Conditional Program Generation
for Bimodal Program Synthesis

Swarat Chaudhuri
Rice University

www.cs.rice.edu/~swarat

(Joint work with Chris Jermaine, Vijay Murali, and Letao Qi)

S& CAPER

Program synthesis

[Simon 1963, Summers 1977, Manna-Waldinger 1977, Pnueli-Rosner 1989]

Specification
Specification: Logical constraint
. that must be satisfied exactly
Synthesizer
Algorithm: Search for a program
@ that satisfies the specification.
Program
+
Correctness
Certificate

&8 CAPER

“Bimodal” program synthesis

An
idealized
program

Prior distribution

¥

Synthesizer

\

Learned
from a real-world
code corpus

O Ambiguous “evidence” +
o Logical requirements

R
p—

Candidate implementations

Posterior distribution
over programs

Neural Sketch Learning for Conditional Program Generation. Murali, Qi, Chaudhuri, and Jermaine.
Arxiv 2017.

&8 CAPER ;

“Bimodal” program synthesis

An
idealized
program

Prior distribution
\

Learned
from a real-world
code corpus

O Ambiguous “evidence” +
O Logical requirements

\ 4

Synthesizer

| | Candidate implementations

Posterior distribution
over programs

API calls or types that the program uses
“Soft” I/O examples or constraints
Natural language description of what the program does

&8 CAPER 4

The Bayou synthesizer: A demo

http://bit.ly/2zgP5f]

Conditional program generation

Assume random variables X and Prog, over labels and programs
respectively, following a joint distribution Q (X, Prog).

Offline:
* You are given a set {(X;, Prog;)} of samples from Q(X, Prog). From
this, learn a function g that maps evidence to programs.

* Learning goal: maximize E(x prog)~ql/], where

7 1 if g(X) = Prog
] 0 otherwise.

Online: Given X, produce g(X).

&M CAPER 6

In what we actually do

The map g is probabilistic.

Learning is maximum conditional likelihood
estimation:
* Given {(X;, Prog;)}, solve arg max Y.;log P(Prog;|X;, 0).

&/ CAPER

Programs

Language capturing the essence of APl usage in Java.

Prog ::= skip | Prog;;Prog, | call Call |
let x = Call |

if Exp then Prog, else Prog, |
while Exp do Prog, | try Prog,; Catch

Exp ;= Sexp | Call | let x = Call : Exp,
Sexp == c¢|«x
Call ;= Sexpg.a(Sexpq,...,Sexp;.)
API call - Catch ::= catch(z,) Prog,; ... catch(xy) Prog,

APl method name

&# CAPER

Labels

Set of API calls

* readline, write,...

Set of API datatypes
» BufferedReader, FileReader,...

Set of keywords that may appear while describing
program actions in English
* read, file, write,...

* Obtained from API calls and datatypes through a camel case
split

&/ CAPER

Challenges

Directly learning over source code simply doesn’t work

* Source code is full of low-level, program-specific names and
operations.

* Programs need to satisfy structural and semantic constraints
such as type safety. Learning to satisfy these constraints is
hard.

&/ CAPER

Language abstractions to the rescue!

Learn not over programs, but typed, syntactic
models of programs.

&8 CAPER

Sketches

The sketch of a program is obtained by applying an
abstraction function «.

From sketch Y to program Prog: a fixed concretization
distribution P(Prog | Y).

Learning goal changes to
* Given {(X;,Y;)}, solve arg max Y.;log P(Y;|X;, 0).

&M CAPER

12

Sketches

Y ::= Call | skip | while Cond do Y | Y1;VY2 |
try Y, Catch | if Cond then Y, else Y,

Catch ::= catch(ry) Y; ... catch(7) Y

Cond == {Cally,...,Cally}

Call - a(T L 77_}{) sets of abstract API calls

f

Abstract API call

APl method name

§& CAPER 13

Program synthesis Learned from
(X3 Y;) pairs

End-to-end

Evidence X ‘ differentiable
neural

architecture

Logical
requirement ¢

Sample
il sketches

A

Combinatorial

Implementations ..
P < ““concretization”’

satisfying ¢

synthesizer

A

Sketch -
Executable code

& CAPER

Type-directed,
compositional

14

Program synthesis Learned from
(X;, Y;) pairs

End-to-end

Not all sketches may » differentiable
be realizable as neural
executable programs / architecture
requirement
Sample
x il sketches

Type-directed,
compositional
synthesizer

A

Combinatorial

Implementations ..
P < ““concretization”’

satisfying ¢

A

Sketch -

Executable code .

& CAPER

Learning using a probabilistic | X:Evidence
. Y: Sketches |
encoder-decoder ' Z: Latent “intent”

Z
Encoder f(X)/\\[Decoder v
X — f ———————— Y g ——————— >

Feedforward Representation
neural net of hidden intent

Prior for
regularization

&8 CAPER y

Learning using a probabilistic | X:Evidence
. Y: Sketches

encoder-decoder e
Z
¥ Enc:c)der f(X)/\\[Dec;)der : y
P(Z) = Normal(0,]) During learning, use

Jensen’s inequality

_ 2
PUX)12) = Normal(Z,o7]) to get smooth loss function

&8 CAPER ;

Learning using a probabilistic | x:Evidence
. Y: Sketches |
encoder-decoder ' Z: Latent “intent”

Z

Encoder f(X)/\ Decoder
X e R P e .Y

P(Z) = Normal(0,I) During inference,

A N 1(Z. 021 get P(Z | X) using
P(f(X)|2) ormal(Z,o°1) normal-normal conjugacy

&8 CAPER 1

Neural decoder

Distribution on rules that can be
fired at a point, given history so far.

History encoded as a real vector.

~ o
‘-
——
—————___
~~~
~—
~

”’
_________
-
-

19




Concretization

20



Results

* Trained method on 100 million lines of Java/Android code. ~2500 API
methods, ~1500 types.

* Synthesis of method bodies from scratch, given 2-3 API calls and
types.

* Sketch learning critical to accuracy.

* Good performance compared to GSNNs (state of the art conditional
generative model).

* Good results on label-sketch pairs not encountered in training set.

&/ CAPER



Thank you!

Questions?

swarat(@rice.edu
http://www.cs.rice.edu/~swarat

(Research funded by the DARPA MUSE award #FA8750-14-2-0270)

&8 CAPER

22



