Predicting Crashing Releases of
Mobile Applications

Xin Xia, Emad Shihab, Yasutaka Kamei, David Lo,
Xinyu Wang

eshihab@cse.concordia.ca
das.encs.concordia.ca

IIIIIIIIII

Mobile Applications are On the
Rise

Number of available apps in the Apple App Store from July 2008 to June 2016
2,500,000

2,000,000

1,500,000 2 Million apps in Apple’s app store

1,000,000

Number of available apps

500,000

Jul Sep Apr Jul Nov Mar Jun Oct Jan Jun Oct Mar Jun Sep Jan May Jun Oct Jun Sep Jan Jun Jun
‘08 '08 '09 ‘09 '09 '10 "10 '10 11 11 "11 '12 '12 '12 "13 '13 '13 '13 14 '14 15 15 '16

Source: http://www.statista.com/statistics/263795/number-of-available-apps-in-the-apple-app-store/

Mobile Apps are Different

Empir Software Eng (2016) 21:1346-1370 CrossMark
DOI 10.1007/s10664-015-9388-2

Frsh sppe n emprcal sy frquentyupdatd Mobile apps have many releases...

mobile apps in the Google play store

Stuart Mcllroy! - Nasir Ali2 - Ahmed E. Hassan!

Published online: 7 July 2015
© Springer Science+Business Media New York 2015

L]
[}
Abstract Mobile app stores provide a unique platform for developers to rapidly deploy new ee e d r I V e n b y t W O ke y fa Ct O rS o

updates of their apps. We studied the frequency of updates of 10,713 mobile apps (the top

free 400 apps at the start of 2014 in each of the 30 categories in the Google Play store). We

find that a small subset of these apps (98 apps representing 1 % of the studied apps) are

updated at a very frequent rate — more than one update per week and 14 % of the studied

apps are updated on a bi-weekly basis (or more frequently). We observed that 45 % of the

frequently-updated apps do not provide the users with any information about the rationale ° °

for the new updates and updates exhibit a median growth in size of 6 %. This paper provides o O I I I e t I t I O n
information regarding the update strategies employed by the top mobile apps. The results

of our study show that 1) developers should not shy away from updating their apps very

frequently, however the frequency varies across store categories. 2) Developers do not need

to be too concerned about detailing the content of new updates. It appears that users are not . A p p S t O r e S
too concerned about such information. 3) Users highly rank frequently-updated apps instead

of being annoyed about the high update frequency.

Communicated by: Andreas Zeller

>4 Stuart Mcllroy
mcilroy@cs.queensu.ca

Mobile App Crashes are a
Challenge

e s

What Do fom e dexiop e

understanding the issues affecting

= app quality is to determine the chal-
Mobile App pASA

The App Store lets users review

. their downloaded apps. Besides as-

Users Com laln signing star rarings (all of which

are aggregaed and displayed on @

version-level and an app-level basis),

? users can add comments explaining

out: e e o o s o

cures a unique perspective about us-

ers’ perception of the apps. Such re-

‘Hammad Khalid, Sh views, like product reviews in Web
- h Shoniy stores, correlate highly with down-

— Conpordia University {(o.\.d counts (purchases) and are 2
Shihab, ey measure of an app’s success. (For
more on previous research on this
Melyappan Nagappan, Rochester Institute of Technology topic and other topics related to this
article, see the sidebar.) A good un-

‘Ahmed E. Hassan, Queen’s University derstanding of these issues will help
developers deal with users’ concerns

and avoid low ratings. Furthermore,

// A study of user reviews from 20 i0S apps such an understanding is crucial in
uncovered 12 types of user complaints. The guiding the software engineering
masct fraquent comnlainte were functional community in tackling high-impact

Mobile users are frequently and
negatively impacted by app crashes

Short release cycles impact
testing schedules for developers

Our Goal is to Predict
Crashing Releases

RQ1. Can we effectively predict
crashing releases?

RQ2. What are the best
indicators of these crashing
releases?

How Can we Predict Crashing

Releases?

Classifying Field Crash Reports for Fixing Bugs : A
Case Study of Mozilla Firefox

Tejinder Dhaliwal, Foutse Khomh, Ying Zou

Abstrac
lecth

Dept.of Electrical and Computer Engineering
Q ingston

cen's Universty, Ki

How, and Why, Process Metrics Are Better

Universiy of California, Davis, USA
mirahman@ucdavis.cdu

Abstract—Deteet prediction techniques could potentially help

cat types of metrics are effective is very important
for successtul model deployment. In this paper we analyze the

difren perspcie. We bl many priction modl acros
rRe open source projects
m»m«, ity poioi st of Gieret s of

Premus
Univeesity of Calforsa, Davs, USA
PtdevanbuG@ucdavis.cdu

‘metrics using cross-validations on few projects. However,

s 10 predict defects of

els across.
‘multiple projects and releases, using different combinations
of metrics and leaming techniques, using broad range of
settings. Our experiments lead to the following conributions:

models, leading to the same fils bel
et wfotunaely, he recuringy dfcive st ot
be comparatively lss defect
L INTRODUCTION

Software-based systems pervade and greatly enance modern
life. As a result, customers demand very high software quality.
Finding and fxing defects is expensive; defect prediction mod-
s promise greater cfficiency by prioitizing qulity assurance
activtis. Since defect disribution is highly skewed (11, 2
such models can uscfuly inger the most defectve bitsof code.

Typically defect prediction models rely on supervised learn-
ers, which usc a labeled trsining dataset 10 lean the association
between measured enity properties (¢.£., metris calculated on
files or methods), with the defect proneness of these enitis.
Careful choice of merics can improve prediction pecformance.
Researchers have mostly focused on two broad classes of

 prediction: code metrics, which messure
propertis of the code (e, size and complexity), and process
metrics (e.g., number of changes, number of developers).
Researchers have long been interested in which class of metrics
(process or code) are better for defect prediction.

Moser et al. [18] compared the power of code and process
metrics on Eclipse project and found that process metrics
outperform code meics. However, Menzies et al. (16] report
that code metrics are uscful for defect prediction. Arisholm
et al. found that process and code metrics perform similarly in
terms of AUC but code metrics may not be cost-cflective [2]

‘Our work deviates from existing approaches in two important
ways. iy, (sd ot importy) we sk 0 udertand

ecs o bt for defet prdiction
Sccondiy, our methodoogy sqarely bescd on & predicion
Scing. Existing studics mosly evbote differcat ypes of

how and why process mel

978-1-4673-3076-3113/$31.00 © 2013 IEEE

« We compare the. o il models i ems

of both traditional measures such as AUC and F-score,
and the newer costeffectiveness [1] measures.

« We compare the stability of prediction performance of
the models across time and over multiple 1

= We compare the portabilty of prediction models: h
they perorm when o snd vl 0 compltly
different projects.

 We study stasi, iz the degree of change (or lack thereof)
in the different metrics, and the corresponding models
over time. We then relate these changes with their ability
10 predict defects

« We investigate whether prediction models tend to favor
recurringly defective files; we also examine whether such
il are elatively more defect-dense, and thus good targets
of inspection effors.

1L BACKGROUND AND THEORY

Defct preicton modelsar mosly il ing upevised
learning techniques: logistic regression, SVM, decision
te Duin g he madl systemucally ks bow 0
associate various properties of the considered software enlities
(e, methods fles and packages) with he defee pronencss

these entites have historically hypothesized
b properties of Pt using code metrics, could
sty preict dtect pecocs, Code s coud e
size (larger y be more defect-prone), or complexity
(more mmphuh.d files may be mor
of cods meses i defect paicion s been welploe 113,
16,29]

Hovever, softwar development processes, pe se, Gan be
quite comple. Laely,researchershave been inrested i the
impact of de cocess on software quality, Recent
studies [4, 19, 21, 23, 26] suggest that an entity’s process
popenies (e, developer count, code ownership, developer

change frequency) may be important indicators of
hoc procoess

452 1CSE 2013, San Francisco, CA, USA

We derive metrics using
development history to
predict crashing releases

Approach

Approach Overview

— Code &
QO @ s S ke Complexity
— W H = Time & Text
S_ u(-;n & - | — .
& w A = Commit

1l

@ . Diffusion
\

Mine Apps Extract & label Extract factors to Predict & evaluate
(F-droid) crashing releases predict crashing performance
releases

Mobile App Dataset

Mined 900 mobile apps from F-droid
466 of these use Git

22 apps are active & have 2+ yrs of dev history
10 have more than 100 releases

For each app, we collect:
1. Source code

||
2. Repository meta-data I’
i

3. Wiki page

J.’
h \= g2 -
Ig:; = € : '
|:x.u. Imi= :i ﬂ; ‘
ol | 1= @

Determining Crashing Releases

N —
M

Login
8 4
Page Discussion =p w source View history Q
com.android.keepa
B 4 KeePass-compatible password safe - view in repository & d . d 1]
<manifes . poe— roi
Main Wiki Page Contents hide]
Recent changes 1 Description Name: KeePassDroid
‘ Random page 2 Maintalner Notes _ 1D: com.android.keepass
GED 3 Versions [E— License: GPLV3
Tools 3.1206.1
(Whatlinks hero CPPREETY) = Site: http://www.keepassdroid.com &)
‘Special pages =
| Pintable version 2 ; z'g';“‘a' = Source: https:/github.com/bpellinkeepassdroi..
Permanent link e !
Donate: http://www.keepassdroid.com &
Page information 36202 2 ip: P
Browse properties 3720 S
3.81.99.11 Added: 2010-11-13
Ol = Updated: 2015-12-27 (buildlog)
3.101.99.9 ‘ . 2
3.111.99.8
3.121.99.7.2
3.131.99.6
3.141.995
3.151.99.4
3.161.99.2
3.171.98.1

3.181.9.183
3.191.9.17
aon1a1a

Determine all Determine Mine & group
releases from releases & commits of the
manifest release dates specific releases

e T ' m 10
ase 1= & [
L. Iu | —_—)
Eae = J
- e &

B-EE

Determining Crashing Releases

: origin gi
m e philjacksons-magit-mainline-clone
e014bbl Merge branch ty-log-output

Modified magit.el

Unpushed commits:
Merge branch 'pretty-log-output
Tabified new functions.
Added "magit-log-message', defaulting to the normal face.
fa magit-log-graph' and "magit-log-shal' for default log$
Some documentation, a little tidy up.
Abstracted the generation of the log line to 'magit-present-log-lines|

Basic highlighting in place. |

-uuu -F1 *magit: philjacksons-magit-mainline-clone* All of 647 (1,6
Commits in HEAD
master Merge branch ‘pretty-log-output

bbc/pretty-log-output pretty-log-output Tabified new functions.
Added 'magit-log-message', defaulting to the normal face.

Two new faces it-lo ph' and ‘"magit-log-shal' for default 1$
Some documentation, a little tidy up.

Abstracted the generation of the log line to 'magit-present-log-li$
Basic highlighting in place.

origin/master origin/HEAD bbc/master 'magit-push' and °
Merge branch 'master’' of gitorious.org:~philjackson

abstract-svn-info- r: Removed extraneous newline from remote

abstract-svn- 0 er: Set the remote string to the url an

abstract-svn-info- Corrected test doc string

abstract-svn-info- c A simple caching mechanism to ease the $

master d refpath test.

abstract-svn-info-fetcher: More detailed information from git-svn.
-UUU:%*--F1 *magit-log* Top of 6.5k (5,0) (Magit WS)----[#s,#c]

[0] @:emacs* 1l:zsh- "" 22:35 26-0ct-09

Search commits Mark releases as Manually examine
logs to determine crash-inducing

o (flagged) crashing
crashing fixes releases

releases
& 1

Determining Crashing Releases

Appl 597 97
App2 149 23
App3 156 28
App4 392 19
App5 230 36
Appb 233 26
App7 262 34
App8 241 34
App9 205 39
Appl0 123 8
Total 2,638 344

ces | DE! 12

HEmge! © B

ses | =, o d

Factors Used In Prediction

Code &
Complexity

&

Dif;‘usion

Q@ &
a4 @
Ltee '

daa

il

|
< 1Ol

* Lines added

* Lines del.
e Cyclomatic comp.
* Rel. size

No. files (curr & prev)
release

No. subsystems modified
Entropy of modified files
Entropy of code churn

* No. of commits
* No. bug fixing commits

* Days since last rel.

* Fuzzy and Naive Bayes
scores of commit
messages from prior
release

13

Evaluating Prediction Models

Actually Crashing

Recall: “How small is FN”

Precision: “How small is FP”

Predicted Crashing
F-measure: Harmonic mean of Precision and Recall 14

Empirical Results

RQ1. How well can we predict
crashing release?

70

62
60
50
50
40
30
30 24
20
20
13
0

Precision Recall F-measure

B Baseline EHNB

*Evaluated on a 100 times 10-fold cross validation.

RQ2. What are the best indicators
of a crashing release?

Appl Text
App2 Text
App3 Text

Text and code & complexity factors are
the best indicators of crashing releases

App8 Text
App9 Code & Comp
App10 Text

17

Longitudinal Analysis

Train on the earliest 70% of the data and test on the last 30%

70

60

50

40

30

20

3
0

Precision Recall F1-measure

18

M Cross val M Longitudinal

Developer Feedback

Majority of developers indicated that the factors and machine
learning technique are practical

“we can easily extract these factors from commits in a release...”

“given that releases tend to be small, inspecting an entire release
is not impossible...”

“although F1-score is not high, recall score is good, in
practice we are interested to find all the crash releases as

possible, thus recall is more important...”
19

Limitations

 Our approach is heavily dependent on commit logs

* Examine what textual features best indicates crashing
releases

* Improve prediction accuracy, possibly by adding
more/better factors

. . . 20
* Replicate on more applications

Mobile App Crashes are a
Challenge

Mobile users are frequently and
negatively impacted by app crashes

Short release cycles impact
testing schedules for developers

RQ1. How well can we predict
crashing release?

70

60 I
50

We improve avg. F-measure by 50%

and AUC by 28%
20
0
Precision Recall F-measure AUC

M Baseline ENB

*Evaluated on a 100 times 10-fold cross validation.

Approach Overview

it

Complexity

W T ﬁ

—

Commit \

B (c

& &
EF E
H
i

il
~

[
¢

@v} Diffusion

Mine Apps Extract & label Extract factors to Predict & evaluate
(F-droid) crashing releases predict crashing performance

releases

RQ2. What are the best indicators
of a crashing release?

Appl Text Complexity
App2 Text Complexity
App3 Text Code

Text, code and complexity factors are
the best indicators of crashing releases

App7 Text Code
App8 Text Code
App9 Code Text

App10 Text Text

22

