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Automated Bug Detection

Hundreds of bug
detectors
� One analysis for each

bug pattern
� E.g., Google’s Error

Prone framework:
150+ different
analyses

Thousands of bug
patterns
� Existing bug detectors

miss most bugs
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Hundreds of bug
detectors
� One analysis for each

bug pattern
� E.g., Google’s Error

Prone framework:
150+ different
analyses

Thousands of bug
patterns
� Existing bug detectors

miss most bugs

Manually creating and tuning bug
detectors doesn’t scale
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Learning to Find Bugs

Buggy code

Correct code

Train a model to identify instances of
bug patterns:

Classifier
Train machine
learning model
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Learning to Find Bugs

Buggy code

Correct code

Train a model to identify instances of
bug patterns:

Classifier

New code

Buggy/Okay

Train machine
learning model

Problem of writing program analysis

Problem of finding training examples
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Here: Name-based Bug Detection

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

What’s wrong with this code?
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Here: Name-based Bug Detection

function setPoint(x, y) { ... }

var x_dim = 23;

var y_dim = 5;

setPoint(y_dim, x_dim);

Incorrect order of arguments

What’s wrong with this code?
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Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

First name-based bug detector [ISSTA’11]

� Finds incorrectly ordered, equally typed
arguments

� Compares call sites of same method

2011
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Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

Improved analysis [TSE’13]

� Improved precision
� Effective for multiple languages (Java, C, C++)

2013
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Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

Generalized analysis [ICSE’16]

� Apply to arbitrary arguments
� Heuristic pruning of false positives

2016
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Prior Work

Name-based bug detection
� Find unusual and likely incorrect arguments
� Exploit similarities of identifier names

Adopted by Google [OOPSLA’17]

� Default check in Error Prone framework
� Found 2000+ new bugs

2017
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Problem Solved?

Various hand-tuned heuristics

� Detect more bugs
� Special check for assertEquals calls

� Reduce false positives
� Hard-coded method names that suggest that

swapping is intended, e.g., transpose
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Problem Solved?

Various hand-tuned heuristics

� Detect more bugs
� Special check for assertEquals calls

� Reduce false positives
� Hard-coded method names that suggest that

swapping is intended, e.g., transpose

Goal: Replace hand-tuned analysis with
trained machine learning model
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This Work: Overview

Code corpus

Bug detector

Create
training data

Learn representation
of identifiers

Train model that
identifies bugs
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Creating Training Data

Program transformation that seeds bugs

For swapped arguments:
� Visit every function call with ≥ 2 arguments
� Positive example: Original order of arguments
� Negative example: Swap first two arguments

setPoint(x, y); setPoint(y, x);
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Representing Identifiers

How to reason about identifier names?

Prior work: Lexical similarity
� x similar to x dim

Want: Semantic similarity
� x similar to width

� list similar to seq
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Background: Word Embeddings

Word embeddings in NLP
� Continuous vector representation for each word
� Similar words have similar vectors

Word2Vec: Learn from corpus of text
� ”You shall know a word by the company it keeps”
� Context: Surrounding words in sentences
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AST Context

What’s the context of an identifier?

Our approach: AST-based context
� Surrounding nodes:

Parent, grandparent, siblings, etc.

� Extract node types, node contents, and relative
positioning
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AST Context: Example

window.setTimeout(callback, 1000);

CallExpr

MemberExpr

Identifier

window

Identifier
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Arguments
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1000
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Learning Embeddings

� Train neural network to predict context
from identifier

� Use hidden layer as representation for
identifier

Input layer:
Identifier

Hidden
layer

Output layer:
Context
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Learning Embeddings

� Train neural network to predict context
from identifier

� Use hidden layer as representation for
identifier

Input layer:
Identifier

Hidden
layer

Output layer:
Context

One-hot
vectors Embedding vector
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Training the Bug Detector

� Given: Embeddings of callee and two
arguments

� Train neural network:
Predict whether correct or wrong

Callee

Arg. 1

Arg. 2

Probability
that correct

Two hidden layers

+

+
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Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations
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Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }
"abc"

if (x == undefined) ...
>

bytes[i + 1] >> 4
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Beyond Swapped Arguments

Same idea works for other bug patterns
� Assignments of incorrect values

� Incorrect binary operators

� Swapped operands of binary operations

var callback = function() { .. }
"abc"

if (x == undefined) ...
>

bytes[i + 1] >> 4
4 >> bytes[i + 1]
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Evaluation: Setup

� 100.000 JavaScript files from various
projects
� 80.000 for training
� 20.000 for validation

� 68 million lines of code
� 37.3 million occurrences of identifiers
� 10.1 million occurrences of literals
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Examples of Bugs

// Callback must come before the

// number of milliseconds to wait

setTimeout(50, dojo.lang.hitch(this,

function(){ ... }));

// First argument must be smaller than

// the second argument

array.slice(3, 0);
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Precision and Recall

Swapped arguments
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Precision and Recall
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Open Challenges

Better representation of identifiers
� Same name ; Same meaning

Ensure that seeded bugs are realistic
� Learn bug patterns from version histories?

Generalize to more bug patterns
� Train a model per bug pattern
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Conclusion

Replace manually written program
analyses with trained machine learning
models

Buggy code

Correct code
Classifier

Train machine
learning model

Precision and recall match or exceed
manually written analyses


