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CODE REVIEW
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Code review could be unpleasant 



RECAP ON CODE REVIEW

Formal inspection

Peer code review

Modern code review (MCR)

Code review is a systematic 

examination of source code for 
detecting bugs or defects and 

coding rule violations.
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Early bug detection

Stop coding rule violation

Enhance developer skill



TODAY’S TALK OUTLINE

Part I: Code Reviewer 

Recommendation 

System (ICSE-SEIP 2016)

Part II: Prediction 

Model for Review 

Usefulness (MSR 2017)
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TODAY’S TALK OUTLINE

Part III: Impact of Continuous Integration 

on Code Reviews (MSR 2017 Challenge)
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Part I: Code Reviewer 

Recommendation (ICSE-SEIP 2016)
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 FOR

Novice developers

Distributed software 

development

Delayed 12 days 
(Thongtanunam et al, SANER 2015)



EXISTING LITERATURE

 Line Change History (LCH)

 ReviewBot (Balachandran, ICSE 2013)

 File Path Similarity (FPS)

 RevFinder (Thongtanunam et al, SANER 2015)

 FPS (Thongtanunam et al, CHASE 2014)

 Tie (Xia et al, ICSME 2015)

 Code Review Content and Comments

 Tie (Xia et al, ICSME 2015)

 SNA (Yu et al, ICSME 2014)
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 Issues & Limitations

Mine developer’s contributions from 

within a single project only.

Library & Technology Similarity

Library Technology



OUTLINE OF THIS STUDY
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Vendasta codebase

CORRECT

Evaluation using 

VendAsta code base

Evaluation using 

Open Source Projects

Conclusion

Comparative

study

Exploratory study 3 Research questions



EXPLORATORY STUDY ( 3 RQS)

RQ1: How frequently do the commercial 

software projects reuse external libraries from 

within the codebase?

RQ2: Does the experience of a developer with 

such libraries matter in code reviewer selection 

by other developers?

RQ3: How frequently do the commercial 

projects adopt specialized technologies (e.g., 

taskqueue, mapreduce, urlfetch)?
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DATASET: EXPLORATORY STUDY
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 Each project has at least 750 closed pull requests.

 Each library is used at least 10 times on average.

 Each technology is used at least 5 times on average.

10 utility libraries

(Vendasta)
10 commercial projects 

(Vendasta)

10 Google App Engine

Technologies



LIBRARY USAGE IN COMMERCIAL PROJECTS

(ANSWERED: EXP-RQ1 )

 Empirical library usage frequency in 10 projects

 Mostly used: vtest, vauth, and vapi

 Least used: vlogs, vmonitor
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LIBRARY USAGE IN

PULL REQUESTS (ANSWERED: EXP-RQ2)

 30%-70% of pull requests used at least one of the 10 libraries

 87%-100% of library authors recommended as code reviewers
in the projects using those libraries

 Library experience really matters!
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% of PR using selected libraries % of library authors as code reviewers



SPECIALIZED TECHNOLOGY USAGE

IN PROJECTS (ANSWERED: EXP-RQ3)

 Empirical technology usage frequency in top 10 

commercial projects

 Champion technology: mapreduce
14



TECHNOLOGY USAGE IN PULL REQUESTS

(ANSWERED: EXP-RQ3)

 20%-60% of  the pull requests used at least one of the 

10 specialized technologies. 

 Mostly used in: ARM, CS and VBC
15



SUMMARY OF EXPLORATORY FINDINGS
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About 50% of the pull requests use one or more of the 

selected libraries. (Exp-RQ1)

About 98% of the library authors were later 

recommended as pull request reviewers. (Exp-RQ2)

About 35% of the pull requests use one or more 

specialized technologies. (Exp-RQ3)

Library experience and Specialized 

technology experience really matter in code 

reviewer selection/recommendation



CORRECT: CODE REVIEWER

RECOMMENDATION IN GITHUB USING CROSS-

PROJECT & TECHNOLOGY EXPERIENCE
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CORRECT: CODE REVIEWER

RECOMMENDATION
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R1 R2

R3

PR Review R1 PR Review R2

PR Review R3
Review 

Similarity

Review 

Similarity



OUR CONTRIBUTIONS
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State-of-the-art (Thongtanunam et al, SANER 2015)

IF

IF

Our proposed technique--CORRECT 

= New PR = Reviewed PR = Source file

= External library & specialized technology



EVALUATION OF CORRECT

 Two evaluations using-- (1) Vendasta codebase (2) 

Open source software projects
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1: Are library experience and technology experience
useful proxies for code review skills?

2: Does CoRReCT outperform the baseline technique for 
reviewer recommendation?

3: Does CoRReCT perform equally/comparably for both 
private and public codebase? 

4: Does CoRReCT show bias to any of the development 
frameworks



EXPERIMENTAL DATASET

 Sliding window of 30 past requests for learning.

 Metrics: Top-K Accuracy, Mean Precision (MP), Mean 

Recall (MR), and Mean Reciprocal rank (MRR). 21

10 Python projects 2 Python, 2 Java & 

2 Ruby projects

13,081 Pull requests 4,034 Pull requests

Code reviews Code reviewers

Gold set



LIBRARY EXPERIENCE & TECHNOLOGY

EXPERIENCE (ANSWERED: RQ1)

Metric Library Similarity Technology Similarity Combined Similarity

Top-3 Top-5 Top-3 Top-5 Top-3 Top-5

Accuracy 83.57% 92.02% 82.18% 91.83% 83.75% 92.15%

MRR 0.66 0.67 0.62 0.64 0.65 0.67

MP 65.93% 85.28% 62.99% 83.93% 65.98% 85.93%

MR 58.34% 80.77% 55.77% 79.50% 58.43% 81.39%
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[ MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank ]

 Both library experience and technology experience are 
found as good proxies, provide over 90% accuracy.

 Combined experience provides the maximum performance.

 92.15% recommendation accuracy with 85.93% precision 
and 81.39% recall.

 Evaluation results align with exploratory study findings.



COMPARATIVE STUDY FINDINGS

(ANSWERED: RQ2)

 CoRReCT performs better than the competing technique in all 

metrics (p-value=0.003<0.05 for Top-5 accuracy)

 Performs better both on average and on individual projects.

 RevFinder uses PR similarity using source file name and file’s 

directory matching
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Metric RevFinder[Thongtanunam

et al. SANER 2015]

CoRReCT

Top-5 Top-5

Accuracy 80.72% 92.15%

MRR 0.65 0.67

MP 77.24% 85.93%

MR 73.27% 81.39%

[ MP = Mean Precision, MR = Mean Recall,  

MRR = Mean Reciprocal Rank ]



COMPARISON ON OPEN SOURCE PROJECTS

(ANSWERED: RQ3)

 In OSS projects, CoRReCT also performs better than the 
baseline technique.

 85.20% accuracy with 84.76% precision and 78.73% 
recall, and not significantly different than earlier (p-
value=0.239>0.05 for precision)

 Results for private and public codebase are quite close.
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Metric RevFinder CoRReCT (OSS) CoRReCT (VA)

Top-5 Top-5 Top-5

Accuracy 62.90% 85.20% 92.15%

MRR 0.55 0.69 0.67

MP 62.57% 84.76% 85.93%

MR 58.63% 78.73% 81.39%

[ MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank ]



COMPARISON ON DIFFERENT PLATFORMS

(ANSWERED: RQ4)
Metrics Python Java Ruby

Beets St2 Avg. OkHttp Orientdb Avg. Rubocop Vagrant Avg.

Accuracy 93.06% 79.20% 86.13% 88.77% 81.27% 85.02% 89.53% 79.38% 84.46%

MRR 0.82 0.49 0.66 0.61 0.76 0.69 0.76 0.71 0.74

MP 93.06% 77.85% 85.46% 88.69% 81.27% 84.98% 88.49% 79.17% 83.83%

MR 87.36% 74.54% 80.95% 85.33% 76.27% 80.80% 81.49% 67.36% 74.43%
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[ MP = Mean Precision, MR = Mean Recall, MRR = Mean Reciprocal Rank ]

 In OSS projects, results for different platforms look 

surprisingly close except the recall.

 Accuracy and precision are close to 85% on average.

 CORRECT does NOT show any bias to any particular 

platform.



THREATS TO VALIDITY

 Threats to Internal Validity

 Skewed dataset: Each of the 10 selected projects is 

medium sized (i.e., 1.1K PR) except CS.

 Threats to External Validity

 Limited OSS dataset: Only 6 OSS projects 

considered—not sufficient for generalization. 

 Issue of heavy PRs: PRs containing hundreds of files 

can make the recommendation slower.

 Threats to Construct Validity

 Top-K Accuracy: Does the metric represent 

effectiveness of the technique? Widely used by relevant 

literature (Thongtanunam et al, SANER 2015)
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TAKE-HOME MESSAGES (PART I)
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1
3

6

4

5

2



Part II: Prediction Model for 

Code Review Usefulness (MSR 2017)
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RESEARCH PROBLEM: USEFULNESS OF

CODE REVIEW COMMENTS
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 What makes a review comment 

useful or non-useful?

 34.5% of review comments are non-

useful at Microsoft (Bosu et al., MSR 2015)

 No automated support to detect 

or improve such comments so far



STUDY METHODOLOGY

30

1,482 Review 

comments (4 systems)

Manual tagging with 

Bosu et al., MSR 2015

Non-useful

comments (602)
Useful 

comments (880)

(1) 

Comparative 

study

(2) 

Prediction 

model



COMPARATIVE STUDY: VARIABLES

Independent Variables (8) Response Variable (1)

Reading Ease Textual

Comment Usefulness 

(Yes / No)

Stop word Ratio Textual

Question Ratio Textual

Code Element Ratio Textual

Conceptual Similarity Textual

Code Authorship Experience

Code Reviewership Experience

External Lib. Experience Experience
31

 Contrast between useful and non-useful comments.

 Two paradigms– comment texts, and 
commenter’s/developer’s experience

 Answers two RQs related to two paradigms.



ANSWERING RQ1: READING EASE

 Flesch-Kincaid Reading Ease applied.

 No significant difference between useful and 

non-useful review comments.
32



ANSWERING RQ1: STOP WORD RATIO

 Used Google stop word list and Python keywords.

 Stop word ratio = #stop or keywords/#all words from 
a review comment

 Non-useful comments contain more stop words than 
useful comments, i.e., statistically significant.
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ANSWERING RQ1: QUESTION RATIO

 Developers treat clarification questions as non-useful 
review comments. 

 Question ratio = #questions/#sentences of a comment.

 No significant difference between useful and non-useful 
comments in question ratio.
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ANSWERING RQ1: CODE ELEMENT RATIO

 Important code elements (e.g., identifiers) in the 
comments texts, possibly trigger the code change.

 Code element ratio = #source tokens/#all tokens

 Useful comments > non-useful comments for code 
element ratio, i.e., statistically significant.
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ANSWERING RQ1: CONCEPTUAL SIMILARITY

BETWEEN COMMENTS & CHANGED CODE

 How relevant the comment is with the changed code?

 Do comments & changed code share vocabularies?

 Yes, useful comments do more sharing than non-useful 
ones, i.e., statistically significant.
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ANSWERING RQ2: CODE AUTHORSHIP

 File level authorship did not make much 

difference, a bit counter-intuitive.

 Project level authorship differs between useful 
and non-useful comments, mostly for Q2 and Q3 
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ANSWERING RQ2: CODE REVIEWERSHIP

 Does reviewing experience matter in providing useful 
comments?

 Yes, it does. File level reviewing experience matters. 
Especially true for Q2 and Q3.

 Experienced reviewers provide more useful comments than 
non-useful comments.
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ANSWERING RQ2: EXT. LIB. EXPERIENCE

 Familiarity with the library used in the 
changed code for which comment is posted.

 Significantly higher for the authors of useful 
comments for Q3 only.
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SUMMARY OF COMPARATIVE STUDY
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RQ Independent Variables Useful vs. Non-useful 

Difference

RQ1

Reading Ease Not significant

Stop word Ratio Significant

Question Ratio Not significant

Code Element Ratio Significant

Conceptual Similarity Significant

RQ2

Code Authorship Somewhat significant

Code Reviewership Significant

External Lib. Experience Somewhat significant



EXPERIMENTAL DATASET & SETUP
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1,482 code review 

comments

Evaluation

set (1,116)

Validation

set (366)

Model training & 

cross-validation

Validation with 

unseen comments



REVHELPER: USEFULNESS PREDICTION

MODEL
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Review

comments
Manual classification 

using Bosu et al. 

Useful & non-useful 

comments Model training

Prediction 

model

New review comment

 Prediction of usefulness for a new review 
comment to be submitted.

 Applied three ML algorithms– NB, LR, and RF

 Evaluation & validation with different data sets

 Answered 3 RQs– RQ3, RQ4 and RQ5



ANSWERING RQ3: MODEL PERFORMANCE

Learning

Algorithm

Useful Comments Non-useful Comments

Precision Recall Precision Recall

Naïve Bayes 61.30% 66.00% 53.30% 48.20%

Logistic Regression 60.70% 71.40% 54.60% 42.80%

Random Forest 67.93% 75.04% 63.06% 54.54%
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 Random Forest based model performs the best.

 Both F1-score and accuracy 66%.

 Comment usefulness and features are not 

linearly correlated.

 As a primer, this prediction could be useful.



ANSWERING RQ4: ROLE OF PARADIGMS

44



ANSWERING RQ4: ROLE OF PARADIGMS
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ANSWERING RQ5: COMPARISON WITH

BASELINE (VALIDATION)
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ANSWERING RQ5: COMPARISON WITH

BASELINE (ROC)
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TAKE-HOME MESSAGES (PART II)

 Usefulness of review comments is complex but a 
much needed piece of information.

 No automated support available so far to predict 
usefulness of review comments instantly.

 Non-useful comments are significantly different 
from useful comments in several textual features
(e.g., conceptual similarity)

 Reviewing experience matters in providing useful 
review comments.

 Our prediction model can predict the usefulness
of a new review comment.

 RevHelper performs better than random guessing
and available alternatives.
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Part III: Impact of 

Continuous Integration on 

Code Reviews(MSR 2017 Challenge)
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TAKE-HOME MESSAGE (PART III)

 Automated build might influence manual code 

review since they interleave each other in the 

modern pull-based development

 Passed builds more associated with review 

participations, and  with new code reviews.

 Frequently built projects received more review 

comments than less frequently built ones.

 Code review activities are steady over time with 

frequently built projects. Not true for 

counterparts.

 Our prediction model can predict whether a 

build will trigger new code review or not. 
50



REPLICATION PACKAGES

 CORRECT, RevHelper & Travis CI Miner

 http://www.usask.ca/~masud.rahman/correct/

 http://www.usask.ca/~masud.rahman/revhelper/

 http://www.usask.ca/~masud.rahman/msrch/travis/

Please contact Masud Rahman 

(masud.rahman@usask.ca) for further details about 

these studies and replications.
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http://www.usask.ca/~masud.rahman/correct/
http://homepage.usask.ca/~masud.rahman/revhelper/
http://homepage.usask.ca/~masud.rahman/msrch/travis/
mailto:masud.rahman@usask.ca
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THANK YOU!! QUESTIONS?
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Email: chanchal.roy@usask.ca or

masud.rahman@usask.ca


