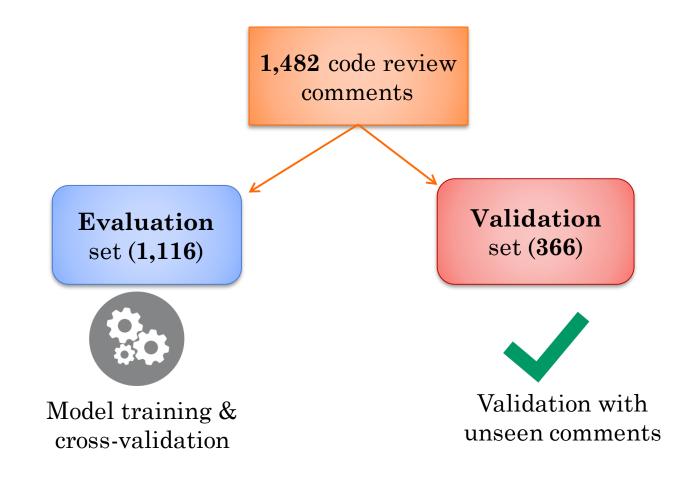


- **Familiarity** with the library used in the changed code for which comment is posted.
- *Significantly higher* for the authors of useful comments for Q3 only.

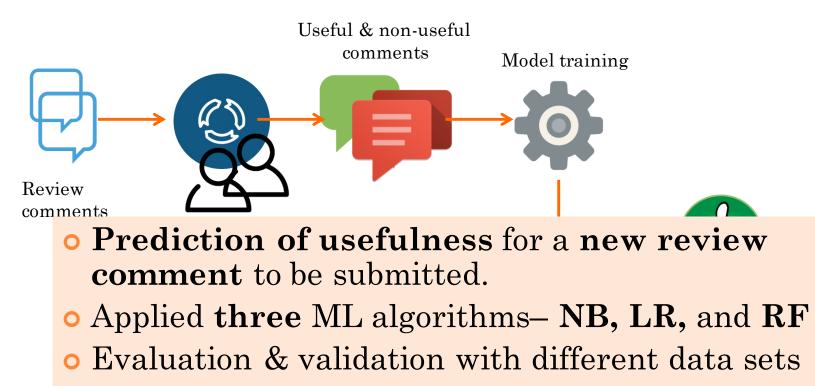
SUMMARY OF COMPARATIVE STUDY

RQ	Independent Variables	Useful vs. Non-useful Difference	
\mathbf{RQ}_1	Reading Ease	Not significant	
	Stop word Ratio	Significant	
	Question Ratio	Not significant	
	Code Element Ratio	Significant	
	Conceptual Similarity	Significant	
\mathbf{RQ}_2	Code Authorship	Somewhat significant	
	Code Reviewership	Significant	
	External Lib. Experience	Somewhat significant	

EXPERIMENTAL DATASET & SETUP



RevHelper: Usefulness Prediction Model



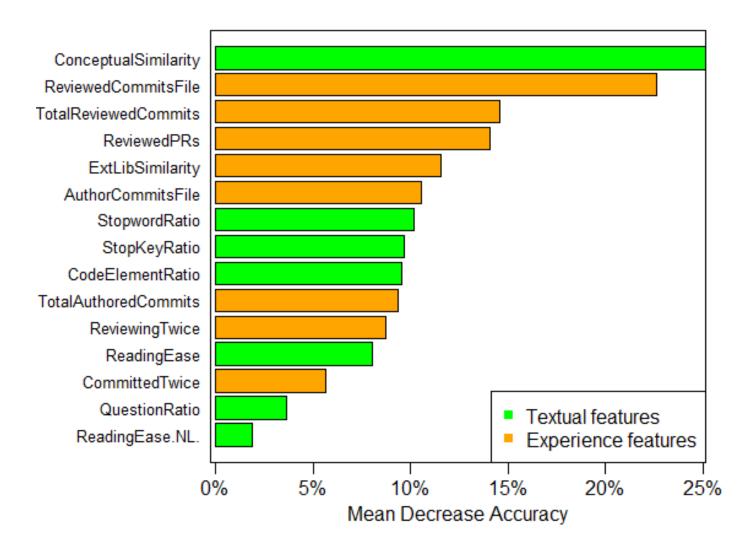
• Answered 3 RQs- RQ₃, RQ₄ and RQ₅

Answering RQ₃: Model Performance

Learning	Useful Comments		Non-useful Comments	
Algorithm	Precision	Recall	Precision	Recall
Naïve Bayes	61.30%	66.00%	53.30%	48.20%
Logistic Regression	60.70%	71.40%	54.60%	42.80%
Random Forest	67.93%	75.04%	63.06%	54.54%

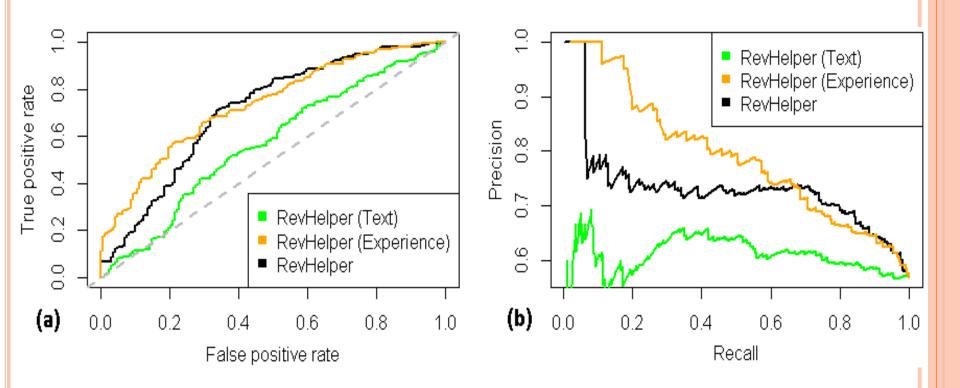
- Random Forest based model performs the best.
- Both **F**₁-score and accuracy 66%.
- Comment usefulness and features are **not linearly correlated.**
- As a **primer**, this **prediction** could be useful.

Answering RQ₄: Role of Paradigms



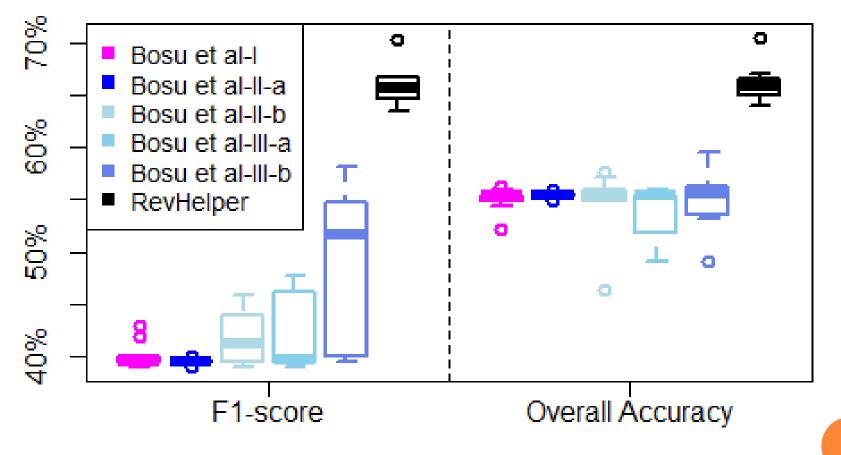
44

ANSWERING **RQ**₄: **ROLE OF PARADIGMS**

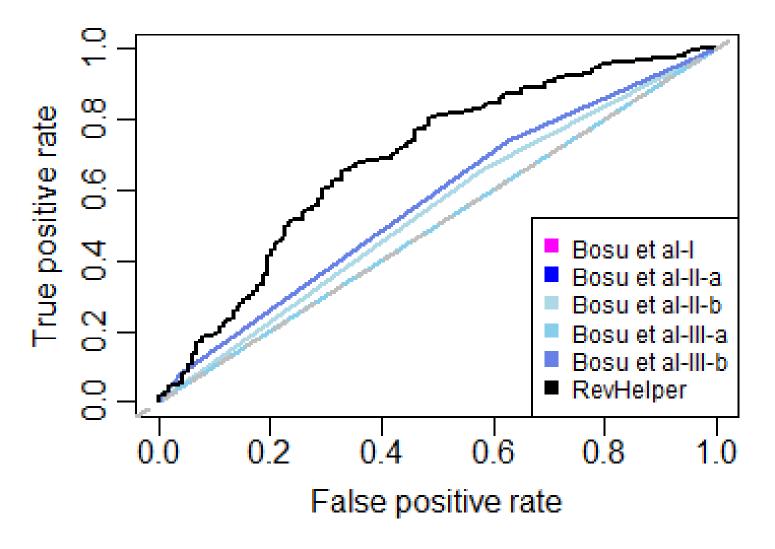


45

ANSWERING **RQ5: COMPARISON WITH BASELINE** (VALIDATION)



ANSWERING **RQ5**: **COMPARISON WITH BASELINE (ROC)**



TAKE-HOME MESSAGES (PART II)

- **Usefulness** of **review comments** is **complex** but a much needed piece of information.
- No automated support available so far to predict usefulness of review comments instantly.
- Non-useful comments are significantly different from useful comments in several textual features (e.g., conceptual similarity)
- **Reviewing experience** matters in providing useful review comments.
- Our **prediction model** can **predict** the **usefulness** of a **new review comment**.
- **RevHelper** performs better than random guessing and available alternatives.

Part III: Impact of Continuous Integration on Code ReviewS(MSR 2017 Challenge)

TAKE-HOME MESSAGE (PART III)

- Automated build might influence manual code review since they *interleave* each other in the modern pull-based development
- **Passed builds** more **associated** with review participations, and with new code reviews.
- Frequently built projects received more review comments than less frequently built ones.
- Code review activities are steady over time with frequently built projects. Not true for counterparts.
- Our **prediction model** can predict whether a build will **trigger** new code review or not.

REPLICATION PACKAGES

• CORRECT, RevHelper & Travis CI Miner

- o <u>http://www.usask.ca/~masud.rahman/correct/</u>
- <u>http://www.usask.ca/~masud.rahman/revhelper/</u>
- o <u>http://www.usask.ca/~masud.rahman/msrch/travis/</u>

Please contact **Masud Rahman** (masud.rahman@usask.ca) for further details about these studies and replications.

PUBLISHED PAPERS

- [1] M. Masudur Rahman, C.K. Roy, and Jason Collins, "CORRECT: Code Reviewer Recommendation in GitHub Based on Cross-Project and Technology Experience", In Proceeding of The 38th International Conference on Software Engineering Companion (ICSE-C 2016), pp. 222--231, Austin Texas, USA, May 2016
- [2] M. Masudur Rahman, C.K. Roy, Jesse Redl, and Jason Collins, "CORRECT: Code Reviewer Recommendation at GitHub for Vendasta Technologies", In Proceeding of The 31st IEEE/ACM International Conference on Automated Software Engineering (ASE 2016), pp. 792--797, Singapore, September 2016
- [3] M. Masudur Rahman and C.K. Roy and R.G. Kula, "Predicting Usefulness of Code Review Comments using Textual Features and Developer Experience", In Proceeding of The 14th International Conference on Mining Software Repositories (MSR 2017), pp. 215-226, Buenos Aires, Argentina, May, 2017
- [4] M. Masudur Rahman and C.K. Roy, "Impact of Continuous Integration on Code Reviews", In Proceeding of The 14th International Conference on Mining Software Repositories (MSR 2017), pp. 499--502, Buenos Aires, Argentina, May, 2017

THANK YOU!! QUESTIONS?

Email: chanchal.roy@usask.ca or masud.rahman@usask.ca

53