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Manually creating and tuning bug
detectors doesn’t scale
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Problem of writing program analysis

v

Problem of finding training examples



Here: Name-based Bug Detection

What’s wrong with this code?

function setPoint(x, y) { ... }

var x dim = 23;
var y dim = 5;
setPoint (y dim, x dim);



Here: Name-based Bug Detection

What’s wrong with this code?

function setPoint(x, y) { ... }

var x dim = 23;
var y_dim = 5;

setPoint{y dim, x dim)

Incorrect order of arguments



Prior Work

Name-based bug detection

= Find unusual and likely incorrect arguments
= Exploit similarities of identifier names
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First name-based bug detector [ISSTA11]

m Finds incorrectly ordered, equally typed
arguments
m Compares call sites of same method



Prior Work

Name-based bug detection

= Find unusual and likely incorrect arguments
= Exploit similarities of identifier names
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Improved analysis [TSE'13]

= Improved precision
m Effective for multiple languages (Java, C, C++)



Prior Work

Name-based bug detection

= Find unusual and likely incorrect arguments
= Exploit similarities of identifier names
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Generalized analysis [ICSE'16]

m Apply to arbitrary arguments
m Heuristic pruning of false positives



Prior Work

Name-based bug detection

= Find unusual and likely incorrect arguments
= Exploit similarities of identifier names
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Adopted by Google [0oPsLA'17]

m Default check in Error Prone framework
= Found 2000+ new bugs
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1 Hard-coded method names that suggest that
swapping is intended, e.g., transpose



Problem Solved?

Various hand-tuned heuristics

= Detect more bugs

1 Special check for assertEquals calls

= Reduce false positives

1 Hard-coded method names that suggest that
swapping is intended, e.g., transpose

Goal: Replace hand-tuned analysis with
trained machine learning model



This Work: Overview

Code corpus
v 1

Create Learn representation
training data of identifiers

Train model that
——» Bug detector

identifies bugs




Creating Training Data

Program transformation that seeds bugs

For swapped arguments:

= Visit every function call with > 2 arguments
m Positive example: Original order of arguments
= Negative example: Swap first two arguments

setPoint (x, y); —® setPoint(y, X);



Representing ldentifiers

How to reason about identifier names?

Prior work: Lexical similarity

m x Similar to x_dim

Want: Semantic similarity

m x similar to width
m list similarto seqg



Background: Word Embeddings

Word embeddings in NLP

m Continuous vector representation for each word
= Similar words have similar vectors

Word2Vec: Learn from corpus of text

= "You shall know a word by the company it keeps”
s Context: Surrounding words in sentences
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AST Context

What’s the context of an identifier?

Our approach: AST-based context

= Surrounding nodes:
Parent, grandparent, siblings, etc.

= Extract node types, node contents, and relative
positioning
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AST Context: Example

window.setTimeout (callback, 1000);

CallExpr

MemberE)i pr Arguments
Identifier Identifier Identifier Literal

window setTimeout callBack 1000
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AST Context: Example

window.setTimeout (callback, 1000);

Arguments

MemberExpr

Identifier Identifier Identlfler theral
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Learning Embeddings

= [rain neural network to predict context
from identifier

= Use hidden layer as representation for
identifier

Input layer: Hidden Output layer:
Identifier layer Context
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Learning Embeddings

= [rain neural network to predict context
from identifier

= Use hidden layer as representation for
identifier

Input layer: Hidden Output layer:
Identifier layer Context

e . | . I
One-hot 3

vectors ____ Embedding vector 13




Training the Bug Detector

= Given: Embeddings of callee and two
arguments

= Train neural network:
Predict whether correct or wrong

Callee

t Probability
Arg. 1 —>- 0 —> 3 —> 1

+ that correct
Arg. 2

Two hidden layers
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Beyond Swapped Arguments

Same idea works for other bug patterns

m Assignments of incorrect values

= Incorrect binary operators

m Swapped operands of binary operations
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Beyond Swapped Arguments

Same idea works for other bug patterns

m Assignments of incorrect values

var callback = function() { .. }

= Incorrect binary operators

m Swapped operands of binary operations
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Beyond Swapped Arguments

Same idea works for other bug patterns

m Assignments of incorrect values
"abc"

var callback = fum::m%)-ﬁ-/[

= Incorrect binary operators

m Swapped operands of binary operations
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Beyond Swapped Arguments

Same idea works for other bug patterns

m Assignments of incorrect values
"abc"

var callback = fum::m%)-ﬁ-/[

= Incorrect binary operators
if (x == undefined) ...

m Swapped operands of binary operations
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Beyond Swapped Arguments

Same idea works for other bug patterns

m Assignments of incorrect values
"abc"

var callback = fum::m%)-ﬁ-/[

= Incorrect binary operators
>
if (xS=¥undefined) ...

m Swapped operands of binary operations
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Beyond Swapped Arguments

Same idea works for other bug patterns

m Assignments of incorrect values
"abc"
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= Incorrect binary operators
>
if (xS=¥undefined) ...
m Swapped operands of binary operations

bytes[i + 1] >> 4



Beyond Swapped Arguments

Same idea works for other bug patterns

m Assignments of incorrect values
"abc"

var callback = fum::m%)-([

= Incorrect binary operators
>
if (xS=¥undefined) ...

m Swapped operands of binary operations
4 >> bytes[i + 1]




Evaluation: Setup

= 100.000 JavaScript files from various
projects

- 80.000 for training
1 20.000 for validation

= 68 million lines of code

0 37.3 million occurrences of identifiers
5 10.1 million occurrences of literals
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Examples of Bugs

// Callback must come before the

// number of milliseconds to wait

setTimeout (50, dojo.lang.hitch(this,
function(){ ... }));

// First argument must be smaller than

// the second argument
array.slice(3, 0);
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Precision and Recall
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Precision and Recall

AST embedding ——
Random embedding —=—

Wrong operator in binary operations

:

09 t
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Open Challenges

Better representation of identifiers

m Same name % Same meaning

Ensure that seeded bugs are realistic

= Learn bug patterns from version histories?

Generalize to more bug patterns

= [rain a model per bug pattern
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Conclusion

Replace manually written program
analyses with trained machine learning
models

> . -
code Train machine .
: — Classifier
learning model
Correct code+>

Precision and recall match or exceed
manually written analyses
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