
Slides: Matthieu Jimenez
Thème: Sébastien Mosser

�1

Matthieu Jimenez Mike Papadakis Yves Le Traon

Vulnerability Prediction Models:
A case study on the Linux Kernel

Jimenez et al. “Vulnerability Prediction Models: A Case Study on the Linux Kernel” SCAM’16

http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en
http://creativecommons.org/licenses/by-nc/3.0/fr/deed.en

�2

Vulnerabilities ?

A vulnerability

�3

“An information
security ‘vulnerability’
is a mistake in a
software that can be
directly used by a
hacker to gain access to
a system or network.” ~ CVE -

website ~

Vulnerabilities are special

�4

More Important - Critical

There are more bugs than vulnerabilities

Uncovered differently - defects can be
easily noticed, while vulnerabilities not.

Vulnerabilities are

�5

Web server used to remotely
control the glassware-cleaning
machine

CVE for that…

�6

Prediction
Model ?

Prediction Models

�7

Models analysing current
and historical events to make

prediction about the
future and/or unknown

events !

�8

Vulnerability
Prediction

Model ?

Vulnerability Prediction

�9

Take advantage of the
knowledge on some part of
a software system and/

or previous releases

Vulnerability Prediction

�10

to automatically classify
software entities as
vulnerable or not !

�11
Software Entities ?

Granularity

�12

Possibility to work at :

•module level
•file level
•function level
•…

�13

In this work, we stay
at the file level !

*Morrison et al. “Challenges with applying vulnerability prediction models,” in HotSoS’15.

�14

GOAL

�15

Replicating and comparing
the main VPMs approaches

on the same software
system.

�16

Replication …

�17

Exact independent
replication

Exact replication

�18

procedures of an experiment
are followed as closely as

possible
e.g. here we replicate using the
same machine learning settings

Independent replication

�19

deliberately vary one or more
major aspects of the conditions

of the experiment

e.g. we use our dataset

�20

Approaches …

�21

#Include
and f(n) calls

Include & Function calls

�22

Introduced by
Neuhaus et al. at

CCS’07

Include & Function calls

�23

Introduced by
Neuhaus et al. at

CCS’07

Intuition : vulnerable files
share similar set of

imports and function
calls

Include & Function calls

�24

Introduced by Neuhaus et
al. at CCS’07

Intuition : vulnerable files
share similar set of imports

and function calls
build a model based on either
includes or function calls of a

file.

Overview

�25

Preprocessing Learning

Include & function
calls

Retrieve all include
and function calls of a

file

SVM with a linear
kernel

2 models are build

�26

Software Metrics

Software Metrics

�27

Several works on using
metrics to predict

vulnerabilities, mostly by
Shin et al.

Software Metrics

�28

Several works on using
metrics to predict

vulnerabilities, mostly by
Shin et al.

 Software metrics are used
in defect prediction

build a model based software metrics
(complexity, code churn, …)

Overview

�29

Preprocessing Learning

Software Metrics

Compute complexity
metrics of each

function (keeping
sum, avg and max)
 code churn and the
number of authors of

every files.

Logistic regression

�30

Text Mining

Text Mining

�31

suggested by Scandariato et
al. in 2014.

Text Mining

�32

suggested by Scandariato et
al. in 2014.

Aim : building a model
requiring no human
intuition for feature

selection

Text Mining

�33

suggested by Scandariato et
al. in 2014.

Aim : building a model
requiring no human
intuition for feature

selection

build a model based on a bag of
word extracted from a file

Overview

�34

Preprocessing Learning

Text mining

Creating a bag of
word (splitting the

code according to the
language grammar)

for every files

•Discretisation of the
features (making
them boolean)

•Remove of all
features considered
useless

•Random Forest with
100 trees

�35

Dataset

Introducing the dataset

�36

based on commit and not
release

Introducing the dataset

�37

•CVE-NVD database as a source
of vulnerabilities

•Bugzilla as a source of bugs

Introducing the dataset

�38

•build automatically
•with the latest data available
•on the Linux Kernel

Overall dataset statistics

�39

• 1,640 vulnerable files, accounting for 743
vulnerabilities

• 4,900 buggy files related to 3,400 bug
reports

• more than 50,000 files in total

 2006-June 2016

Research Questions

�40

•RQ1. Can we distinguish between buggy and
vulnerable files?

Research Questions

�41

•RQ1. Can we distinguish between buggy and
vulnerable files?

•RQ2. Can we distinguish between vulnerable and non
vulnerable files?

Research Questions

�42

•RQ1. Can we distinguish between buggy and
vulnerable files?

•RQ2. Can we distinguish between vulnerable and
non vulnerable files?

•RQ3. Can we predict future vulnerable when using
past data?

Research Questions

�43

•RQ1. Can we distinguish between buggy and
vulnerable files?

•RQ2. Can we distinguish between vulnerable and
non vulnerable files?

•RQ3. Can we predict future vulnerable when using
past data?

✦ Distinguish between buggy and vulnerable files
✦ Distinguish between vulnerable and non

vulnerable files?
•

�44

Experimental Dataset

*Buggy vs Vulnerable files

Experimental dataset

�45

Can we distinguish between buggy and
vulnerable files?
• files related to bug report patches vs

files from vulnerability patches

• ratio 3.3 : 1

�46

Realistic
 Dataset

 *Vulnerable vs Non-Vulnerable files

Realistic dataset

�47

• Can we distinguish between
Vulnerable and Non-Vulnerable files?
• Reproduce observed ratio between

different categories of files
• 3% of (likely) vulnerable files
• 47% of (likely) buggy files
• 50% of clear files

�48

Evaluation

RQ1 - Bugs vs Vulnerabilities

�49

●

Function Calls Includes Software Metrics Text Mining

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
C

C

RQ2 - Vulnerable vs Non-

�50

●

●

●●

●

Function Calls Includes Software Metrics Text Mining

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

M
C

C

RQ3 Time - Bugs vs
Precision Recall

●

●
●

●
● ●

● ●

●
●

● ● ● ● ● ●

●

● ● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

m
cc

● Function Calls
Includes
Software Metrics
Text Mining

RQ3 Time - Bugs vs

● ●
●

● ●
●

●
●

● ● ●
●

●

●
● ●

● ●

●
●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

pr
ec
is
io
n

RQ3 Time - Vulnerable vs Non-

�53

●
● ●

● ●
●

● ● ● ● ● ● ● ● ● ●

●

● ● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

re
ca
ll

●
● ●

● ● ●
● ●

● ● ●
●

●
●

● ●

●
●

● ●

0.00

0.25

0.50

0.75

1.00

5 10 15 20
release

m
cc

● Function Calls
Includes
Software Metrics
Text Mining

RQ3 Time - Vulnerable vs

�55

Discussion - Findings

�56

1VPM’s are working well with
historical data

�57

2Good precision observed even
with unbalanced data

�58

3In the practical case, the
best trade off is in favour of
include and function calls

�59

4In the general case, or
favouring precision the
best one is text mining.

Previous studies

�60

Include and Function calls

Precision 70%
Recall 45%

Precision 70%
Recall 64%

There is no comparison with Metrics or Text Mining

We foundReported

Neuhaus et al. “Predicting vulnerable software components” CCS’07.

There are no results related to time In the context of Linux
we have similar results…

Previous studies

�61

Software Metrics

Precision 3-5, 9, 2-52%
Recall 87-90, 91, 66-79%

Precision 65%
Recall 22%

Shin et al. “Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities” TSE’11.
Shinand et al. “Cantraditionalfaultpredictionmodelsbeused for vulnerability prediction?” ESE’13.
Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’14.

We foundReported 10 fold cross validation

Precision 3%
Recall 79-85%

Precision 42 : 39%
Recall 16 : 24%

We foundReported results based on time

In the context of Linux
there are significant differences…

Previous studies

�62

Text Mining

Scandariato et al.“Predicting Vulnerable Software Components via Text Mining” TSE’14.
Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’14.

Precision 76%
Recall 58%

We found
Precision 90, 2-57%
Recall 77, 74-81%

Reported 10 fold cross validation

Precision 74 : 93%
Recall 37 : 27%

We found
Precision 86%

Recall 77%

Reported results based on time

In the context of Linux
there are again

significant differences

�63

DataSet and Replication
package and additional results

will be available soon…

Please contact Matthieu Jimenez (Matthieu.Jimenez@uni.lu)

�64

Thank you for
your attention !

