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Program synthesis
[Simon 1963, Summers 1977, Manna-Waldinger 1977, Pnueli-Rosner 1989]

Specification

Synthesizer

Program 
+ 

Correctness 
Certificate

Specification: Logical constraint 
that must be satisfied exactly

Algorithm: Search for a program 
that satisfies the specification. 



“Bimodal” program synthesis
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over programs 

Neural Sketch Learning for Conditional Program Generation. Murali, Qi, Chaudhuri, and Jermaine. 
Arxiv 2017.
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“Bimodal” program synthesis 
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Ambiguous “evidence” +
Logical requirements

Candidate implementations

Prior distribution

Learned
from a real-world
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Synthesizer

Posterior distribution 
over programs 

• API calls or types that the program uses 
• “Soft” I/O examples or constraints
• Natural language description of what the program does
• ...

An 
idealized 
program



The Bayou synthesizer: A demo
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http://bit.ly/2zgP5fj



Conditional program generation

Assume random variables 𝑋 and 𝑃𝑟𝑜𝑔, over labels and  programs
respectively, following a joint distribution 𝑄(𝑋, 𝑃𝑟𝑜𝑔). 

Offline: 
• You are given a set 𝑋*, 𝑃𝑟𝑜𝑔* of samples from 𝑄(𝑋, 𝑃𝑟𝑜𝑔). From 

this, learn a function 𝑔 that maps evidence to programs.

• Learning goal: maximize 𝐸 ,,-./0 ∼2 𝐼 , where

Online: Given 𝑋, produce 𝑔(𝑋).
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I =

⇢
1 if g(X) ⌘ Prog

0 otherwise.



In what we actually do

The map g is probabilistic.

Learning is maximum conditional likelihood 
estimation:
• Given {(𝑋*, 𝑃𝑟𝑜𝑔*)}, solve argmax

;
∑ log 𝑃 𝑃𝑟𝑜𝑔* 𝑋*, 𝜃)�
* .
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Programs

Language capturing the essence of API usage in Java.
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Prog ::= skip | Prog1;Prog2 | call Call |
let x = Call |
if Exp then Prog1 else Prog2 |
while Exp do Prog1 | try Prog1 Catch

Exp ::= Sexp | Call | let x = Call : Exp1
Sexp ::= c | x
Call ::= Sexp0.a(Sexp1, . . . , Sexpk)

Catch ::= catch(x1) Prog1 . . . catch(xk) Progk

API method name

API call



Labels

Set of API calls
• readline, write,…

Set of API datatypes
• BufferedReader, FileReader,…

Set of keywords that may appear while describing 
program actions in English 
• read, file, write,…
• Obtained from API calls and datatypes through a camel case 

split
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Challenges

Directly learning over source code simply doesn’t work

• Source code is full of low-level, program-specific names and 
operations.

• Programs need to satisfy structural and semantic constraints 
such as type safety. Learning to satisfy these constraints is 
hard.  
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Language abstractions to the rescue!

Learn not over programs, but typed, syntactic 
models of programs.
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Sketches

The sketch of a program is obtained by applying an 
abstraction function 𝛼.

From sketch 𝑌 to program 𝑃𝑟𝑜𝑔: a fixed concretization 
distribution 𝑃(𝑃𝑟𝑜𝑔	|	𝑌).	

Learning goal changes to
• Given {(𝑋*, 𝑌*)}, solve argmax

;
∑ log 𝑃 𝑌* 𝑋*, 𝜃)�
* .
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Abstract API call

Sketches 

Y ::= Call | skip | while Cond do Y1 | Y1;Y2 |
try Y1 Catch | if Cond then Y1 else Y2

Catch ::= catch(⌧1) Y1 . . . catch(⌧k) Yk

Cond ::= {Call1, . . . ,Callk}
Call ::= a(⌧1, . . . , ⌧k)



Program synthesis
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Program synthesis
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Combinatorial 
“concretization”

Sample
sketches

Sketch →
Executable code 

Implementations
satisfying 𝜑

𝑃 𝑌	 	𝑋)Evidence 𝑋

Logical 
requirement 𝜑

Type-directed,
compositional
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End-to-end
differentiable
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architecture
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✘

Not all sketches may 
be realizable as 

executable programs



Learning using a probabilistic 
encoder-decoder
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𝑋: Evidence
𝑌: Sketches
𝑍: Latent “intent”

Representation 
of hidden intent

Prior for 
regularization

Encoder
f

Decoder
g

𝑍

𝑓(𝑋) Y𝑋

𝑍

𝑋 𝑌



Learning using a probabilistic 
encoder-decoder
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𝑋: Evidence
𝑌: Sketches
𝑍: Latent “intent”

Encoder
f

Decoder
g

𝑍

𝑓(𝑋) Y𝑋

	𝑃 𝑍 = 	𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝐼

𝑃 𝑓(𝑋)	 	𝑍) = 	𝑁𝑜𝑟𝑚𝑎𝑙 𝑍, 𝜎S𝐼

During learning, use 
Jensen’s inequality 
to get smooth loss function



Learning using a probabilistic 
encoder-decoder
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𝑋: Evidence
𝑌: Sketches
𝑍: Latent “intent”

Encoder
f

Decoder
g

𝑍

𝑓(𝑋) Y𝑋

	𝑃 𝑍 = 	𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝐼
𝑃 𝑓(𝑋)	 	𝑍) = 	𝑁𝑜𝑟𝑚𝑎𝑙 𝑍, 𝜎S𝐼

During inference,
get P(Z | X) using 
normal-normal conjugacy



Neural decoder
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…
0.3 0.7

Distribution on rules that can be 
fired at a point, given history so far.

History encoded as a real vector.



Concretization

20

…

Ruled out by type system

✗



Results

• Trained method on 100 million lines of Java/Android code. ~2500 API 
methods, ~1500 types.

• Synthesis of method bodies from scratch, given 2-3 API calls and 
types. 

• Sketch learning critical to accuracy.

• Good performance compared to GSNNs (state of the art conditional 
generative model).

• Good results on label-sketch pairs not encountered in training set.
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Thank you!

Questions? 
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swarat@rice.edu
http://www.cs.rice.edu/~swarat
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