
1

Michael Pradel
TU Darmstadt

Joint work with Koushik Sen and Rohan Bavishi

Learning to Find Bugs
(Work in progress)



2

Automated Bug Detection

Hundreds of bug
detectors
� One analysis for each

bug pattern
� E.g., Google’s Error

Prone framework:
150+ different
analyses

Thousands of bug
patterns
� Existing bug detectors

miss most bugs



2

Automated Bug Detection

Hundreds of bug
detectors
� One analysis for each

bug pattern
� E.g., Google’s Error

Prone framework:
150+ different
analyses

Thousands of bug
patterns
� Existing bug detectors

miss most bugs

Manually creating and tuning bug
detectors doesn’t scale



3

Learning to Find Bugs

Buggy code

Correct code

Train a model to identify instances of
bug patterns:

Classifier
Train machine
learning model



3

Learning to Find Bugs

Buggy code

Correct code

Train a model to identify instances of
bug patterns:

Classifier

New code

Buggy/Okay

Train machine
learning model



3

Learning to Find Bugs

Buggy code

Correct code

Train a model to identify instances of
bug patterns:

Classifier

New code

Buggy/Okay

Train machine
learning model

Problem of writing program analysis

Problem of finding training examples



4

Here: Name-based Bug Detection

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

What’s wrong with this code?



4

Here: Name-based Bug Detection

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

Incorrect order of arguments

What’s wrong with this code?



5

Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

First name-based bug detector [ISSTA’11]

� Finds incorrectly ordered, equally typed
arguments

� Compares call sites of same method

2011



5

Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

Improved analysis [TSE’13]

� Improved precision
� Effective for multiple languages (Java, C, C++)

2013



5

Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

Generalized analysis [ICSE’16]

� Apply to arbitrary arguments
� Heuristic pruning of false positives

2016



5

Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

Adopted by Google [OOPSLA’17]

� Default check in Error Prone framework
� Found 2000+ new bugs

2017



6

Problem Solved?

Various hand-tuned heuristics

� Detect more bugs
� Special check for assertEquals calls

� Reduce false positives
� Hard-coded method names that suggest that

swapping is intended, e.g., transpose



6

Problem Solved?

Various hand-tuned heuristics

� Detect more bugs
� Special check for assertEquals calls

� Reduce false positives
� Hard-coded method names that suggest that

swapping is intended, e.g., transpose

Goal: Replace hand-tuned analysis with
trained machine learning model



7

This Work: Overview

Code corpus

Bug detector

Create
training data

Learn representation
of identifiers

Train model that
identifies bugs



8

Creating Training Data

Program transformation that seeds bugs

For swapped arguments:
� Visit every function call with ≥ 2 arguments
� Positive example: Original order of arguments
� Negative example: Swap first two arguments

setPoint(x, y); setPoint(y, x);



9

Representing Identifiers

How to reason about identifier names?

Prior work: Lexical similarity
� x similar to x dim

Want: Semantic similarity
� x similar to width

� list similar to seq



10

Background: Word Embeddings

Word embeddings in NLP
� Continuous vector representation for each word
� Similar words have similar vectors

Word2Vec: Learn from corpus of text
� ”You shall know a word by the company it keeps”
� Context: Surrounding words in sentences



11

AST Context

What’s the context of an identifier?

Our approach: AST-based context
� Surrounding nodes:

Parent, grandparent, siblings, etc.

� Extract node types, node contents, and relative
positioning



12

AST Context: Example

window.setTimeout(callback, 1000);

CallExpr

MemberExpr

Identifier

window

Identifier

setTimeout

Arguments

Identifier

callBack

Literal

1000



12

AST Context: Example

window.setTimeout(callback, 1000);

CallExpr

MemberExpr

Identifier

window

Identifier

setTimeout

Arguments

Identifier

callBack

Literal

1000



13

Learning Embeddings

� Train neural network to predict context
from identifier

� Use hidden layer as representation for
identifier

Input layer:
Identifier

Hidden
layer

Output layer:
Context



13

Learning Embeddings

� Train neural network to predict context
from identifier

� Use hidden layer as representation for
identifier

Input layer:
Identifier

Hidden
layer

Output layer:
Context

One-hot
vectors Embedding vector



14

Training the Bug Detector

� Given: Embeddings of callee and two
arguments

� Train neural network:
Predict whether correct or wrong

Callee

Arg. 1

Arg. 2

Probability
that correct

Two hidden layers

+

+



15

Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations



15

Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }



15

Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }
"abc"



15

Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }
"abc"

if (x == undefined) ...



15

Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }
"abc"

if (x == undefined) ...
>



15

Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }
"abc"

if (x == undefined) ...
>

bytes[i + 1] >> 4



15

Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }
"abc"

if (x == undefined) ...
>

bytes[i + 1] >> 4
4 >> bytes[i + 1]



16

Evaluation: Setup

� 100.000 JavaScript files from various
projects
� 80.000 for training
� 20.000 for validation

� 68 million lines of code
� 37.3 million occurrences of identifiers
� 10.1 million occurrences of literals



17

Examples of Bugs

// Callback must come before the

// number of milliseconds to wait

setTimeout(50, dojo.lang.hitch(this,

function(){ ... }));

// First argument must be smaller than

// the second argument

array.slice(3, 0);



18

Precision and Recall

Swapped arguments

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

AST embedding



18

Precision and Recall

Swapped arguments

0.9

0.92

0.94

0.96

0.98

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

AST embedding
Random embedding



18

Precision and Recall

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Wrong operator in binary operations

AST embedding
Random embedding



19

Open Challenges

Better representation of identifiers
� Same name ; Same meaning

Ensure that seeded bugs are realistic
� Learn bug patterns from version histories?

Generalize to more bug patterns
� Train a model per bug pattern



20

Conclusion

Replace manually written program
analyses with trained machine learning
models

Buggy code

Correct code
Classifier

Train machine
learning model

Precision and recall match or exceed
manually written analyses


