
TOWARDS AUTOMATED SUPPORTS FOR

CODE REVIEWS USING REVIEWER

RECOMMENDATION AND REVIEW

QUALITY MODELLING

Mohammad Masudur Rahman, Chanchal K. Roy,

Raula G. Kula, Jason Collins, and Jesse Redl

University of Saskatchewan, Canada, Osaka University, Japan

Vendasta Technologies, Canada

56th COW: Code Review and Continuous Inspection/Integration

CODE REVIEW

2

Code review could be unpleasant 

RECAP ON CODE REVIEW

Formal inspection

Peer code review

Modern code review (MCR)

Code review is a systematic

examination of source code for
detecting bugs or defects and

coding rule violations.

3

Early bug detection

Stop coding rule violation

Enhance developer skill

TODAY’S TALK OUTLINE

Part I: Code Reviewer

Recommendation

System (ICSE-SEIP 2016)

Part II: Prediction

Model for Review

Usefulness (MSR 2017)

4

TODAY’S TALK OUTLINE

Part III: Impact of Continuous Integration

on Code Reviews (MSR 2017 Challenge)

5

Part I: Code Reviewer

Recommendation (ICSE-SEIP 2016)

6

7

 FOR

Novice developers

Distributed software

development

Delayed 12 days
(Thongtanunam et al, SANER 2015)

EXISTING LITERATURE

 Line Change History (LCH)

 ReviewBot (Balachandran, ICSE 2013)

 File Path Similarity (FPS)

 RevFinder (Thongtanunam et al, SANER 2015)

 FPS (Thongtanunam et al, CHASE 2014)

 Tie (Xia et al, ICSME 2015)

 Code Review Content and Comments

 Tie (Xia et al, ICSME 2015)

 SNA (Yu et al, ICSME 2014)

8

 Issues & Limitations

Mine developer’s contributions from

within a single project only.

Library & Technology Similarity

Library Technology

OUTLINE OF THIS STUDY

9

Vendasta codebase

CORRECT

Evaluation using

VendAsta code base

Evaluation using

Open Source Projects

Conclusion

Comparative

study

Exploratory study 3 Research questions

EXPLORATORY STUDY (3 RQS)

RQ1: How frequently do the commercial

software projects reuse external libraries from

within the codebase?

RQ2: Does the experience of a developer with

such libraries matter in code reviewer selection

by other developers?

RQ3: How frequently do the commercial

projects adopt specialized technologies (e.g.,

taskqueue, mapreduce, urlfetch)?
10

DATASET: EXPLORATORY STUDY

11

 Each project has at least 750 closed pull requests.

 Each library is used at least 10 times on average.

 Each technology is used at least 5 times on average.

10 utility libraries

(Vendasta)
10 commercial projects

(Vendasta)

10 Google App Engine

Technologies

LIBRARY USAGE IN COMMERCIAL PROJECTS

(ANSWERED: EXP-RQ1)

 Empirical library usage frequency in 10 projects

 Mostly used: vtest, vauth, and vapi

 Least used: vlogs, vmonitor
12

LIBRARY USAGE IN

PULL REQUESTS (ANSWERED: EXP-RQ2)

 30%-70% of pull requests used at least one of the 10 libraries

 87%-100% of library authors recommended as code reviewers
in the projects using those libraries

 Library experience really matters!

13

% of PR using selected libraries % of library authors as code reviewers

SPECIALIZED TECHNOLOGY USAGE

IN PROJECTS (ANSWERED: EXP-RQ3)

 Empirical technology usage frequency in top 10

commercial projects

 Champion technology: mapreduce
14

TECHNOLOGY USAGE IN PULL REQUESTS

(ANSWERED: EXP-RQ3)

 20%-60% of the pull requests used at least one of the

10 specialized technologies.

 Mostly used in: ARM, CS and VBC
15

SUMMARY OF EXPLORATORY FINDINGS

16

About 50% of the pull requests use one or more of the

selected libraries. (Exp-RQ1)

About 98% of the library authors were later

recommended as pull request reviewers. (Exp-RQ2)

About 35% of the pull requests use one or more

specialized technologies. (Exp-RQ3)

Library experience and Specialized

technology experience really matter in code

reviewer selection/recommendation

CORRECT: CODE REVIEWER

RECOMMENDATION IN GITHUB USING CROSS-

PROJECT & TECHNOLOGY EXPERIENCE

17

CORRECT: CODE REVIEWER

RECOMMENDATION

18

R1 R2

R3

PR Review R1 PR Review R2

PR Review R3
Review

Similarity

Review

Similarity

OUR CONTRIBUTIONS

19

State-of-the-art (Thongtanunam et al, SANER 2015)

IF

IF

Our proposed technique--CORRECT

= New PR = Reviewed PR = Source file

= External library & specialized technology

EVALUATION OF CORRECT

 Two evaluations using-- (1) Vendasta codebase (2)

Open source software projects

20

1: Are library experience and technology experience
useful proxies for code review skills?

2: Does CoRReCT outperform the baseline technique for
reviewer recommendation?

3: Does CoRReCT perform equally/comparably for both
private and public codebase?

4: Does CoRReCT show bias to any of the development
frameworks

EXPERIMENTAL DATASET

 Sliding window of 30 past requests for learning.

 Metrics: Top-K Accuracy, Mean Precision (MP), Mean

Recall (MR), and Mean Reciprocal rank (MRR). 21

10 Python projects 2 Python, 2 Java &

2 Ruby projects

13,081 Pull requests 4,034 Pull requests

Code reviews Code reviewers

Gold set

LIBRARY EXPERIENCE & TECHNOLOGY

EXPERIENCE (ANSWERED: RQ1)

Metric Library Similarity Technology Similarity Combined Similarity

Top-3 Top-5 Top-3 Top-5 Top-3 Top-5

Accuracy 83.57% 92.02% 82.18% 91.83% 83.75% 92.15%

MRR 0.66 0.67 0.62 0.64 0.65 0.67

MP 65.93% 85.28% 62.99% 83.93% 65.98% 85.93%

MR 58.34% 80.77% 55.77% 79.50% 58.43% 81.39%

22

[MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank]

 Both library experience and technology experience are
found as good proxies, provide over 90% accuracy.

 Combined experience provides the maximum performance.

 92.15% recommendation accuracy with 85.93% precision
and 81.39% recall.

 Evaluation results align with exploratory study findings.

COMPARATIVE STUDY FINDINGS

(ANSWERED: RQ2)

 CoRReCT performs better than the competing technique in all

metrics (p-value=0.003<0.05 for Top-5 accuracy)

 Performs better both on average and on individual projects.

 RevFinder uses PR similarity using source file name and file’s

directory matching

23

Metric RevFinder[Thongtanunam

et al. SANER 2015]

CoRReCT

Top-5 Top-5

Accuracy 80.72% 92.15%

MRR 0.65 0.67

MP 77.24% 85.93%

MR 73.27% 81.39%

[MP = Mean Precision, MR = Mean Recall,

MRR = Mean Reciprocal Rank]

COMPARISON ON OPEN SOURCE PROJECTS

(ANSWERED: RQ3)

 In OSS projects, CoRReCT also performs better than the
baseline technique.

 85.20% accuracy with 84.76% precision and 78.73%
recall, and not significantly different than earlier (p-
value=0.239>0.05 for precision)

 Results for private and public codebase are quite close.

24

Metric RevFinder CoRReCT (OSS) CoRReCT (VA)

Top-5 Top-5 Top-5

Accuracy 62.90% 85.20% 92.15%

MRR 0.55 0.69 0.67

MP 62.57% 84.76% 85.93%

MR 58.63% 78.73% 81.39%

[MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank]

COMPARISON ON DIFFERENT PLATFORMS

(ANSWERED: RQ4)
Metrics Python Java Ruby

Beets St2 Avg. OkHttp Orientdb Avg. Rubocop Vagrant Avg.

Accuracy 93.06% 79.20% 86.13% 88.77% 81.27% 85.02% 89.53% 79.38% 84.46%

MRR 0.82 0.49 0.66 0.61 0.76 0.69 0.76 0.71 0.74

MP 93.06% 77.85% 85.46% 88.69% 81.27% 84.98% 88.49% 79.17% 83.83%

MR 87.36% 74.54% 80.95% 85.33% 76.27% 80.80% 81.49% 67.36% 74.43%

25

[MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank]

 In OSS projects, results for different platforms look

surprisingly close except the recall.

 Accuracy and precision are close to 85% on average.

 CORRECT does NOT show any bias to any particular

platform.

THREATS TO VALIDITY

 Threats to Internal Validity

 Skewed dataset: Each of the 10 selected projects is

medium sized (i.e., 1.1K PR) except CS.

 Threats to External Validity

 Limited OSS dataset: Only 6 OSS projects

considered—not sufficient for generalization.

 Issue of heavy PRs: PRs containing hundreds of files

can make the recommendation slower.

 Threats to Construct Validity

 Top-K Accuracy: Does the metric represent

effectiveness of the technique? Widely used by relevant

literature (Thongtanunam et al, SANER 2015)
26

TAKE-HOME MESSAGES (PART I)

27

1
3

6

4

5

2

Part II: Prediction Model for

Code Review Usefulness (MSR 2017)

28

RESEARCH PROBLEM: USEFULNESS OF

CODE REVIEW COMMENTS

29

 What makes a review comment

useful or non-useful?

 34.5% of review comments are non-

useful at Microsoft (Bosu et al., MSR 2015)

 No automated support to detect

or improve such comments so far

STUDY METHODOLOGY

30

1,482 Review

comments (4 systems)

Manual tagging with

Bosu et al., MSR 2015

Non-useful

comments (602)
Useful

comments (880)

(1)

Comparative

study

(2)

Prediction

model

COMPARATIVE STUDY: VARIABLES

Independent Variables (8) Response Variable (1)

Reading Ease Textual

Comment Usefulness

(Yes / No)

Stop word Ratio Textual

Question Ratio Textual

Code Element Ratio Textual

Conceptual Similarity Textual

Code Authorship Experience

Code Reviewership Experience

External Lib. Experience Experience
31

 Contrast between useful and non-useful comments.

 Two paradigms– comment texts, and
commenter’s/developer’s experience

 Answers two RQs related to two paradigms.

ANSWERING RQ1: READING EASE

 Flesch-Kincaid Reading Ease applied.

 No significant difference between useful and

non-useful review comments.
32

ANSWERING RQ1: STOP WORD RATIO

 Used Google stop word list and Python keywords.

 Stop word ratio = #stop or keywords/#all words from
a review comment

 Non-useful comments contain more stop words than
useful comments, i.e., statistically significant.

33

ANSWERING RQ1: QUESTION RATIO

 Developers treat clarification questions as non-useful
review comments.

 Question ratio = #questions/#sentences of a comment.

 No significant difference between useful and non-useful
comments in question ratio.

34

ANSWERING RQ1: CODE ELEMENT RATIO

 Important code elements (e.g., identifiers) in the
comments texts, possibly trigger the code change.

 Code element ratio = #source tokens/#all tokens

 Useful comments > non-useful comments for code
element ratio, i.e., statistically significant.

35

ANSWERING RQ1: CONCEPTUAL SIMILARITY

BETWEEN COMMENTS & CHANGED CODE

 How relevant the comment is with the changed code?

 Do comments & changed code share vocabularies?

 Yes, useful comments do more sharing than non-useful
ones, i.e., statistically significant.

36

ANSWERING RQ2: CODE AUTHORSHIP

 File level authorship did not make much

difference, a bit counter-intuitive.

 Project level authorship differs between useful
and non-useful comments, mostly for Q2 and Q3

37

ANSWERING RQ2: CODE REVIEWERSHIP

 Does reviewing experience matter in providing useful
comments?

 Yes, it does. File level reviewing experience matters.
Especially true for Q2 and Q3.

 Experienced reviewers provide more useful comments than
non-useful comments.

38

ANSWERING RQ2: EXT. LIB. EXPERIENCE

 Familiarity with the library used in the
changed code for which comment is posted.

 Significantly higher for the authors of useful
comments for Q3 only.

39

SUMMARY OF COMPARATIVE STUDY

40

RQ Independent Variables Useful vs. Non-useful

Difference

RQ1

Reading Ease Not significant

Stop word Ratio Significant

Question Ratio Not significant

Code Element Ratio Significant

Conceptual Similarity Significant

RQ2

Code Authorship Somewhat significant

Code Reviewership Significant

External Lib. Experience Somewhat significant

EXPERIMENTAL DATASET & SETUP

41

1,482 code review

comments

Evaluation

set (1,116)

Validation

set (366)

Model training &

cross-validation

Validation with

unseen comments

REVHELPER: USEFULNESS PREDICTION

MODEL

42

Review

comments
Manual classification

using Bosu et al.

Useful & non-useful

comments Model training

Prediction

model

New review comment

 Prediction of usefulness for a new review
comment to be submitted.

 Applied three ML algorithms– NB, LR, and RF

 Evaluation & validation with different data sets

 Answered 3 RQs– RQ3, RQ4 and RQ5

ANSWERING RQ3: MODEL PERFORMANCE

Learning

Algorithm

Useful Comments Non-useful Comments

Precision Recall Precision Recall

Naïve Bayes 61.30% 66.00% 53.30% 48.20%

Logistic Regression 60.70% 71.40% 54.60% 42.80%

Random Forest 67.93% 75.04% 63.06% 54.54%

43

 Random Forest based model performs the best.

 Both F1-score and accuracy 66%.

 Comment usefulness and features are not

linearly correlated.

 As a primer, this prediction could be useful.

ANSWERING RQ4: ROLE OF PARADIGMS

44

ANSWERING RQ4: ROLE OF PARADIGMS

45

ANSWERING RQ5: COMPARISON WITH

BASELINE (VALIDATION)

46

ANSWERING RQ5: COMPARISON WITH

BASELINE (ROC)

47

TAKE-HOME MESSAGES (PART II)

 Usefulness of review comments is complex but a
much needed piece of information.

 No automated support available so far to predict
usefulness of review comments instantly.

 Non-useful comments are significantly different
from useful comments in several textual features
(e.g., conceptual similarity)

 Reviewing experience matters in providing useful
review comments.

 Our prediction model can predict the usefulness
of a new review comment.

 RevHelper performs better than random guessing
and available alternatives.

48

Part III: Impact of

Continuous Integration on

Code Reviews(MSR 2017 Challenge)

49

TAKE-HOME MESSAGE (PART III)

 Automated build might influence manual code

review since they interleave each other in the

modern pull-based development

 Passed builds more associated with review

participations, and with new code reviews.

 Frequently built projects received more review

comments than less frequently built ones.

 Code review activities are steady over time with

frequently built projects. Not true for

counterparts.

 Our prediction model can predict whether a

build will trigger new code review or not.
50

REPLICATION PACKAGES

 CORRECT, RevHelper & Travis CI Miner

 http://www.usask.ca/~masud.rahman/correct/

 http://www.usask.ca/~masud.rahman/revhelper/

 http://www.usask.ca/~masud.rahman/msrch/travis/

Please contact Masud Rahman

(masud.rahman@usask.ca) for further details about

these studies and replications.
51

http://www.usask.ca/~masud.rahman/correct/
http://homepage.usask.ca/~masud.rahman/revhelper/
http://homepage.usask.ca/~masud.rahman/msrch/travis/
mailto:masud.rahman@usask.ca

PUBLISHED PAPERS

[1] M. Masudur Rahman, C.K. Roy, and Jason Collins, "CORRECT: Code

Reviewer Recommendation in GitHub Based on Cross-Project and
Technology Experience", In Proceeding of The 38th International
Conference on Software Engineering Companion (ICSE-C 2016), pp. 222--
231, Austin Texas, USA, May 2016

[2] M. Masudur Rahman, C.K. Roy, Jesse Redl, and Jason Collins,
"CORRECT: Code Reviewer Recommendation at GitHub for
Vendasta Technologies", In Proceeding of The 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE
2016), pp. 792--797, Singapore, September 2016

[3] M. Masudur Rahman and C.K. Roy and R.G. Kula, "Predicting
Usefulness of Code Review Comments using Textual Features and
Developer Experience", In Proceeding of The 14th International
Conference on Mining Software Repositories (MSR 2017), pp. 215--226,
Buenos Aires, Argentina, May, 2017

[4] M. Masudur Rahman and C.K. Roy, "Impact of Continuous
Integration on Code Reviews", In Proceeding of The 14th International
Conference on Mining Software Repositories (MSR 2017), pp. 499--502,
Buenos Aires, Argentina, May, 2017 52

THANK YOU!! QUESTIONS?

53

Email: chanchal.roy@usask.ca or

masud.rahman@usask.ca

