
Predicting	Crashing	Releases	of
Mobile	Applications

Xin	Xia,	Emad	Shihab,	Yasutaka	Kamei,	David	Lo,	
Xinyu Wang

eshihab@cse.concordia.ca
das.encs.concordia.ca



Mobile Applications are On the 
Rise

2
Source:	http://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/

2	Million	apps	in	Apple’s	app	store



Mobile Apps are Different

3

Mobile	apps	have	many	releases…

• Competition
• App	stores

…driven	by	two	key	factors:



Mobile App Crashes are a 
Challenge

4

Mobile	users	are	frequently	and	
negatively impacted by	app	crashes

Short	release	cycles	impact	
testing	schedules	for	developers



5

Our Goal is to Predict 
Crashing Releases

RQ1.	Can	we	effectively	predict	
crashing	releases?

RQ2.	What	are	the	best	
indicators	of	these	crashing	
releases?



How Can we Predict Crashing 
Releases?

6

We	derive	metrics	using	
development	history	to	
predict	crashing	releases



Approach



Approach	Overview

Extract	&	label	
crashing	releases

Mine	Apps	
(F-droid)

Extract	factors	to	
predict	crashing	

releases

Predict	&	evaluate	
performance

Code	&
Complexity

Time	&	Text

Commit

Diffusion

.

.



Mobile App Dataset

9

Mined	900	mobile	apps	from	F-droid
466	of	these	use	Git
22	apps	are	active	&	have	2+	yrs of	dev	history
10 have	more	than	100	releases

For	each	app,	we	collect:
1.	Source	code
2.	Repository	meta-data
3.	Wiki	page



Determining Crashing Releases

10

Determine	all	
releases	from	
manifest

Determine
releases	&	

release	dates

Mine	&	group	
commits	of	the	
specific	releases



Determining Crashing Releases

11

Search	commits	
logs	to	determine	
crashing	fixes

Mark	releases	as	
crash-inducing	

releases

Manually	examine	
(flagged)	crashing	

releases

Crashing	fix

Crashing	fix



Determining Crashing Releases

12

Project #	Releases #	Crashing %	Crashing

App1 597 97 16%

App2 149 23 15%

App3 156 28 18%

App4 392 19 5%

App5 230 36 13%

App6 233 26 11%

App7 262 34 13%

App8 241 34 14%

App9 205 39 19%

App10 123 8 7%

Total 2,638 344 13%	(mean)



Factors Used in Prediction

13

Code	&	
Complexity

Diffusion

Commit

Time	&	
Text

• Lines	added
• Lines	del.
• Cyclomatic comp.
• Rel.	size
• No.	files	(curr &	prev)	

release

• No.	subsystems	modified
• Entropy	of	modified	files
• Entropy	of	code	churn

• No.	of	commits
• No.	bug	fixing	commits

• Days	since	last	rel.
• Fuzzy	and	Naïve	Bayes	

scores	of	commit	
messages	from	prior	
release



Evaluating	Prediction	Models

14

Actually	Crashing

Predicted	Crashing

TP

FP

FN

Precision: “How	small	is	FP”

Recall:	“How	small	is	FN”

F-measure: Harmonic	mean	of	Precision	and	Recall



Empirical	Results



RQ1. How well can we predict 
crashing release?

16

13

50

20

50

24

62

30

64

0

10

20

30

40

50

60

70

Precision Recall F-measure AUC

Baseline NB

*Evaluated	on	a	100	times	10-fold	cross	validation.



RQ2. What are the best indicators 
of a crashing release?

17

Project Factor	1 Factor	2

App1 Text Code &	Comp

App2 Text Code &	Comp

App3 Text Code &	Comp

App4 Text Text

App5 Text Code &	Comp

App6 Text Code &	Comp

App7 Text Code &	Comp

App8 Text Code &	Comp

App9 Code	&	Comp Text

App10 Text Text

Text	and	code	& complexity	factors	are	
the	best	indicators	of	crashing	releases



Longitudinal Analysis

18

Train	on	the	earliest	70% of	the	data	and	test	on	the	last	30%

20

62

30

64

21

59

28

62

0

10

20

30

40

50

60

70

Precision Recall F1-measure AUC

Cross	val Longitudinal



Developer Feedback

19

Majority	of	developers	indicated	that	the	factors	and	machine	
learning	technique	are	practical

“we	can	easily	extract	these	factors	from	commits	in	a	release…”

“although	F1-score	is	not	high,	recall	score	is	good,	in	
practice	we	are	interested	to	find	all	the	crash	releases	as	
possible,	thus	recall	is	more	important…”

“given	that	releases	tend	to	be	small,	inspecting	an	entire	release	
is	not	impossible…”



Limitations

20

• Our	approach	is	heavily	dependent	on	commit	logs

• Examine	what	textual	features	best	indicates	crashing	
releases

• Improve	prediction	accuracy,	possibly	by	adding	
more/better	factors

• Replicate	on	more	applications



21



22


