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Vulnerabilities ?



A vulnerability
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“An information 
security ‘vulnerability’ 
is a mistake in a 
software that can be 
directly used by a 
hacker to gain access to 
a system or network.”  ~ CVE - 

website ~



Vulnerabilities are special 
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More Important - Critical

There are more bugs than vulnerabilities

Uncovered differently - defects can be 
easily noticed, while vulnerabilities not.



Vulnerabilities  are 
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Web server used to remotely 
control the glassware-cleaning 
machine

CVE for that…
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Prediction 
Model ?



Prediction Models
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Models analysing current 
and historical events to make 

prediction about the 
future and/or unknown 

events !
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Vulnerability 
Prediction 

Model ?



Vulnerability Prediction 
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Take advantage of the 
knowledge on some part of 
a software system and/

or previous releases



Vulnerability Prediction 
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to automatically classify 
software entities as 
vulnerable or not !
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Software Entities ?



Granularity
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Possibility to work at :

•module level
•file level
•function level
•…
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In this work, we stay 
at the file level !

*Morrison  et al. “Challenges with applying vulnerability prediction models,” in HotSoS’15.
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GOAL
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Replicating and comparing 
the main VPMs approaches 

on the same software 
system.
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Replication …
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Exact independent 
replication



Exact replication
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procedures of an experiment 
are followed as closely as 

possible
e.g. here we replicate using the 
same machine learning settings



Independent replication
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deliberately vary one or more 
major aspects of the conditions 

of the experiment

e.g. we use our dataset
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Approaches …
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#Include
and f(n) calls



Include & Function calls
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Introduced by 
Neuhaus et al. at 

CCS’07 



Include & Function calls
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Introduced by 
Neuhaus et al. at 

CCS’07 

Intuition : vulnerable files 
share similar set of 

imports and function 
calls



Include & Function calls
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Introduced by Neuhaus et 
al. at CCS’07 

Intuition : vulnerable files 
share similar set of imports 

and function calls
build a model based on either 
includes or function calls of a 

file.



Overview
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Preprocessing Learning

Include & function 
calls

Retrieve all include 
and function calls of a 

file

SVM with a linear 
kernel

2 models are build
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Software Metrics



Software Metrics
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Several works on using 
metrics to predict 

vulnerabilities, mostly by 
Shin et al.



Software Metrics
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Several works on using 
metrics to predict 

vulnerabilities, mostly by 
Shin et al.

    Software metrics are used 
in defect prediction

build a model based software metrics 
(complexity, code churn, …)



Overview
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Preprocessing Learning

Software Metrics

Compute complexity 
metrics of each 

function (keeping 
sum, avg and max) 
 code churn and the 
number of authors of 

every files. 
 

Logistic regression
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Text Mining



Text Mining
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suggested by Scandariato et 
al. in 2014.



Text Mining
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suggested by Scandariato et 
al. in 2014.

Aim : building a model 
requiring no human 
intuition for feature 

selection 



Text Mining
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suggested by Scandariato et 
al. in 2014.

Aim : building a model 
requiring no human 
intuition for feature 

selection 

build a model based on a bag of 
word extracted from a file



Overview
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Preprocessing Learning

Text mining

Creating a bag of 
word (splitting the 

code according to the 
language grammar) 

for every files 
 

•Discretisation of the 
features (making 
them boolean)  

•Remove of all 
features considered 
useless 

•Random Forest with 
100 trees
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Dataset



Introducing the dataset
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based on commit and not 
release



Introducing the dataset
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•CVE-NVD database as a source 
of vulnerabilities 

•Bugzilla as a source of bugs



Introducing the dataset
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•build automatically
•with the latest data available 
•on the Linux Kernel



Overall dataset statistics
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• 1,640 vulnerable files, accounting for 743 
vulnerabilities

• 4,900 buggy files related to 3,400 bug 
reports

• more than 50,000 files in total

 2006-June 2016



Research Questions
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•RQ1. Can we distinguish between buggy and 
vulnerable files?



Research Questions
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•RQ1. Can we distinguish between buggy and 
vulnerable files?

•RQ2. Can we distinguish between vulnerable and non 
vulnerable files?



Research Questions
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•RQ1. Can we distinguish between buggy and 
vulnerable files?

•RQ2. Can we distinguish between vulnerable and 
non vulnerable files?

•RQ3. Can we predict future vulnerable when using 
past data?



Research Questions
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•RQ1. Can we distinguish between buggy and 
vulnerable files?

•RQ2. Can we distinguish between vulnerable and 
non vulnerable files?

•RQ3. Can we predict future vulnerable when using 
past data?

✦  Distinguish between buggy and vulnerable files
✦  Distinguish between vulnerable and non 

vulnerable files?
•
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Experimental Dataset

*Buggy vs Vulnerable files



Experimental dataset 
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Can we distinguish between buggy and 
vulnerable files? 
• files related to bug report patches vs 

files from vulnerability patches

• ratio 3.3 : 1
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Realistic
 Dataset

 *Vulnerable vs Non-Vulnerable files



Realistic dataset 
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• Can we distinguish between 
Vulnerable and Non-Vulnerable files?
• Reproduce observed ratio between 

different categories of files 
• 3% of (likely) vulnerable files
• 47% of (likely) buggy files 
• 50% of clear files 



�48

Evaluation



RQ1 - Bugs vs Vulnerabilities 
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RQ2 - Vulnerable vs Non-
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RQ3 Time - Bugs vs 
Precision Recall
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Discussion - Findings
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1VPM’s are working well with 
historical data 
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2Good precision observed even 
with unbalanced data
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3In the practical case, the 
best trade off is in favour of 
include and function calls
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4In the general case, or 
favouring precision the 
best one is text mining.



Previous studies
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Include and Function calls

Precision 70%
Recall 45%

Precision 70%
Recall 64%

There is no comparison with Metrics or Text Mining 

We foundReported 

Neuhaus et al. “Predicting vulnerable software components” CCS’07.

There are no results related to time In the context of Linux 
we have similar results…



Previous studies
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Software Metrics 

Precision 3-5, 9, 2-52%
Recall 87-90, 91, 66-79%

Precision 65%
Recall 22%

Shin et al. “Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of Software Vulnerabilities” TSE’11.
Shinand et al. “Cantraditionalfaultpredictionmodelsbeused for vulnerability prediction?” ESE’13.
Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’14.

We foundReported 10 fold cross validation

Precision 3%
Recall 79-85%

Precision 42 : 39%
Recall 16 : 24%

We foundReported results based on time 

In the context of Linux
there are significant differences… 



Previous studies

�62

Text Mining

Scandariato et al.“Predicting Vulnerable Software Components via Text Mining” TSE’14.
Walden et al. “Predicting Vulnerable Components: Software Metrics vs Text Mining” ISSRE’14.

Precision 76%
Recall 58%

We found
Precision 90, 2-57%
Recall 77, 74-81%

Reported 10 fold cross validation

Precision 74 : 93%
Recall 37 : 27%

We found
Precision 86%

Recall 77%

Reported results based on time 

In the context of Linux
there are again 

significant differences
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DataSet and Replication 
package and additional results

will be available soon…

Please contact Matthieu Jimenez ( Matthieu.Jimenez@uni.lu )  
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Thank you for 
your attention !


