

Back to Basics - The 4R's of Software Estimation

Barbara Kitchenham Keele University

Aim

- To discuss the need for
 - Rigour, Reproducibility, Replication and Relevance
 - In the context of current software estimation research
- To identify limitations with current practice
- To suggest means of addressing those limitations

Definitions

- Rigour
 - Are scientific methods applied correctly?
- Reproducibility
 - Can an independent researcher verify the results published in a study?
- Replication
 - Are the results consistent across different data sets?
- Relevance
 - Do the study results address practitioner problems?

Rigour

- Many poor quality studies still published
- Researchers
 - Do not justify their choice of data set(s)
 - Don't apply the same rigour to all methods
 - Ordinary regression without logarithmic transformation
 - Use invalid metrics
 - Cost estimation
 - All the relative error family (MRE, Balanced MRE etc)
 - Fault prediction
 - F-1 and AUC

Reproducibility

- Not considered important in SE papers
 - Reports of methodology insufficient
 - Machine learning papers seldom explicitly report their fitness function
 - Sometimes use different fitness function in wrappers
 - Use data sets that aren't publically available
 - Build and verification subsets not specified
 - Prediction rather than goodness of fit not confirmed
- Cost Estimation
 - Whigham et al. (2015)
 - Unable to reproduce results of two studies
- Fault Prediction
 - Shepperd et al. (2014)
 - Analysed 42 papers
 - Different people using the same method on the same data set get different results
 - "It matters more who does the work than what is done."

Replication

- The R most considered in SE research
 - Addressed by applying methods to
 - Multiple data sets
 - BUT alas, not always public data sets
- Even public data sets have problems
 - Different versions of the data set
 - Overlapping data sets
 - May be treated as independent but are not
 - Errors in the data sets
 - NASA fault prediction data sets
 - Assuming data set & dataset subsets provide independent evidence
 - Using COCOMO1 plus the 3 mode-based subsets does not mean you have 126 projects

Relevance

- Least considered R
- Typical SE estimation study justified because
 - "Poor quality cost estimation/residual defects cost the IT industry X billions of dollars per year"
- Few papers consider practical issues:
 - Most software development is evolution
 - Size of maintenance work hard to measure
 - Components differ wrt age & fault history
 - Difficult to find comparable items for model building
 - Practitioners want to know
 - How much to bid
 - If a project plan is realistic
 - If a product is in a suitable state to release
 - Our research doesn't usually answer those questions

Relationships between the Rs

- Without Rigour
 - Reproducibility is pointless
- Without Reproducibility
 - Replication is valueless
- With Rigour, Reproducibility & Replication
 - We get good science
- Without Relevance
 - Don't get good engineering science
 - We can't influence practice

Is there really a problem?

- 2016 Statistics based on SCOPUS search
 - 36 cost/duration estimation comparative papers
 - 18 journal papers, 18 not journal papers
 - Evaluation criteria
 - MMRE
 - 25 papers, 12 journal papers
 - MAR (or MdMAR or SumMAR)
 - 16 papers, 10 journal papers
 - MMRE & MAR 6 papers
 - Data sets
 - More than 1
 - 16 papers (9 journal papers)
 - No data set publically available
 - 7 papers (4 used ISBSG only)
 - Identifiable problems
 - 8 papers (3 journal papers)
 - Predictions too good to be true , 5 papers
 - Used overlapping data sets as if independent, 2 papers
 - Reported negative absolute values
 - Procedia Computer Science, 3 papers
 - » Elsevier electronic publishing of conference proceedings

Improving Rigour

- Improve the standard of reporting
 - Needs the support of the journals and conferences
 - Current reporting standards assume things are basically correct
 - Need to be better if rigour is to be confirmed
 - » Need to confirm prediction is taking place
 - Ensure novel/rare techniques reviewed by a statistician/ methodology expert
 - Otherwise poor use of methodology not detected
 - » E.g. incorrect analysis of cross-over designs
 - Reject papers we review if we cannot be sure of study rigour
 - Do better ourselves

Improving Reproducibility

- Use open source languages
 - R for statistical analysis & simulation studies
 - Weka or OpenML for machine learning
 - Publish the algorithms rather than just pseudo code
- Make sure selection of build and verification subsets fully defined
- Need support from journals
 - ACM Transactions on Mathematical Software
 - Replicated Computational Results Initiative
 - Publish studies that have reproduced results

Improving Replication

- Justify the selection/omission of data sets
 - Define inclusion/exclusion criteria
- Reject papers that use data that isn't public
 - Unless new data set important to demonstrate relevance and
 - Method confirmed on public data sets
 - Data & analysis process available for checking by other reviewer

Improving first 3 Rs

- Benchmarking
 - BUT, just making data available is not sufficient
- Need to
 - Agree a set of useful data sets
 - Confirm agreed versions of data for each data set
 - Have agreed build and verification subsets
 - Have reproducible results of applying standard methods to those data sets
 - Regression
 - Analogy
 - Genetic Algorithms
 - Etc.
 - Use unbiased accuracy statistics
 - Ensure prediction is taking place
 - E.g. Regression prediction must outperform mean
 - Reject papers advocating any new method that is not as good or better than standard methods on all of the data sets
 - Query papers with results that look too good
 - Probably goodness of fit NOT prediction
- Psychology have just completed a major replication project
 - Software Estimation needs one too

Improving Relevance

- Explaining how the technique fits with actual development practice, BUT, in industry
 - Components are usually all in different states
 - Consider data as a time series
 - Defect prediction
 - What group of i.i.d items are we going to build a model on?
 - Statistical models and machine learning assume that the past patterns reflect the future
 - What items are we going to apply the model to?
 - Cost estimation
 - Models still use data values only available and/or collected at the end of development to build models
 - Size (FP or Loc)
 - » Need early phase estimates of size to build prediction model
 - Duration
 - » Need early phase values & whether estimate or constraint
 - Ignore quality requirements
- Work with industry partners
 - Obtain more realistic datasets
 - BUT, don't settle for commercially confidential data

Conclusions

- Software Estimation research
 - Concentrates on ever more complex algorithms
 - Based on aging and suspicious data sets
 - Delivering minor improvements
 - Irrelevant to industry
- We need to get back to basics
 - If we are genuinely an engineering science
 - Must embrace the reproducible science movement
 - Start doing reproducibility studies
 - Must agree basic standards
 - Good first step for post-grads
 - Develop trustworthy benchmarks
 - But must not forget Relevance