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Vulnerabilities ?




A vulnerability

“An information
security ‘vulnerability’
is a mistake in a
software that can be
directly used by a
hacker to gain access to

k.ll
a system or networ ~ CVE .-

website ~



Vulnerabilities are special

More Important - Critical
There are more bugs than vulnerabilities

Uncovered differently - defects can be
easily noticed, while vulnerabilities not.



Vulnerabilities are

Web server used to remotely
control the glassware-cleaning
machine

—

CVE for that... - ‘ 2 "




Prediction




Prediction Models

Models analysing current
and historical events to make

prediction about the
future and/or unknown
events !






Vulnerability Prediction

Take advantage of the
knowledge on some part of

a software system and/
or previous releases



Vulnerability Prediction

to automatically classify
software entities as

vulnerable or not!






Granularity

Possibility to work at :

e module level
o file level

e function level




In this work, we stay
at the file level !

*Morrison et al. “Challenges with applying vulnerability prediction models,” in HotSoS’15.
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Replicating and comparing
the main VPMs approaches
on the same software

system J$-

()
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Exact replication

of an
are

e.g. here we replicate using the
same machine learning settings



Independent replication

deliberately Or more
major aspects of the conditions
of the

e.g. we use our dataset
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# Include
and f(n) calls
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Include & Function calls

Introduced by
Neuhaus et al. at

CC5'07

Intuition : vulnerable files
share similar set of
imports and function
calls
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build a model based on either
includes or function calls of a

file.
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Overview

Preprocessing Learning

Include & function Retrleve. allincluae SVM with a linear
and function calls of a
calls fla kernel

2 models are build
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Software Metrics

Several works on using
metrics to predict
vulnerabilities, mostly by
Shin et al.
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of Software Vulnerabilities
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1 INTRODUCTION
A single explodted sofiware vulnerablity' can cruse
severe damage to an arpanzation. Annual world-wide
leeaea causnd free cvber attacks have Reen weported to he 2=
high e 3226 Billion |2]. Loss in stodk marset value in twe
days after an attack 1= estomated fram 80 0 520 mitlion
per organizaticer [2] The ‘mpormarce of detacting and
migating software sulnesabiZtes before software releey
13 pasmmaunt.

Fxperierse tnd:eates that the detectinn and mitgation of
vilneralvlises ane nest donwe hy eginears =pcrl!’|:al!y
brainwed i woftwnre setur fy wnd who “Hyink lke wn
attacker” in their dadly wock [3). Therefore, socurity testers
naed to have specialized knowladze in and a mindset for
what attackers will try. If we conild predict whitch parts of
the onde are likely o be vulrerahle, security experts con
focay wn hese areus of Iglwst sisk Ooe way of pradicting

vulnerable modules = e budld o statistical medel usivg
snftware metrics that messure the attribatez of the saftware
products and development pmovss rolated In saftware
vulnerahtlities. Hm’.nnmlly. pwdlrhm madels rained
using software metrics to find faults have been knewn to
be effective [4), |5 (€). 7L (8], 19]. [20].

Howewer, prodiction models must be trainad on what
(l-w_\' srv avdercdend o look foe Bether than wreming the
security expert with all the modules likely to coatain faclts, a
sccurity prodiction model can poir: toward the zct of
et e ||kv|'\.‘ fo combuin whet u murdy et i IIDJLGI"U
for: smxunly wvulnerain i Fahhithinlg l:n\luli\v“hn-.'vr in
a zocurity prediction model is challenging because security
vulnerabdlitics and non-security-related faulis have similar
\-:(-m[:hmm. Un'fvrv.-vliuhu!; PRENITY BT ‘I_\' froom w Canll cun
b radsislonss wnven i hn:nun, moasn b lsss s sdubielicnl mmenler .

Additionally, the number of repocted socurity valnerabil-
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Software Metrics

Several works on using
metrics to predict
vulnerabilities, mostly by
Shin et al.

Software metrics are used
in defect prediction
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using software metrics to find faults have been knewn to
be effective [4], |5) (6], 7L (8], (9. 120].
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sccurity prodiction model can poir: toward the zct of
maonduzles |1kr|.\.' b combmin whet » m-uvdy w:z.vr': = lmrkn':_;
for: smrunly wvulnerainl b l-'»lnltlt-hirlg lxw\hxli\v Jreonwer in
a zocurity prediction model is challenging because security
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build a model based software metrics
(complexity, code churn, ... N



Overview

Software Metrics

Preprocessing

Compute complexity
metrics of each
function (keeping
sum, avg and max)
code churn and the
number of authors of

every files.

Learning

Logistic regression
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IText Mining

suggested by Scandariato et

al. in 2014.

Predicting Vulnerable Software Components

Absiract—Trig paper praers a0 approash based o mach e kam-
Ing 12 predal weach components of a soltware apphcsbon conlan
Socu By vurarandil &5 The ageroach is Based on exd mineg the soxne
coade cf he comporents. Nevey, sach component s characler cad as
A SRMeS O 1ANTS COC'A NAC 1N 8 SOLUICH coca, Al the 28500 At fre-
cuercise, To:ee 1agturee ars u2ad 10 1rBCEEL WhB1er aach Companen!
& Lely 0 cortadr vuhanmbiliee 0 an ecplaomiory wadaton arn X0
Andnoie apelcalinns, we discove e thal a dopendabie prodchon modaol
can be oull. Sxch model could be use'v b priovitze e waidalion
aciveae, .45, 1 Kenli'y tha compense2 reedng apecial scruting

Index Termes—ulnerzki bes, oredicicn model, machine sarning

1 INTRODUCTION

Verification and validation [V&Y) techniques like se-
curity testing, code review and formal verificatiom are
hecoming etectivie means o reduce the number of post-
relense vulrerabilities in software products (L), This s an
impoctant achievement, as fixing a bug atter the software
has heen teleased can cost much mare than resolving
the issue ar developrment Sme (2] However, V&V
net ineapensive. An parly catimation assessed that VAV

via Text Mining

Riccardo Scandarnialto, James Walden, Aram Hovsepyan and Wouler Joosen

out to be correct |6]. In the above examples, the chaice
nf the features that are used as predictors is determined
by the expectations of a knowledgeable individual,

In our work, we nvestigated a technique that relies
less on a particular underlying axiom. Starting from (he
observation that a programming langragre = a language
after all (like Fnglish) and that symtax tokens equate to
words, we set out to analyze the source code by means
of text mining techuniques, which are conunonplace in
wnformation setaeval Texl minung applied o sowce code
was introduced by Hata el al. [7] for the predicion
of software defects and is here applied 1o the domain
nf software vulnerabilites. We use the hag-obavords
representation, in which a software camporent (a Java
source fle in us paper) 15 seen os a serwes of lenns
with associated frequencies. The terms are the feratures
we use as predictors. Hence, the set of features used
for modeling is not tived or predetermined but rather
depends on the vocabulary used hy the developers. In
this senee, this technique is less constrained ar biased
by an underlying theory of what is a-priod expected o

'I.I"‘l n
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Text Mining

suggested by Scandariato et
al. in 2014.

Aim : building a model
requiring no human
intuition for feature

selection

Predicting Vulnerable Software Components
via Text Mining

Riccardo Scandariato, James Walden, Aram Hovsepyan and Wouler Jocsen

ABSIract—Trig paper prame s an approah based on mach e kam-
INg 12 predel weach components of a soltware apphceon conlan
Socu By vurarandil &5, The ageroach is Based on exd minieg the sasne
oxde cf he comporents. Neney, each component is chamclerzad as
A SRMeS O 1ANTS OOC'A NAC 1IN 8 SOUCH coca, Al the 28500 atad fre-
cuercise, To:ee 1agturee ars u2ed 10 1rBCaEt whe1ner aach companen!
£ Lwly o cortair vuanmbiiliae In a0 eplamiory v daton arn 20
Andoie appl calinns, we diseovean that a dogpendable prodichon modal
can be oull. Sxch model could be uze'v b priovitze e waidation
ac1viRae 8.5, 1o Kenli'y tha compense 2 reedng apecial scruting

Index Termes—'ulnereki es, oredicicn model, machine earming

1 INTRODUCTION

Verification and validation [V&Y) techniques like se-
curity testing, code review and formal verificaton are
hecoming etectivie means o reduce the number of post-
relense vulrerab:lities in software products (L), This s an
impoctant achievement, as fixing a bug atter the software
has heen telensed can cost much mare than resolving
the issue ar developrent Sme (2] However, V&V
net inexpensive. An parly catimation assessed that VAV

out to be correct |6]. In the above examples, tre chaice
of the features that are used as predictors is determined
by the expectations of a knowledgeable individual,

In our work, we nvestigated a texchnique that relies
less on a particular underlying exiom. Starting from (e
observation that a programming langragre s a language
atter all (like Fnglish) and thar symtax tokens equate to
words, we set out to analyze the source code by means
of text mining techiniques, which are corunonplace in
wnformation setrieval Text mining applied o s0wce code
was ntroduced by Hata el al. [7] for the predicion
of software defects and is here applied to the domain
nf software wvulnerabilites. We use the hag-otwords
representation, in which a software camporent (a Java
source fle in us paper) 15 seen os a serwes of lenns
with associated frequencies. The terms are the feratures
we use as predictors, Hence, the set of features used
for modeling is not tived or predetermined but rather
depends on the vocabulary used hy the developers. In
this sense, this technique is less canstrained ar biased
by an underlying theory of what is a-pricd expected o
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IText Mining

suggested by Scandariato et
al. in 2014.

Aim : building a model
requiring no human
intuition for feature

selection

Predicting Vulnerable Software Components
via Text Mining

Riccardo Scandarnialto, James Walden, Aram Hovsepyan and Wouler Joosen
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1 INTRODUCTION

Verification and validation [V&Y) techniques like se-
curity testing, code review and formal verificaton are
hecoming etective means to reduce the number of post-
relense vulrerab:lities in software products (L), This s an
impoctant achievement, as fixing a bug atter the software
has heen eleased ran cost much mare than resolving
the issue ar developrent Sme (2] However, V&V
net inexpensive. An parly catimation assessed that VAV

out to be correct |6]. In the above examples, the choice
of the features that are used as predictors is determined
by the expectations of a knowledgeable individual,

In our work, we nvestigated a technique that relies
less on a particular underlying exiom. Starting from (e
observation that a programming langrage s a language
after all (like Fnglish) and that syntax tokens equade to
words, we set out to analyze the source code by means
of text mining techuniques, which are conunonplace in
wnformation setrieval Text mining applied o s0wce code
was ntroduced by Hata el al. [7] for the predicion
of software defects and is here applied 1o the domain
nf software wvulnerabilites. We use the bhag-obawvords
representation, in which a software camporent (a Java
source fle in us paper) 15 seen os a serwes of lenns
with associated frequencies. The terms are the feratures
we use as predictors, Hence, the set of features used
for modeling is not tived or predetermined but rather
depends on the vocabulary used hy the developers. In
this sense, this technique is less constrained ar biased
by an underlying theory of what is a-pricd expected o

harwsan

build a model based on a bag of
word extracted from a file
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Overview

Text mining

Preprocessing

Creating a bag of
word (splitting the
code according to the
language grammar)
for every files

Learning

e Discretisation of the
features (making
them boolean)

e Remove of all
features considered
useless

e Random Forest with
100 trees
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Introducing the dataset

based on commit and not
release




Introducing the dataset

e CVE-NVD database as a source
of vulnerabilities

* Bugzilla as a source of bugs

- N .
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Introducing the dataset

ebuild automatically
ewith the latest data available
eon the Linux Kernel




Overall dataset statistics
2006-June 2016

® 1,640 vulnerable files, accounting for 743
vulnerabilities

® 4,900 buggy files related to 3, 400 bug
reports D

e more than 50,000 files in tot "y SO




Research Questions

*RQ1. Can we between buggy and
vulnerable ?



Research Questions

*RQ1. Can we between buggy and
vulnerable ?

*RQ2. Can we between vulnerable and
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Research Questions

e RQ1. Can we distinguish between buggy and
vulnerable files?

*RQ2. Can we distinguish between vulnerable and
non vulnerable files?

e RQ3. Can we predict future vulnerable when using
past data?
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Research Questions

*RQ1. Can we distinguish between buggy and
vulnerable files?

*RQ2. Can we distinguish between vulnerable and
non vulnerable files?

e RQ3. Can we predict future vulnerable when using
past data?
+ Distinguish between buggy and vulnerable files
+ Distinguish between vulnerable and non
vulnerable files? i



Experimental Dataset

*Buggy vs Vulnerable files



Experimental dataset

Can we distinguish between buggy and

vulnerable files?
* files related to bug report patches vs
files from vulnerability patches

e ratin 3.3:1



Realistic
Dataset

*Vulnerable vs Non-Vulnerable files 78 S el B



Realistic dataset

e Can we between
Vulnerable and
* Reproduce observed between

different categories of files

e 3% of (likely) vulnerable files
e 47% of (likely) buggy files

* 50% of clear files



Evaluation



RQ1 - Bugs vs Vulnerabilities
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RQ2 - Vulnerable vs Non-
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RQ3 Time - Bugs vs
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RQ3 Time - Bugs vs
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RQ3 Time - Vulnerable vs Non-
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RQ3 Time - Vulnerable vs
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Discussion - Findings




VPM’s are working well with
historical data



-

Good precision observed even
with unbalanced data




In the practical case, the
best trade off is in ftavour of

include and function calls\




In the general case, or
favouring precision the
best one is text mining,.




Previous studies

There is no comparison with Metrics or Text Mining

There are no res 1lts related to time

Precision 70% Precision 70%
Recall 45% Recall 64%

Neuhaus et al. “Predicting vulnerable software components” CCS’07.

60



Previous studies

10 fold cross validation We found
Precision 3-7159 1 :1-2% Toi0b 40N 65%
RecA'l R7-90, 91 66-799 Recall 22%

results based on time We found
Precision 3% Precision 42 : 39%
Recall 79-85% Recall 16 : 24%

Shin et al. “Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities” TSE’11.
Shinand et al. “Cantraditionalfaultpredictionmodelsbeused for vulnerability prediction?” ESE’13.

Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’ 4.
61



Previous studies

10 fold cross validation We fOllIld
Precision 90, 2-57/% Precision 76%
Recall 77, 74-817, Recall 58%

results based on time We found
Precision 86% Precision 74 : 93%
Recall 77% Recall 37 : 27%

Scandariato et al.“Predicting Vulnerable Software Components via Text Mining” TSE’ 14.

Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’ 4. -



DataSet and Replication
package and additional results
will be available soon...

Please contact Matthieu Jimenez ( Matthieu.Jimenez@uni.lu )



Replicating and comparing the main VPMs
approaches on the same Software

system. &

Introducing the dataset

- (VE-NVD database as 3 source of vulnerabilities
+ Bupzilla 3s a source of bugs

‘%3 ;,. @Bugzilla

Thank you for
your attention !

IIQl Bugs vs Vulnerabilities

o Towt Miving
wi

KQ3 Time - 6ugs vs Vulnerabilities
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