Vulnerability Prediction Models:
A case study on the Linux Kernel

Matthieu Jimenez Mike Papadakis Yves Le Traon

Jimenez et al. “Vulnerability Prediction Models: A Case Study on the Linux Kernel” SCAM’16

@
|| 'l l o || I@ @ @ | Slides: Matthieu Jimenez 1

Théme: Sébastien Mosser

http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en

Vulnerabilities ?

A vulnerability

“An information
security ‘vulnerability’
is a mistake in a
software that can be
directly used by a
hacker to gain access to

k.ll
a system or networ ~ CVE .-

website ~

Vulnerabilities are special

More Important - Critical
There are more bugs than vulnerabilities

Uncovered differently - defects can be
easily noticed, while vulnerabilities not.

Vulnerabilities are

Web server used to remotely
control the glassware-cleaning
machine

—

CVE for that... - ‘ 2 "

Prediction

Prediction Models

Models analysing current
and historical events to make

prediction about the
future and/or unknown
events !

Vulnerability Prediction

Take advantage of the
knowledge on some part of

a software system and/
or previous releases

Vulnerability Prediction

to automatically classify
software entities as

vulnerable or not!

Granularity

Possibility to work at :

e module level
o file level

e function level

In this work, we stay
at the file level !

*Morrison et al. “Challenges with applying vulnerability prediction models,” in HotSoS’15.

GOAL@

Replicating and comparing
the main VPMs approaches
on the same software

system J$-

()

1cation ...

Repl

rephcatlon

Exact replication

of an
are

e.g. here we replicate using the
same machine learning settings

Independent replication

deliberately Or more
major aspects of the conditions
of the

e.g. we use our dataset

o
9\

Include
and f(n) calls

Include & Function calls

by
Neuhaus et al. at
CCS’07

Predicting Vulnerable Software Components

Stephan Neunaus™ Thomas Zmmermann~ Christian Holler® Andreas Zeller”

* Dapartmant of Computnr Sciance
Saarlare] Univarsity. Saarinikan, Geermany

{neuhaus holler zeller}@st.cs.uni-sh.de

ABSTRACT
Whera by mrese valiwesd e corne o soktased! U
wema il aneranst salle meonas seesting wrlneestnlivy darahee

e Wl

S il i rchives Woeat s pail vuloes bl 1o Lo on
zt= The neenlting ranking of the most velnerazk ooz-
s b s e b S Bther T ized e s on wlal
makes emponts vinereole

Inose imvwetizacicon ub -bw Mexills wolnesbil o histery, aw
swprinngls fouad el cocponsats thot o caneh vl
Coaling o the pect avee gones alle ot Lkcly w0 Dove Conba
welmes kv, Veomwowr, tomr=ecente t= o oul simvias 1=

TLCRCITT NTETH RFUETICRNN RPN STERN TH (NI S TRl H

Busze oo thy sbacsatez, ov wore 2bic we extend Vel
sema me w sire b pewdictar that arreact by preeddice 2 avet as f
o] vuloerali Canponss.s cod obeut tes thicds o ol
arcdieiias e cerres. Chis cdows wowcloporr aad project
At o s e eir the e wifrccwher o = s sl mest:
Wil Bar At soXP i1 i esseose i ik
2o oz vt unknown viinemakilpes,

Corcgorics and Subjoet Descripiors: D24 (Solworc
Eoyrinsering]: Saftwan Propram Ve Sestoe— Stacetaal
et L0 A [H..-"l.wm'l: Foginerring =i wand e
DoRzag Toting ol Dk [Operatiog Systems|: St

curity and Pedpsbiom—inivsioe saftivere

General lecmme: Sacanty, Zxparimearatisn, rlwewsvieat

Kovwoeds: Sxllnice Socunty, Prodetas

Cwparunent of Corgu ler Scisnce
unnersity of Caary, Galgary, Alterta, Canada

tz@acm.org

toweking pars vunecabiliciss The Meclls peooxs, furoin-
canae, wal nins C sl s et Cuee whie oo s
all drecdats. Howsaen Lesn dadahiass o av 100 o
lecr ot are Cadoibated ooecss the Meslle cods
mr Blur tord satamstisxlly monee x wtlreeshility

waiileze aad wonciaies the ropanls acll the ahamps bstay
ter o wnleweadleites G o deavlnsd scmpmee s Pomew 1),

Valbaeys mall Boc dodantlie of ol Walan adnme
tze wrooe codebase, DFigore © ghawws clos dhistnibaioa for
Mealw the cosher v oompezent, the =eee valcab:ites
wors vl i= nte et The diecribocizn vy s iy

A% o0 b 10,452 Cemponents won e cavelvad s aclly Jas,
This rases the s ner: £ov thass spwnfic cade pastame 2o

e wny v vl siede amiecaanl

Iz cur urvestigation, we wers not abie o decemzone tode
frotarcs surt pe, cose voenploxity ar boffor weee that wed
seaplatn e th s yemnse af vilnseakil e W walrard,
teoagh. s thet vilosoelle ccmpomeats dhe ol siaibs ol
of meparte snl fiewesn caie Tnocte raen of Voaslla far
bnlocs, we Soucd e of (he 14 ccnpsoscnls lmpodding
csMozetzile.d, Licoipunents (05 Lad tu be patches b
carsr alamnrily v TRalnsia Ees o fr L e
TR rmmpcarex that i st nelleatart b nel Trsarfaca
BoguwotosItily. s ond peCosieatUiils Lo Logeidbaer chey
w2 nd wnbrarstilitis. TR Ateervaton can e el far

ouoinotolly pricho i whetixd ¢ oo oo soncul ol Lo

22

Include & Function calls

Introduced by
Neuhaus et al. at

CC5'07

Intuition : vulnerable files
share similar set of
imports and function
calls

Predicting Vulnerable Software Components

Stephan Neuhaus®

" Dapartment of Computer Scianse
Saarlare] Univarsity. Saarinikan, Geermany

{neuhaus holler zeller}@st.cs.uni-sh.de

ABSTRACT
Whera by s valiwesd i corne o scltaoed! e WVl
wema el anreanst salle mreonag LIy \':hﬂ\luhl:.' Anralin-
@ G scrmioe Qrchives Woet o past vuliesalal o Lo oo
mimezts, The nenlting ranking of the most velnerai b oom-
o b s e b S Dother sz s on wlal
mnakes Epreents viaernals

Inose imvwetizacicon ub -bw Mexills wolnesbil o histery, aw
swprinngls fouad el cocponsats thot o caneh vl
Coaling o the pect avee gones alle ot Lkcly w0 Dove Conba
welees ki rvee,. Vermwnwr, o mecents 2o el simas ime
ks o Foctfan cc Boacee Thely ta e vo e okl

Pusic eo th sbaesatnz, o wore 2bic e exhend Vel
sema e s abe pewdictar that aarreac by predice 2 asvet as f
o el vuloeoic CALpOuss. cod obout tes thicds o ol
arcdiciioas are cerews. This wldows wowcloporr cad project
At o e e reir the e wifrccwhoer o = sl mest:
W shoad B At soXP a1 ™ eaigen boyseose i ik by
20 comain vt unknown vilneabiloes,
Corcgorics and Subjoet Descripiors: D24 (Solworc
Foyrinewring]: Saftwan Propram Ve Sestoe — Stacetral

" s LA [Roflwaree Eogine ring) T o and T
gz Toding doly D4k |Opeoratiog Systems]: So

cority and Pevdpstim—lniveioe saftisee
General lecmme: Sacanty, Zxparimearatisn, rlwewsvieat

Kovweoods: Sollviee Socunty, Prodeta s

Thomas Zmmermeann~ Christian Holler Andreas Zeller”

" Deparunent of Corgu ler Scignoe

Unnersity of Canary, Galgary, Alterta, Canada

tz@acm.org

toweking paes vulecabiliciess The Meeclls peoowxs, furoin-
conae, wal nins C sninombiley et Cuse whie oo s
all drecdats. Howsaen Lesn dadahiass o av 100 o
Lo v descodites are Catsibated ooeess the Mealle colds
koo, e BMurse bord sostamstizxdly o s wtlreeshility
waleleze sl wasciaies the ropaols acll the ahamps bty
tez v vnlesealcftes G o cheevlnd somgmeers o 1),

Valbaeds ol Boc dldnmtlie of eduiohallas aonme
tze wrooe codebesr. Tigore § shows choy distnibatioa for
Meale the cosher wooompezent, the =eee valwsab s
wors vl i= nte et The diecribocizn vy s iy
A% ol b 10,452 Components wone cavedvod L scolly e,
This rases the s ner: £ov thass spwnfic cade pastame 2o
ot vy s vab e amiecanle”

Iz cur urvestigaiion, we wers not able o decemziane tode
fzotarcs suet g, coSe vocnploxity ar boffer wgee that wedd
serplatn w th L veomnse of nlnseakil e W walrad,
towagh. s thet valoselle compameats aheod shaibi @l
of meparte snl fiewesn caie Tnocte raen of Voaslla far
bnboces, we foucd L of Lhe 14 ok poscnls lmpding
psNozelzile. b, Licocipunents (205 Lad tu be patched be
carsr afamnrily v TRalnsio Fes s T L es
TR rmmpcarnx that i st nelleatant b nel Crsarfaca
BeguegtosJily. s ond peCosientiils Lotk hey
w2 nd nbraestolities. TR Aleervaton san e ead for
ouioiotolly proticfiw whetixg ¢ oow coisoneul will Lo

23

Include & Function calls

Introduced by Neuhaus et
al. at CCS5’07

Intuition : vulnerable files
share similar set of imports
and function calls

Predicting Vulnerable Software Components

Stephan Neunaus® Thomas Zmmmermann~ Christian Holler Andreas Zeller”

" Dapartment of Computer Scianse
Saarlare] Univarsity. Saarinikan, Geermany

{neuhaus holler zeller}@st.cs.uni-sh.de

ABSTRACT

Whurs by s valiwend i cornre o soltased! Do Wl
wema snel anesanst salle meonae secsting v lneesnliey dlsr sl
st e oo Qrchives Woesto pas vuloesalal 10 Lo oo
mimezts, The nenlting ranking of the most velnerai b oom-

Inose imvwetizacicon ub -bw Mexills wolnesbil o histery, aw
swprinngls fouad el cocponsats thot o caneh vl
Coaling o the pect avee gones alle ot Lkcly w0 Dove Conba
welees ki rvee,. Vermwnwr, o mecents 2o el simas ime
ks an Pt cc Boaree Thely ca e v okl

Pusic eo th sbaesatnz, o wore 2bic e exhend Vel
sema e s abe pewdictar that aarreac by predice 2 asvet as f
o el vuloeoic CALpOuss. cod obout tes thicds o ol
arcdiciioas are cerews. This wldows wowcloporr cad project
At o e e reir the e wifrccwhoer o = sl mest:
W shoad B At soXP a1 1 ™eangen boxseose s ik ly
20 comain vt unknown vilneabiloes,

Corcgorics and Subjet Descriplors: D24 [Soltworc
Foyrinewring]: Saftwan Propram Ve Sestoe — Stacetral
ettt LE0 [Roflwaree Eoginering) T g and T
Dugzag Teding foly DAk |Operutiog Systems|: S
cority and Pevdpstim—lniveioe saftisee

General lecma: Sacanty, Zxporineaiatizn, Mlsewssieat

Kovweoods: Sollviee Socunty, Prodeta s

" Dweparbrient of Corgu ler Scisnce
Unnersity of Cagary. Galgary, Alterta, Cenada
tz@acm.org

toweking paes vulecabiliciess The Meeclls peoowxs, furoin-
conae, wal nins C sninombiley et Cuse whie oo s
all dreclats, Howaew Lesn dad ahases o o 1l o
tocw v deerdoditees are Catibabed ooeess Lhe Moealle cods
koo, e BMurse bord sostamstizxdly o s wtlreeshility
waleleze sl wasciaies the ropaols acll the ahamps bty
tez v vnlesealcftes G o cheevlnd somgmeers o 1),

Valbaeds ol Boc dldnmtlie of eduiohallas aonme
tze wrooe codebesr. Tigore § shows choy distnibatioa for
Mealy the cocker uocompezent, the Zeee valsabes
wors vl i= nte et The diecribocizn vy s iy
A% ol b 10,452 Components wone cavedvod L scolly e,
This rases the s ner: £ov thass spwnfic cade pastame 2o
ot vy s vab e amiecanle”

Iz cur urvestigaiion, we wers not able o decemziane tode
fzotarcs suet g, coSe vocnploxity ar boffer wgee that wedd
serplatn w th L veomnse of nlnseakil e W walrad,
towagh. s thet valoselle compameats aheod shaibi @l
of meparte snl fiewesn caie Tnocte raen of Voaslla far
bnboces, we foucd L of Lhe 14 ok poscnls lmpding
psNozelzile. b, Licocipunents (205 Lad tu be patched be
carsr afamnrily v TRalnsio Fes s T L es
TR rmmpcarnx that i st nelleatant b nel Crsarfaca
BegqueatesJtile. s ond weCosieatiils Lo togeider they
w2 nd nbraestolities. TR Aleervaton san e ead for
ouioiotolly proticfiw whetixg ¢ oow coisoneul will Lo

build a model based on either
includes or function calls of a

file.

24

Overview

Preprocessing Learning

Include & function Retrleve. allincluae SVM with a linear
and function calls of a
calls fla kernel

2 models are build

Software Metrics

Software Metrics

Several works on using
metrics to predict
vulnerabilities, mostly by
Shin et al.

Evaluating Complexity, Code Churn, and
Developer Activity Metrics as Indicators
of Software Vulnerabilities

Yonghee Shin, Andrew Meneely, Laurie Wilkams, Member, |EEE, and Jason A, Osbarne

ABSIPCE—S5EC0r Iy INIPSCIOn &g XU BUE experts in secunty aho Rk Bos 50 allecher Secusty scpens ted 1 kecw cooe
REHRs D nih 10 CCuE Wi Ilrg 80 Ipecin oiiSes. Since YuRersaiies are fae cosumIncEs, KCKINg vunetnsie CoM
GRS Can s achaiergng lesk, We nyvesigalod Wit e S0 Twane reince SElned 119m sCurcs code U devekpment Filony &'e
GaoAr 1210 and prod v oF wiharab e code laalicns If 50, Securty expants Gan uss this pred Con to snotize eosurty nsoslon
0N g ooy THE ey Cf At imathZIled ol rio Pree Calepones: compitxly, oo Cwm, angd Seadopes aoiay met W
pOrrrmd WO STyl Cse SUSIns 0N WRe, wdtly ULed 0D Sowroe projacts: the Mooy Foacfox web Drowse and the Kog Mot
Crierpnse Loue beme THe resils ndcebe Ihal 24 of the 28 mebwcs colaciad see Gscrmnaine of wanerabines 100 boh progacts,
e vede e ueirg ol Uirwe 3oes of meinee mgedwr preccbsd cver 30 percent of the kngwn vulterdlis Yes Wil lees e 25 petosn
Fubow puxstiens e Leth projecis. Comaansd w0 8 random aeecion of Bes for negection and leeing these models woukd ham recduced

thw rrorbmer oF Emn saced the et cf lises of oode 1o inspect o et By ouwe 71 sed 20 parens’, mspactivey lor bak pro e

Incax Tarsa—Fecll prreiction, altwsrs waldes aaTwams RacLrity, winambily precietion

1 INTRODUCTION
A single explodted sofiware vulnerablity' can cruse
severe damage to an arpanzation. Annual world-wide
leeaea causnd free cvber attacks have Reen weported to he 2=
high e 3226 Billion |2]. Loss in stodk marset value in twe
days after an attack 1= estomated fram 80 0 520 mitlion
per organizaticer [2] The ‘mpormarce of detacting and
migating software sulnesabiZtes before software releey
13 pasmmaunt.

Fxperierse tnd:eates that the detectinn and mitgation of
vilneralvlises ane nest donwe hy eginears =pcrl!’|:al!y
brainwed i woftwnre setur fy wnd who “Hyink lke wn
attacker” in their dadly wock [3). Therefore, socurity testers
naed to have specialized knowladze in and a mindset for
what attackers will try. If we conild predict whitch parts of
the onde are likely o be vulrerahle, security experts con
focay wn hese areus of Iglwst sisk Ooe way of pradicting

vulnerable modules = e budld o statistical medel usivg
snftware metrics that messure the attribatez of the saftware
products and development pmovss rolated In saftware
vulnerahtlities. Hm’.nnmlly. pwdlrhm madels rained
using software metrics to find faults have been knewn to
be effective [4), |5 (€). 7L (8], 19]. [20].

Howewer, prodiction models must be trainad on what
(l-w_\' srv avdercdend o look foe Bether than wreming the
security expert with all the modules likely to coatain faclts, a
sccurity prodiction model can poir: toward the zct of
et e ||kv|'\.‘ fo combuin whet u murdy et i IIDJLGI"U
for: smxunly wvulnerain i Fahhithinlg l:n\luli\v“hn-.'vr in
a zocurity prediction model is challenging because security
vulnerabdlitics and non-security-related faulis have similar
\-:(-m[:hmm. Un'fvrv.-vliuhu!; PRENITY BT ‘I_\' froom w Canll cun
b radsislonss wnven i hn:nun, moasn b lsss s sdubielicnl mmenler .

Additionally, the number of repocted socurity valnerabil-

27

Software Metrics

Several works on using
metrics to predict
vulnerabilities, mostly by
Shin et al.

Software metrics are used
in defect prediction

Evaluating Complexity, Code Churn, and
Developer Activity Metrics as Indicators
of Software Vulnerabilities

Yonghee Shin, Andrew Meneely, Laurie Wilkams, Member, |EEE, and Jason A, Osborne

ABSIPCT—S5EC0r Iy 1MIPEC o &Y EEINY BgUE exDerts in secunty aho Rk Bor 50 allecher Secutty scpers ted 1 kecw ooe
RCHRECs D nGh 10 Ceus Wi g 8 Ipecinn oiiSes. Since YuRermaies are e cosumancEs, KCKINg vunessie co
ICHRYS CAn su achargng lsk, We nyvustgalod Wit e 30 Twans reince SElEned 119m sCurcs code & w devekpment Filory &'
a2 1070 and prodil v oF wierabie code laalicns If 50, Securty expants Can uss this pred Chon to snotize cosuty nsoaclon
Onc g ooy The ey s At mathZles ol rio Pree Salepones: compiaxty, oods Cwm, ang Smadoper oAy meios we
POTIerig WO SNy COse SUSI0S 0N WK, wdely UL 0D SO projacts: the Moaka Focfox web Dhowse and the Bed Mot
Crterpnse Loue beme e resils ndcebe (hal 24 of the 28 medwcs colaciad e Gscrmnaine of wainsrabines 100 boh propacts,
Fe vode e ueirg ol Uirwe 3oes of meinge mgedwr preccbsd cver 30 percent of the Rnawn vulteralis Yes Wil lees e 25 petosn
Tubow pxstiens e Loth projecis. Comaansd w0 8 ravdom aeecion of Bes for negection and eing these models wouk] ha reduced

the rermbmer oF Emn saced the et of lses of oode 1 inspect o e By oume 71 sed 20 parens’, rsspactivey lor ok pro e

Incax Tarsaa—recll prreiction, aitwsrs waldes aaTwam RacLrity, winsebilty precietin

1 INTRODUCTION
A single explodted sofiware vuloerablity' can cruse
severe damage to an arganzation. Annual world-wide
leeaea causnd free cvber attacks have teen weported to he 2=
lLigh 2e 3226 billion |2]. Less in stodk market value in twe
days after an attack 1= estmated fram 80 In 520 mitlion
per organizatica [2] The ‘mporarce of detacting and
uigating aoftware sulnesabiZtes, before software releey
I3 pammount.

Fxperierse ind:eates that the detection and mitgation of
viineralvlises ane nest done hy Mginears =’|¢t’lﬂ-’ﬂ“};
brained i woftwnre seture ty wnd who “think ke un
attacker” in their dadly wock [). Thercfore, socurity testers
nxd to have spocialized knowladze in and 2 mindset for
what attackers will try. If we could predict which parts of
the onde are likely to be vulrerable, security experts con
focay an hese areus of Joglwst sisk Ooe way of pradicting

vulnerable modules = e budld o statistical aedel usivg
snftware metrics that messure the attribatez of the saftsware
products and development pmcess rolated In saftware
vulnerahtlities. Hiw.nnmll:.', pwdlrhm rmadels mained
using software metrics to find faults have been knewn to
be effective [4], |5) (6], 7L (8], (9. 120].

Howewer, prodiction models must be trainad on what
lhv_\' srv adercdedd o look foe Rether than weming the
security expert with all the modules likaly to coatain falts, a
sccurity prodiction model can poir: toward the zct of
maonduzles |1kr|.\.' b combmin whet » m-uvdy w:z.vr': = lmrkn':_;
for: smrunly wvulnerainl b l-'»lnltlt-hirlg lxw\hxli\v Jreonwer in
a zocurity prediction model is challenging because security
vulnerabdlitics and non-security-related faulis have similarx
symptoems, |Jlf‘fv~.‘l“ll|1ll!'. w v uloerabn by from w fanlt cun
by radsialonis envens b }*.uuun, moasn b Disss s sdubielicnl smenler .

Additionally, the number of repocted socurity valnerabil-

build a model based software metrics
(complexity, code churn, ... N

Overview

Software Metrics

Preprocessing

Compute complexity
metrics of each
function (keeping
sum, avg and max)
code churn and the
number of authors of

every files.

Learning

Logistic regression

29

Text Mining

IText Mining

suggested by Scandariato et

al. in 2014.

Predicting Vulnerable Software Components

Absiract—Trig paper praers a0 approash based o mach e kam-
Ing 12 predal weach components of a soltware apphcsbon conlan
Socu By vurarandil &5 The ageroach is Based on exd mineg the soxne
coade cf he comporents. Nevey, sach component s characler cad as
A SRMeS O 1ANTS COC'A NAC 1N 8 SOLUICH coca, Al the 28500 At fre-
cuercise, To:ee 1agturee ars u2ad 10 1rBCEEL WhB1er aach Companen!
& Lely 0 cortadr vuhanmbiliee 0 an ecplaomiory wadaton arn X0
Andnoie apelcalinns, we discove e thal a dopendabie prodchon modaol
can be oull. Sxch model could be use'v b priovitze e waidalion
aciveae, .45, 1 Kenli'y tha compense2 reedng apecial scruting

Index Termes—ulnerzki bes, oredicicn model, machine sarning

1 INTRODUCTION

Verification and validation [V&Y) techniques like se-
curity testing, code review and formal verificatiom are
hecoming etectivie means o reduce the number of post-
relense vulrerabilities in software products (L), This s an
impoctant achievement, as fixing a bug atter the software
has heen teleased can cost much mare than resolving
the issue ar developrment Sme (2] However, V&V
net ineapensive. An parly catimation assessed that VAV

via Text Mining

Riccardo Scandarnialto, James Walden, Aram Hovsepyan and Wouler Joosen

out to be correct |6]. In the above examples, the chaice
nf the features that are used as predictors is determined
by the expectations of a knowledgeable individual,

In our work, we nvestigated a technique that relies
less on a particular underlying axiom. Starting from (he
observation that a programming langragre = a language
after all (like Fnglish) and that symtax tokens equate to
words, we set out to analyze the source code by means
of text mining techuniques, which are conunonplace in
wnformation setaeval Texl minung applied o sowce code
was introduced by Hata el al. [7] for the predicion
of software defects and is here applied 1o the domain
nf software vulnerabilites. We use the hag-obavords
representation, in which a software camporent (a Java
source fle in us paper) 15 seen os a serwes of lenns
with associated frequencies. The terms are the feratures
we use as predictors. Hence, the set of features used
for modeling is not tived or predetermined but rather
depends on the vocabulary used hy the developers. In
this senee, this technique is less constrained ar biased
by an underlying theory of what is a-priod expected o

'I.I"‘l n

31

Text Mining

suggested by Scandariato et
al. in 2014.

Aim : building a model
requiring no human
intuition for feature

selection

Predicting Vulnerable Software Components
via Text Mining

Riccardo Scandariato, James Walden, Aram Hovsepyan and Wouler Jocsen

ABSIract—Trig paper prame s an approah based on mach e kam-
INg 12 predel weach components of a soltware apphceon conlan
Socu By vurarandil &5, The ageroach is Based on exd minieg the sasne
oxde cf he comporents. Neney, each component is chamclerzad as
A SRMeS O 1ANTS OOC'A NAC 1IN 8 SOUCH coca, Al the 28500 atad fre-
cuercise, To:ee 1agturee ars u2ed 10 1rBCaEt whe1ner aach companen!
£ Lwly o cortair vuanmbiiliae In a0 eplamiory v daton arn 20
Andoie appl calinns, we diseovean that a dogpendable prodichon modal
can be oull. Sxch model could be uze'v b priovitze e waidation
ac1viRae 8.5, 1o Kenli'y tha compense 2 reedng apecial scruting

Index Termes—'ulnereki es, oredicicn model, machine earming

1 INTRODUCTION

Verification and validation [V&Y) techniques like se-
curity testing, code review and formal verificaton are
hecoming etectivie means o reduce the number of post-
relense vulrerab:lities in software products (L), This s an
impoctant achievement, as fixing a bug atter the software
has heen telensed can cost much mare than resolving
the issue ar developrent Sme (2] However, V&V
net inexpensive. An parly catimation assessed that VAV

out to be correct |6]. In the above examples, tre chaice
of the features that are used as predictors is determined
by the expectations of a knowledgeable individual,

In our work, we nvestigated a texchnique that relies
less on a particular underlying exiom. Starting from (e
observation that a programming langragre s a language
atter all (like Fnglish) and thar symtax tokens equate to
words, we set out to analyze the source code by means
of text mining techiniques, which are corunonplace in
wnformation setrieval Text mining applied o s0wce code
was ntroduced by Hata el al. [7] for the predicion
of software defects and is here applied to the domain
nf software wvulnerabilites. We use the hag-otwords
representation, in which a software camporent (a Java
source fle in us paper) 15 seen os a serwes of lenns
with associated frequencies. The terms are the feratures
we use as predictors, Hence, the set of features used
for modeling is not tived or predetermined but rather
depends on the vocabulary used hy the developers. In
this sense, this technique is less canstrained ar biased
by an underlying theory of what is a-pricd expected o

'I.I'" Y

32

IText Mining

suggested by Scandariato et
al. in 2014.

Aim : building a model
requiring no human
intuition for feature

selection

Predicting Vulnerable Software Components
via Text Mining

Riccardo Scandarnialto, James Walden, Aram Hovsepyan and Wouler Joosen

ABSIract—Trig paper prame s an approah based on mach e kam-
INg 12 predel weach components of a soltware apphceon conlan
Socur ity vurernodil 25, The aperoach is based on exl micirg the sosne
oade cf he comporents. Nerey, each component is chamclerzad as
A SRMES OF 1ANTS COC'R NAC 1IN 8 SOLICH coca, Al the 2Rs0c ated fre-
cuercize, Toeee 1aaturee ars uaed 10 fracast whether aach companent
£ Lanly 20 cortadr vuhambiliee 0 an eplomiory wadaton arn X0

can be oull. Sxch model could be uzev %o priovitze e waidalion
acivae a.g., 1o Kenli'y tha compenaen2 reedng apecial ssruting

Index Termes—'ulnereki es, oredicicn model, machine earming

1 INTRODUCTION

Verification and validation [V&Y) techniques like se-
curity testing, code review and formal verificaton are
hecoming etective means to reduce the number of post-
relense vulrerab:lities in software products (L), This s an
impoctant achievement, as fixing a bug atter the software
has heen eleased ran cost much mare than resolving
the issue ar developrent Sme (2] However, V&V
net inexpensive. An parly catimation assessed that VAV

out to be correct |6]. In the above examples, the choice
of the features that are used as predictors is determined
by the expectations of a knowledgeable individual,

In our work, we nvestigated a technique that relies
less on a particular underlying exiom. Starting from (e
observation that a programming langrage s a language
after all (like Fnglish) and that syntax tokens equade to
words, we set out to analyze the source code by means
of text mining techuniques, which are conunonplace in
wnformation setrieval Text mining applied o s0wce code
was ntroduced by Hata el al. [7] for the predicion
of software defects and is here applied 1o the domain
nf software wvulnerabilites. We use the bhag-obawvords
representation, in which a software camporent (a Java
source fle in us paper) 15 seen os a serwes of lenns
with associated frequencies. The terms are the feratures
we use as predictors, Hence, the set of features used
for modeling is not tived or predetermined but rather
depends on the vocabulary used hy the developers. In
this sense, this technique is less constrained ar biased
by an underlying theory of what is a-pricd expected o

harwsan

build a model based on a bag of
word extracted from a file

33

Overview

Text mining

Preprocessing

Creating a bag of
word (splitting the
code according to the
language grammar)
for every files

Learning

e Discretisation of the
features (making
them boolean)

e Remove of all
features considered
useless

e Random Forest with
100 trees

34

Introducing the dataset

based on commit and not
release

Introducing the dataset

e CVE-NVD database as a source
of vulnerabilities

* Bugzilla as a source of bugs

- N .
@\L ‘}Bugzﬂla

Introducing the dataset

ebuild automatically
ewith the latest data available
eon the Linux Kernel

Overall dataset statistics
2006-June 2016

® 1,640 vulnerable files, accounting for 743
vulnerabilities

® 4,900 buggy files related to 3, 400 bug
reports D

e more than 50,000 files in tot "y SO

Research Questions

*RQ1. Can we between buggy and
vulnerable ?

Research Questions

*RQ1. Can we between buggy and
vulnerable ?

*RQ2. Can we between vulnerable and

41

Research Questions

e RQ1. Can we distinguish between buggy and
vulnerable files?

*RQ2. Can we distinguish between vulnerable and
non vulnerable files?

e RQ3. Can we predict future vulnerable when using
past data?

42

Research Questions

*RQ1. Can we distinguish between buggy and
vulnerable files?

*RQ2. Can we distinguish between vulnerable and
non vulnerable files?

e RQ3. Can we predict future vulnerable when using
past data?
+ Distinguish between buggy and vulnerable files
+ Distinguish between vulnerable and non
vulnerable files? i

Experimental Dataset

*Buggy vs Vulnerable files

Experimental dataset

Can we distinguish between buggy and

vulnerable files?
* files related to bug report patches vs
files from vulnerability patches

e ratin 3.3:1

Realistic
Dataset

*Vulnerable vs Non-Vulnerable files 78 S el B

Realistic dataset

e Can we between
Vulnerable and
* Reproduce observed between

different categories of files

e 3% of (likely) vulnerable files
e 47% of (likely) buggy files

* 50% of clear files

Evaluation

RQ1 - Bugs vs Vulnerabilities

1.00

0.75

recall
o
W
o

0.25

0.00

-, Text Mining

\'u of |

 \‘\4,‘

7 InCludes

7'
Function Calls [~

0.00 0.25 0.50 0.75 1.00
precision

MCC

1.0

0.8

0.6

0.4

0.2

0.0

Function Calls

|
Includes

Software Metrics

I
Text Mining

49

RQ2 - Vulnerable vs Non-

1.00
o
0.75
© _|
o
= Q
§ 0.50 © o
Text Minng N S

@]

@)

=

<
o
0.25
_ 9o
¥
e) AN
: — o
{f Function Collo Scftware Nelrics
" Includes : .
2.00 ' —Q
|
o _| -
o
000 025 050 D75 100
precision

| | |
Function Calls Includes Software Metrics Text Mining

RQ3 Time - Bugs vs

1.00

0.75

0.50

0.25

0.00

Precision

release

1.00

0.75

0.50

0.25

0.00

Recall

ot :«: -~
; ® @ : :"J_‘_‘ b =t
5 10 15 20
release

« Function Calls

“ Includes ‘
= Software Metrics

Text Mining

RQ3 Time - Bugs vs

1.00

< Function Calls

4 |ncludes _

= Software Metrics
0.75 - Text Mining

 0.50
N s
g
0.25
0.00

5 10 15 20
release

RQ3 Time - Vulnerable vs Non-

1.00 1.00

Tt

0.75 »\/\\/\ 0.75

0.25 0.25 g g

precision
O
o)

o
recall
O
o)

o

0.00 0.00

5 10 15 20 5 10 15 20
release release

» Function Calls

“ Includes ,

= Software Metrics
-~ Text Mining

RQ3 Time - Vulnerable vs

1.00

Function Calls
“ Includes .
= Software Metrics
0.75 — Text Mining

© 0.50 A | ‘/kk“"‘
y'd
. 5 g g g L s LN
0.25
0.00

5 10 15 20
release

Discussion - Findings

VPM’s are working well with
historical data

-

Good precision observed even
with unbalanced data

In the practical case, the
best trade off is in ftavour of

include and function calls\

In the general case, or
favouring precision the
best one is text mining,.

Previous studies

There is no comparison with Metrics or Text Mining

There are no res 1lts related to time

Precision 70% Precision 70%
Recall 45% Recall 64%

Neuhaus et al. “Predicting vulnerable software components” CCS’07.

60

Previous studies

10 fold cross validation We found
Precision 3-7159 1 :1-2% Toi0b 40N 65%
RecA'l R7-90, 91 66-799 Recall 22%

results based on time We found
Precision 3% Precision 42 : 39%
Recall 79-85% Recall 16 : 24%

Shin et al. “Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities” TSE’11.
Shinand et al. “Cantraditionalfaultpredictionmodelsbeused for vulnerability prediction?” ESE’13.

Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’ 4.
61

Previous studies

10 fold cross validation We fOllIld
Precision 90, 2-57/% Precision 76%
Recall 77, 74-817, Recall 58%

results based on time We found
Precision 86% Precision 74 : 93%
Recall 77% Recall 37 : 27%

Scandariato et al.“Predicting Vulnerable Software Components via Text Mining” TSE’ 14.

Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’ 4. -

DataSet and Replication
package and additional results
will be available soon...

Please contact Matthieu Jimenez (Matthieu.Jimenez@uni.lu)

Replicating and comparing the main VPMs
approaches on the same Software

system. &

Introducing the dataset

- (VE-NVD database as 3 source of vulnerabilities
+ Bupzilla 3s a source of bugs

‘%3 ;,. @Bugzilla

Thank you for
your attention !

IIQl Bugs vs Vulnerabilities

o Towt Miving
wi

KQ3 Time - 6ugs vs Vulnerabilities

1.00

, “"',‘,‘
325

3.00

5 10 18 2C
release

