Back to Basics - The 4R's of Software Estimation

Barbara Kitchenham
Keele University
Aim

• To discuss the need for
 – Rigour, Reproducibility, Replication and Relevance
 – In the context of current software estimation research
• To identify limitations with current practice
• To suggest means of addressing those limitations
Definitions

• Rigour
 – Are scientific methods applied correctly?

• Reproducibility
 – Can an independent researcher verify the results published in a study?

• Replication
 – Are the results consistent across different data sets?

• Relevance
 – Do the study results address practitioner problems?
Rigour

• Many poor quality studies still published
• Researchers
 – Do not justify their choice of data set(s)
 – Don’t apply the same rigour to all methods
 • Ordinary regression without logarithmic transformation
 – Use invalid metrics
 • Cost estimation
 – All the relative error family (MRE, Balanced MRE etc)
 • Fault prediction
 – F-1 and AUC
Reproducibility

• Not considered important in SE papers
 – Reports of methodology insufficient
 • Machine learning papers seldom explicitly report their fitness function
 – Sometimes use different fitness function in wrappers
 • Use data sets that aren’t publically available
 • Build and verification subsets not specified
 • Prediction rather than goodness of fit not confirmed

• Cost Estimation
 – Whigham et al. (2015)
 • Unable to reproduce results of two studies

• Fault Prediction
 – Shepperd et al. (2014)
 • Analysed 42 papers
 • Different people using the same method on the same data set get different results
 • “It matters more who does the work than what is done.”
Replication

• The R most considered in SE research
 – Addressed by applying methods to
 • Multiple data sets
 • BUT alas, not always public data sets

• Even public data sets have problems
 – Different versions of the data set
 – Overlapping data sets
 • May be treated as independent but are not
 – Errors in the data sets
 • NASA fault prediction data sets
 – Assuming data set & dataset subsets provide independent evidence
 • Using COCOMO1 plus the 3 mode-based subsets does not mean you have 126 projects
Relevance

• Least considered R
• Typical SE estimation study justified because
 – “Poor quality cost estimation/residual defects cost the IT industry X billions of dollars per year”
• Few papers consider practical issues:
 – Most software development is evolution
 • Size of maintenance work hard to measure
 • Components differ wrt age & fault history
 • Difficult to find comparable items for model building
 – Practitioners want to know
 • How much to bid
 • If a project plan is realistic
 • If a product is in a suitable state to release
 • Our research doesn’t usually answer those questions
Relationships between the Rs

• Without Rigour
 – Reproducibility is pointless

• Without Reproducibility
 – Replication is valueless

• With Rigour, Reproducibility & Replication
 – We get good science

• Without Relevance
 – Don’t get good engineering science
 – We can’t influence practice
Is there really a problem?

- 2016 Statistics based on SCOPUS search
 - 36 cost/duration estimation comparative papers
 - 18 journal papers, 18 not journal papers
 - Evaluation criteria
 - MMRE
 - 25 papers, 12 journal papers
 - MAR (or MdMAR or SumMAR)
 - 16 papers, 10 journal papers
 - MMRE & MAR 6 papers
 - Data sets
 - More than 1
 - 16 papers (9 journal papers)
 - No data set publically available
 - 7 papers (4 used ISBSG only)
 - Identifiable problems
 - 8 papers (3 journal papers)
 - Predictions too good to be true, 5 papers
 - Used overlapping data sets as if independent, 2 papers
 - Reported negative absolute values
 - Procedia Computer Science, 3 papers
 » Elsevier electronic publishing of conference proceedings
Improving Rigour

• Improve the standard of reporting
 – Needs the support of the journals and conferences
 • Current reporting standards assume things are basically correct
 – Need to be better if rigour is to be confirmed
 » Need to confirm prediction is taking place
 • Ensure novel/rare techniques reviewed by a statistician/methodology expert
 – Otherwise poor use of methodology not detected
 » E.g. incorrect analysis of cross-over designs
 • Reject papers we review if we cannot be sure of study rigour
 • Do better ourselves
Improving Reproducibility

• Use open source languages
 – R for statistical analysis & simulation studies
 – Weka or OpenML for machine learning
 – Publish the algorithms rather than just pseudo code

• Make sure selection of build and verification subsets fully defined

• Need support from journals
 – ACM Transactions on Mathematical Software
 • Replicated Computational Results Initiative
 • Publish studies that have reproduced results
Improving Replication

• Justify the selection/omission of data sets
 – Define inclusion/exclusion criteria

• Reject papers that use data that isn’t public
 – Unless new data set important to demonstrate relevance and
 • Method confirmed on public data sets
 • Data & analysis process available for checking by other reviewer

The 4 R’s
Improving first 3 Rs

- **Benchmarking**
 - BUT, just making data available is not sufficient

- **Need to**
 - Agree a set of useful data sets
 - Confirm agreed versions of data for each data set
 - Have agreed build and verification subsets
 - Have reproducible results of applying standard methods to those data sets
 - Regression
 - Analogy
 - Genetic Algorithms
 - Etc.
 - Use unbiased accuracy statistics
 - Ensure prediction is taking place
 - E.g. Regression prediction must outperform mean
 - Reject papers advocating any new method that is not as good or better than standard methods on all of the data sets
 - Query papers with results that look too good
 - Probably goodness of fit NOT prediction

- **Psychology have just completed a major replication project**
 - Software Estimation needs one too
Improving Relevance

- Explaining how the technique fits with actual development practice, BUT, in industry
 - Components are usually all in different states
 - Consider data as a time series
 - Defect prediction
 - What group of i.i.d items are we going to build a model on?
 - Statistical models and machine learning assume that the past patterns reflect the future
 - What items are we going to apply the model to?
 - Cost estimation
 - Models still use data values only available and/or collected at the end of development to build models
 - Size (FP or Loc)
 » Need early phase estimates of size to build prediction model
 - Duration
 » Need early phase values & whether estimate or constraint
 - Ignore quality requirements

- Work with industry partners
 - Obtain more realistic datasets
 - BUT, don’t settle for commercially confidential data
Conclusions

• Software Estimation research
 – Concentrates on ever more complex algorithms
 – Based on aging and suspicious data sets
 • Delivering minor improvements
 • Irrelevant to industry

• We need to get back to basics
 – If we are genuinely an engineering science
 • Must embrace the reproducible science movement
 – Start doing reproducibility studies
 • Must agree basic standards
 • Good first step for post-grads
 – Develop trustworthy benchmarks
 – But must not forget Relevance

The 4 R’s