
My code is better,

after the review!!

Nice! He
implemented all
my suggestions..

Evidence-based
Code Review

Alberto Bacchelli
University of Zurich,

Switzerland
Delft University of Technology,

The Netherlands

My research team

ZEST
University of Zurich

SORCERERS
Delft University of Technology

??

…and awesome
regular collaborators

My code is better,

after the review!!

Nice! He
implemented all
my suggestions..

Evidence-based
Code Review

My code is better,

after the review!!

Nice! He
implemented all
my suggestions..

Evidence-based
Modern Code Review

My code is better,

after the review!!

Nice! He
implemented all
my suggestions..

Evidence-based
Modern Code Review

1. informal

2. change-based

3. tool-based

What is modern code review?

reviewersauthor

version i version i+1

software system
timeline

code
review

What is modern code review? A sample tool

Monthly growth of pull request usage on GitHub (OSS)

How popular is it?

Work Practices and Challenges in Pull-Based
Development: The Contributor’s Perspective

Georgios Gousios
Radboud University Nijmegen

Nijmegen, the Netherlands
g.gousios@cs.ru.nl

Margaret-Anne Storey
University of Victoria

BC, Canada
mstorey@uvic.ca

Alberto Bacchelli
Delft University of Technology

Delft, the Netherlands
a.bacchelli@tudelft.nl

ABSTRACT
The pull-based development model is an emerging way of con-
tributing to distributed software projects that is gaining enormous
popularity within the open source software (OSS) world. Previous
work has examined this model by focusing on projects and their
owners—we complement it by examining the work practices of
project contributors and the challenges they face.

We conducted a survey with 645 top contributors to active OSS
projects using the pull-based model on GitHub, the prevalent social
coding site. We also analyzed traces extracted from corresponding
GitHub repositories. Our research shows that: contributors have
a strong interest in maintaining awareness of project status to get
inspiration and avoid duplicating work, but they do not actively
propagate information; communication within pull requests is re-
portedly limited to low-level concerns and contributors often use
communication channels external to pull requests; challenges are
mostly social in nature, with most reporting poor responsiveness
from integrators; and the increased transparency of this setting is
a confirmed motivation to contribute. Based on these findings, we
present recommendations for practitioners to streamline the contri-
bution process and discuss potential future research directions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—Version control; D.2.9 [Software Engineering]: Man-
agement—Programming teams

Keywords
pull-based development, open source contribution, pull request, dis-
tributed software development, GitHub

1. INTRODUCTION
Distributed software development projects employ collaboration

models and patterns to streamline the process of integrating incom-
ing contributions [36]. The pull-based development model is a re-
cent form of distributed software development [25] that is gain-
ing tremendous traction in the open source software (OSS) world.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSE ’16, May 14 - 22, 2016, Austin, TX, USA
c� 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-3900-1/16/05. . . $15.00
DOI: http://dx.doi.org/10.1145/2884781.2884826

0

200,000

400,000

600,000

2011 2012 2013 2014 2015 2016

Pull requests Repositories that received pull requests

Figure 1: Monthly growth of pull request usage on GitHub.

As Figure 1 shows, its popularity is constantly growing; in Jan-
uary 2016, 135,000 repositories on the GitHub social coding site
received more than 600,000 pull requests. In total, 1,000,000 col-
laborative GitHub projects (i.e., 45% of all collaborative projects)
used at least one pull request during their lifetime.

As opposed to more classic ways of contributing (e.g., change
sets sent to development mailing lists [4] to issue tracking sys-
tems [3] or through direct access to the version control system [17]),
in the pull-based model, contributors fork (i.e., locally duplicate)
the main repository of the project they want to contribute to, make
their changes independently, then create a pull request (PR) to ask
that their changes be merged into the main repository. Then the
members of the project’s core team (the integrators) are responsi-
ble for evaluating the quality of the contributions, proposing correc-
tions, engaging in discussion with the contributors, and eventually
merging or rejecting the changes.

Social coding sites (e.g., GitHub [20], Bitbucket [6], and Gi-
torious [21]) offer the pull-based development model in conjunc-
tion with social media functions, which allow users to subscribe to
and/or visualize information about activities of projects and users
and offer threaded asynchronous communication within PRs.

To grasp the complexity of the pull-based development model
offered by social coding sites, it is necessary to examine it from
multiple perspectives. Previous research considered the lifetime
characteristics of PRs [25], macroscopic factors that lead to contri-
bution acceptance [25, 45], the barriers faced by first time contribu-
tors [44], how contributions are evaluated through discussions [46],
and the working habits and challenges faced by integrators [27].
Here we present the contributor’s perspective by investigating con-
tributors’ work habits and the challenges they face.

The overall goal with this work is to understand how contribut-
ing to OSS projects works using the pull-based development model
in the context of social coding sites. Understanding the contrib-
utor’s perspective is needed to reveal weaknesses with the pull-
based model and to guide the design of tools and processes to sup-
port their work, which is an essential part of the workflow. More-

0

200k

400k

600k

2011 2012 2013 2014 2015 2016

Number of
pull requests
per month

Number of
receiving
repositories

Popularity in industrial setting
Code review tool is used by more than 70,000 developers at Microsoft 
[Czerwonka, Greiler, Tilford — ICSE 2016]

Each code change in the main repository at Google is reviewed
[Potvin, Levenberg — Communications of the ACM, 2016]

Most other companies have similar policies and big players then to develop their own
review tools (e.g., Facebook)

Let’s look for “code review” on Google…

Why code reviews? How? What is the outcome?

Wikipedia page on code review — a stub

Wikipedia page on code review — an embarrassing stub

The main code-review objectives are (1) best practice, (2)
error detection, (3) vulnerability exposure, (4) malware
discovery […]. Of the four objectives, malware is the only one
that requires human detection.

Code reviews can often find and remove common vulnerabilities
such as format string exploits, race conditions, memory leaks and
buffer overflows, thereby improving software security.

Lightweight code review typically requires less overhead than
formal code inspections, though it can be equally effective
when done properly.[citation needed]

I love Wikipedia

Let’s look for “code review best practices” on Google…

Code review “best practices”

Two examples

Code review “best practices”

7 WAYS TO UPLEVEL YOUR CODE REVIEW SKILLS
- Prioritize the goals of code reviews with your team
- Run the app and try playing with the feature
- Visualize method call hierarchies
- Do code reviews as soon as you see the request
- Imagine how you would make this change before you read it
- Read the change in a realistic development environment
- Always give approval, unless you can prove that there is a bug

11 PROVEN PRACTICES FOR MORE EFFECTIVE, EFFICIENT CODE REVIEW
- Review fewer than 200–400 lines of code at a time
- Aim for an inspection rate of fewer than 300–500 LOC per hour
- Take enough time for a proper, slow review, but not more than 60–90 minutes
- Be sure that authors annotate source code before the review begins
- Establish quantifiable goals […] and capture metrics [to] improve your processes
- Use checklists, because they substantially improve results
- Verify that the defects are actually fixed
- Foster a good code review culture in which finding defects is viewed positively
- Beware of the Big Brother effect
- Review at least part of the code, even if you can't do all of it, [for] The Ego Effect
- Adopt lightweight, tool-assisted code reviews

Two examples

Code review “best practices”

7 WAYS TO UPLEVEL YOUR CODE REVIEW SKILLS
- Prioritize the goals of code reviews with your team
- Run the app and try playing with the feature
- Visualize method call hierarchies
- Do code reviews as soon as you see the request
- Imagine how you would make this change before you read it
- Read the change in a realistic development environment
- Always give approval, unless you can prove that there is a bug

11 PROVEN PRACTICES FOR MORE EFFECTIVE, EFFICIENT CODE REVIEW
- Review fewer than 200–400 lines of code at a time
- Aim for an inspection rate of fewer than 300–500 LOC per hour
- Take enough time for a proper, slow review, but not more than 60–90 minutes
- Be sure that authors annotate source code before the review begins
- Establish quantifiable goals […] and capture metrics [to] improve your processes
- Use checklists, because they substantially improve results
- Verify that the defects are actually fixed
- Foster a good code review culture in which finding defects is viewed positively
- Beware of the Big Brother effect
- Review at least part of the code, even if you can't do all of it, [for] The Ego Effect
- Adopt lightweight, tool-assisted code reviews

Two examples

Code review “best practices” — I am very skeptical

7 WAYS TO UPLEVEL YOUR CODE REVIEW SKILLS
- Prioritize the goals of code reviews with your team
- Run the app and try playing with the feature
- Visualize method call hierarchies
- Do code reviews as soon as you see the request
- Imagine how you would make this change before you read it
- Read the change in a realistic development environment
- Always give approval, unless you can prove that there is a bug

11 PROVEN PRACTICES FOR MORE EFFECTIVE, EFFICIENT CODE REVIEW
- Review fewer than 200–400 lines of code at a time
- Aim for an inspection rate of fewer than 300–500 LOC per hour
- Take enough time for a proper, slow review, but not more than 60–90 minutes
- Be sure that authors annotate source code before the review begins
- Establish quantifiable goals […] and capture metrics [to] improve your processes
- Use checklists, because they substantially improve results
- Verify that the defects are actually fixed
- Foster a good code review culture in which finding defects is viewed positively
- Beware of the Big Brother effect
- Review at least part of the code, even if you can't do all of it, [for] The Ego Effect
- Adopt lightweight, tool-assisted code reviews

Dr. Christian Bird

In-field study on modern code review at Microsoft

MICROSOFT AS
SUBJECT

Microsoft setting

Excel

XBox

SQL Server
...

Windows 
Phone

Microsoft setting: Several different separate “software organizations”

1

2

3

4

5

Used across all Microsoft product teams
Excel

SQL Server

XBox

by more than 70,000 developers, so far.

Same code review tool

observations interviews

18 interviews with observations
 ~40 minutes long
 developers, testers
 different roles
 signed off at least 50 reviews

observations interviews

survey to 165 managers

Why do programmers do code reviews?

motivation

Improve
Dev. Process

Alternative
Solutions

Code
Improvement

Knowledge
Transfer

Team
Awareness

Avoid Build
Breaks

Share Code
Ownership

Track
Rationale

Finding
Defects

Team
Assessment

Why do programmers do code reviews? — List of Motivations

observations interviews

survey to 165 managers survey to 873 developers

0 200 400 600

1st reason 2nd reason 3rd reason

finding defects

code improvements

alternative solutions

knowledge transfer

team awareness

improving dev process

share code ownership

Why do programmers do code reviews? — Motivations’ ranking

0 200 400 600

1st reason 2nd reason 3rd reason

finding defects

code improvements

alternative solutions

knowledge transfer

team awareness

improving dev process

share code ownership

“Finding defects is the main reason for doing code review.”
72 managers and 384 developers @ Microsoft

Why do programmers do code reviews? — Motivations’ ranking

What is the outcome of code reviews?

OUTCOME

What is the outcome of code reviews?

Recorded code review comments

observations interviews

survey to 165 managers survey to 873 developers classification of 
570 review comments

Example stack of cards

Card sort almost completed

code improvement
understanding

social communication
defects

external impact
testing

review tool

0% 10% 20% 30%

% of comments

knowledge transfer
misc

Card sort results

code improvement
understanding

social communication
defects

external impact
testing

review tool

0% 10% 20% 30%

% of comments

knowledge transfer
misc

Card sort results

code improvement
understanding

social communication
defects

external impact
testing

review tool

0% 10% 20% 30%

% of comments

knowledge transfer
misc

Card sort results

“what if they are
all used?”

“any doubt about
the precedence

here?”

“is it possible that
this statement
never match?”

“does it work if
you put 0 here?”

“should this end
date be current

date?”

“should be &&?”

Card sort results defects

code improvement
understanding

social communication
defects

external impact
testing

review tool

0% 10% 20% 30%

% of comments

knowledge transfer
misc

Card sort results

hot chocolate

What is the outcome of code reviews? Reality ≠ expectations

WHY?

Why do expectations not match reality?

… “[if] executed properly, [they] find
bugs faster and more effectively than
testing or other known debugging
techniques”—but when done
inefficiently they can quickly become
unproductive.

— Jason Cohen, 2011

Code reviews

… “[if] executed properly, [they] find
bugs faster and more effectively than
testing or other known debugging
techniques—but when done
inefficiently they can quickly become
unproductive. ”

— Jason Cohen, 2011

Code reviews

Code review
is (still) a
fully manual task

1

2

3

4

5

Tools only supports logistics of code review

Two examples

Code review “best practices”

7 WAYS TO UPLEVEL YOUR CODE REVIEW SKILLS
- Prioritize the goals of code reviews with your team
- Run the app and try playing with the feature
- Visualize method call hierarchies
- Do code reviews as soon as you see the request
- Imagine how you would make this change before you read it
- Read the change in a realistic development environment
- Always give approval, unless you can prove that there is a bug

11 PROVEN PRACTICES FOR MORE EFFECTIVE, EFFICIENT CODE REVIEW
- Review fewer than 200–400 lines of code at a time
- Aim for an inspection rate of fewer than 300–500 LOC per hour
- Take enough time for a proper, slow review, but not more than 60–90 minutes
- Be sure that authors annotate source code before the review begins
- Establish quantifiable goals […] and capture metrics [to] improve your processes
- Use checklists, because they substantially improve results
- Verify that the defects are actually fixed
- Foster a good code review culture in which finding defects is viewed positively
- Beware of the Big Brother effect
- Review at least part of the code, even if you can't do all of it, [for] The Ego Effect
- Adopt lightweight, tool-assisted code reviews

NOT ENOUGH
EVIDENCE!!!

Call to Arms — Evidence-based modern code review

Research vision
Transform code review into an engineering process, 
to tap into its potential to develop high-quality software.

What is an engineering process?

Research vision
Transform code review into an engineering process, 
to tap into its potential to develop high-quality software.

What is an engineering process?
“Engineering enables ordinary people to do things
that formerly required virtuosos.”

Mary Shaw (US National Medal of Technology and Innovation) — 2015

Call to Arms — Evidence-based modern code review

Research vision
Transform code review into an engineering process, 
to tap into its potential to develop high-quality software.

What is an engineering process?
“Engineering enables ordinary people to do things
that formerly required virtuosos.”
“It creates cost-effective solutions…

 …to practical problems…
 …by applying scientific knowledge…

 …building things…
 …in the service of mankind.”

Mary Shaw (US National Medal of Technology and Innovation) — 2015

Call to Arms — Evidence-based modern code review

Research vision
Transform code review into an engineering process, 
to tap into its potential to develop high-quality software.

Problem statement
There is no science of modern code review.
There are insufficient tools and evidence to answer the most
fundamental questions and make it an engineering process.

Call to Arms — Evidence-based modern code review

Key goal for the next years
Make the first fundamental steps in establishing
evidence-based modern code review, to make it a science.

Research vision
Transform code review into an engineering process, 
to tap into its potential to develop high-quality software.

Call to Arms — Evidence-based modern code review

Key goal for the next years
Make the first fundamental steps in establishing
evidence-based modern code review, to make it a science.

Code review — What do we (really) know so far?

We still know only a little, but we are making important steps:

CONVERGENT CONTEMPORARY SOFTWARE PEER REVIEW PRACTICES
[Rigby and Bird — FSE 2013]
- Contemporary peer review follows a lightweight, flexible process
- Reviews happen early (before a change is committed), quickly, and frequently
- Change sizes are small
- Two reviewers find an optimal number of defects
- Review has changed from a defect finding activity to a group problem solving activity

THE IMPACT OF MODER CODE REVIEW ON SOFTWARE QUALITY
[McIntosh, Kamei, Adams, Hassan — EMSE 2016] 

CODE OWNERSHIP IN THE SCOPE OF MODERN CODE REVIEW
[Thongtanunam, McIntosh, Hassan, Iida — ICSE 2016] 

TECHNICAL AND NON-TECHNICAL FACTORS IN MODERN CODE REVIEW
[Baysal, Kononenko, Holmes, Godfrey — EMSE 2016] 

CODE REVIEW QUALITY: HOW DEVELOPERS SEE IT
[Kononenko, Baysal, Godfrey — ICSE 2016] 

…

Call to Arms — Evidence-based modern code review

Would you like to work on this vision (with us)?

My research group (ZEST) at
UZH has 2 fully funded 4-year 

PhD positions!

And we are always looking for 
great students to work 

on fantastic Master theses!

Find me at the end of the talk,
at bacchelli@ifi.uzh.ch , 

or at @sback_

mailto:bacchelli@ifi.uzh.ch

