
Conditional Program Generation
for Bimodal Program Synthesis

(Joint work with Chris Jermaine, Vijay Murali, and Letao Qi)

Swarat Chaudhuri
Rice University

www.cs.rice.edu/~swarat

Program synthesis
[Simon 1963, Summers 1977, Manna-Waldinger 1977, Pnueli-Rosner 1989]

Specification

Synthesizer

Program
+

Correctness
Certificate

Specification: Logical constraint
that must be satisfied exactly

Algorithm: Search for a program
that satisfies the specification.

“Bimodal” program synthesis

3

An
idealized
program

Candidate implementations

Prior distribution

Synthesizer

Posterior distribution
over programs

Neural Sketch Learning for Conditional Program Generation. Murali, Qi, Chaudhuri, and Jermaine.
Arxiv 2017.

Learned
from a real-world

code corpus

Ambiguous “evidence” +
Logical requirements

“Bimodal” program synthesis

4

Ambiguous “evidence” +
Logical requirements

Candidate implementations

Prior distribution

Learned
from a real-world

code corpus

Synthesizer

Posterior distribution
over programs

• API calls or types that the program uses
• “Soft” I/O examples or constraints
• Natural language description of what the program does
• ...

An
idealized
program

The Bayou synthesizer: A demo

5

http://bit.ly/2zgP5fj

Conditional program generation

Assume random variables 𝑋 and 𝑃𝑟𝑜𝑔, over labels and programs
respectively, following a joint distribution 𝑄(𝑋, 𝑃𝑟𝑜𝑔).

Offline:
• You are given a set 𝑋*, 𝑃𝑟𝑜𝑔* of samples from 𝑄(𝑋, 𝑃𝑟𝑜𝑔). From

this, learn a function 𝑔 that maps evidence to programs.

• Learning goal: maximize 𝐸 ,,-./0 ∼2 𝐼 , where

Online: Given 𝑋, produce 𝑔(𝑋).

6

I =

⇢
1 if g(X) ⌘ Prog

0 otherwise.

In what we actually do

The map g is probabilistic.

Learning is maximum conditional likelihood
estimation:
• Given {(𝑋*, 𝑃𝑟𝑜𝑔*)}, solve argmax

;
∑ log 𝑃 𝑃𝑟𝑜𝑔* 𝑋*, 𝜃)�
* .

7

Programs

Language capturing the essence of API usage in Java.

8

Prog ::= skip | Prog1;Prog2 | call Call |
let x = Call |
if Exp then Prog1 else Prog2 |
while Exp do Prog1 | try Prog1 Catch

Exp ::= Sexp | Call | let x = Call : Exp1
Sexp ::= c | x
Call ::= Sexp0.a(Sexp1, . . . , Sexpk)

Catch ::= catch(x1) Prog1 . . . catch(xk) Progk

API method name

API call

Labels

Set of API calls
• readline, write,…

Set of API datatypes
• BufferedReader, FileReader,…

Set of keywords that may appear while describing
program actions in English
• read, file, write,…
• Obtained from API calls and datatypes through a camel case

split

9

Challenges

Directly learning over source code simply doesn’t work

• Source code is full of low-level, program-specific names and
operations.

• Programs need to satisfy structural and semantic constraints
such as type safety. Learning to satisfy these constraints is
hard.

10

Language abstractions to the rescue!

Learn not over programs, but typed, syntactic
models of programs.

11

Sketches

The sketch of a program is obtained by applying an
abstraction function 𝛼.

From sketch 𝑌 to program 𝑃𝑟𝑜𝑔: a fixed concretization
distribution 𝑃(𝑃𝑟𝑜𝑔	|	𝑌).	

Learning goal changes to
• Given {(𝑋*, 𝑌*)}, solve argmax

;
∑ log 𝑃 𝑌* 𝑋*, 𝜃)�
* .

12

13

Abstract API call

Sketches

Y ::= Call | skip | while Cond do Y1 | Y1;Y2 |
try Y1 Catch | if Cond then Y1 else Y2

Catch ::= catch(⌧1) Y1 . . . catch(⌧k) Yk

Cond ::= {Call1, . . . ,Callk}
Call ::= a(⌧1, . . . , ⌧k)

Program synthesis

14

Combinatorial
“concretization”

Sample
sketches

Sketch →
Executable code

Implementations
satisfying 𝜑

𝑃 𝑌	 	𝑋)Evidence 𝑋

Logical
requirement 𝜑

Type-directed,
compositional
synthesizer

End-to-end
differentiable
neural
architecture

Learned from
𝑿𝒊, 𝒀𝒊 	pairs

Program synthesis

15

Combinatorial
“concretization”

Sample
sketches

Sketch →
Executable code

Implementations
satisfying 𝜑

𝑃 𝑌	 	𝑋)Evidence 𝑋

Logical
requirement 𝜑

Type-directed,
compositional
synthesizer

End-to-end
differentiable
neural
architecture

Learned from
𝑿𝒊, 𝒀𝒊 	pairs

✘

Not all sketches may
be realizable as

executable programs

Learning using a probabilistic
encoder-decoder

16

𝑋: Evidence
𝑌: Sketches
𝑍: Latent “intent”

Representation
of hidden intent

Prior for
regularization

Encoder
f

Decoder
g

𝑍

𝑓(𝑋) Y𝑋

𝑍

𝑋 𝑌

Learning using a probabilistic
encoder-decoder

17

𝑋: Evidence
𝑌: Sketches
𝑍: Latent “intent”

Encoder
f

Decoder
g

𝑍

𝑓(𝑋) Y𝑋

	𝑃 𝑍 = 	𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝐼

𝑃 𝑓(𝑋)	 	𝑍) = 	𝑁𝑜𝑟𝑚𝑎𝑙 𝑍, 𝜎S𝐼

During learning, use
Jensen’s inequality
to get smooth loss function

Learning using a probabilistic
encoder-decoder

18

𝑋: Evidence
𝑌: Sketches
𝑍: Latent “intent”

Encoder
f

Decoder
g

𝑍

𝑓(𝑋) Y𝑋

	𝑃 𝑍 = 	𝑁𝑜𝑟𝑚𝑎𝑙 0, 𝐼
𝑃 𝑓(𝑋)	 	𝑍) = 	𝑁𝑜𝑟𝑚𝑎𝑙 𝑍, 𝜎S𝐼

During inference,
get P(Z | X) using
normal-normal conjugacy

Neural decoder

19

…
0.3 0.7

Distribution on rules that can be
fired at a point, given history so far.

History encoded as a real vector.

Concretization

20

…

Ruled out by type system

✗

Results

• Trained method on 100 million lines of Java/Android code. ~2500 API
methods, ~1500 types.

• Synthesis of method bodies from scratch, given 2-3 API calls and
types.

• Sketch learning critical to accuracy.

• Good performance compared to GSNNs (state of the art conditional
generative model).

• Good results on label-sketch pairs not encountered in training set.

21

Thank you!

Questions?

22

swarat@rice.edu
http://www.cs.rice.edu/~swarat

(Research funded by the DARPA MUSE award #FA8750-14-2-0270)

