MUTATION-AWARE FAULT PREDICTION

David Bowes: Hertfordshire University, UK Tracy Hall: Brunel University London, UK Mark Harman: University College London, UK Yue Jia: University College London, UK Federica Sarro: University College London, UK Fan Wu: University College London, UK

Agenda

- Introduction
- Background
- Methods
- Results
- Conclusions

Introduction

Predicting defects is important but hard.

Background: Defect prediction

Background: mutation testing

- Creates a mutant of a program.
- A mutant is `killed' (identified) by a test case.
- Mutants are created by mutation operators

Methods: Mutation Operators

Index	Mutation Operator	Description
1	Return Value Mutator	Mutates the return values of method calls.
2	Negate Conditionals Mutator	Mutates conditionals between $==$ and $!=$, $<$ and $>=$, $>$ and $<=$.
3	Increments Mutator	Replaces increments $(++)$ with decrements $()$ and vice versa.
4	Void Method Calls Mutator	Removes void method calls.
5	Conditionals Boundary Mutator	Replaces the relational operators between $<$ and $<=$, $>$ and $>=$.
6	Invert Negatives Mutator	Inverts negation of integer and floating point numbers.
7	Math Mutator	Swaps operations within groups: {+,-}, {*, /, %}, {&, , ^}, {<<, >>, >>>}
А	All of the above	Used to denote mutation metrics that count all the above metric instance

Research Questions

RQ1: Is the performance of predictive modelling techniques improved when they have mutation metrics available?

RQ2: What is the effect size of improvements in predictive model performance due to mutation metrics?

RQ3: What is the relative performance of static and dynamic mutation metrics?

Methods

Subject systems...

Methods: Subject Systems

	Apache	Eclipse	TelCom
LOC Total	$22,\!430$	$113,\!106$	84,731
No. Classes	74	727	1295
No. Faulty Classes	30	191	42
% Faulty Classes	40.54%	26.27%	3.24%
No. Tests	245	$8,\!393$	$2,\!846$

Methods: Data collected

- Defect data collected using SZZ Algorithm
- Commonly used source code metrics collected...

Methods: Metrics

🚼 Problems 🔎 Javadoc 😣 Declaration 🗐 Console 👺 JHawk Metrics 🖾

🌢 Dashboard 🛽 🖻 System Details 🔛 System Packages 阳 Package Details 🗿 Class Details 🔞 All Classes 🏋 All Methods 🕫 Export

Packages in this system

Name	No. Classes	No. Methods	NOS	TCC	AVCC	HBUG	HEFF	HLTH	HVOL	MI	MINC	1 ^
org.junit.tests.running.methods	62	211	736	71	0.34	7.83	165681.06	5487	23479.26	130.66	130.66	
junit.framework	17	149	557	41	0.28	6.16	167133.46	4266	18474.07	150.10	129.48	
junit.tests.framework	37	129	544	41	0.32	4.60	107279.83	3498	13800.33	125.81	125.81	
org.junit.tests.junit3compatibility	46	99	495	47	0.47	5.84	146767.79	3861	17520.04	120.13	120.13	
org.junit.tests.experimental.rules	51	89	448	48	0.54	5.03	121537.06	3447	15085.39	120.38	120.38	
org.junit.tests.experimental.theo	36	79	383	39	0.49	5.87	191947.37	3758	17596.12	122.04	122.04	
org.junit.tests.assertion	3	71	303	5	0.07	4.17	88755.88	2812	12513.39	124.76	124.76	
org.junit.internal.runners	9	40	291	26	0.65	3.99	151453.48	2350	11962.96	111.40	111.40	
org.junit.runners	9	62	276	17	0.27	3.77	94737.46	2383	11315.09	124.00	123.77	
org.junit.tests.running.classes	29	67	263	24	0.36	3.41	81358.89	2311	10239.09	129.15	129.15	*
<												>

- -

Name of package	org.junit	Total number of Classes	5	^	
Total number of methods	67	Total number of Java statements	251		
Total Cyclomatic Complexity	12	Average Cyclomatic Complexity for	0.18		
Cumulative Halstead bugs	3.26	Cumulative Halstead effort	98323.41		
Cumulative Halstead length	2248	Cumulative Halstead volume	9789.64		
Maintainability Index	84.53	Maintainability Index (Not including com	128.66		
Abstractness	0.00	Fan In	0		
Fan Out	4	Instability	1.00		
Distance	0.00	Maximum Cvclomatic Complexity for me		*	

Methods: Data collected

- Defect data collected using SZZ Algorithm
- Commonly used source code metrics collected using JHawk.
- PITest used to mutate the code and identify methods where the unit tests do not detect/kill the mutation
- Our tool then computes five types of Static and dynamic mutation metrics

Methods: Types of Mutation Metrics

Metric	Description	Type
MuNOM ^S	Number of generated mutants	Static
MuNOC	Number of mutants covered by tests	Dynamic
MuNNC	Number of mutants not covered by tests	Dynamic
MuMS	Mutation score of generated mutants	Dynamic
MuMSC	Mutation score of covered mutants	Dynamic

Methods: Data collected

- Defect data collected using SZZ Algorithm
- Commonly used source code metrics collected using JHawk.
- PITest used to mutate the code and identify methods where the unit tests do not detect/kill the mutation
- Our tool then computes five types of Static and dynamic mutation metrics
- PITEST has 7 mutations operators
- We used 40 mutation metrics in total

Methods: Machine Learning Techniques

- Techniques used to predict if a class is defective:
 - Naïve Bayes
 - Logistic Regression
 - J48
 - Random Forest
- Used the WEKA Wrapper Subset Selection Filter.
- Performed 10-fold cross validation repeated 50 times
- Evaluated the results using Matthews Correlation Coefficient
 - MCC values range between -1 and +1.

Results

RQ1: Is the performance of predictive modelling techniques improved when they have mutation metrics available?

RQ2: What is the effect size of improvements in predictive model performance due to mutation metrics?

RQ3: What is the relative performance of static and dynamic mutation metrics?

RQ1: Do Mutation Metrics Improve Performance?

RQ1: Do Mutation Metrics Improve Performance?

(a) MCC

	Apache	Eclipse	TelCom
Naïve Baves	< 0.001	< 0.001	0.018
	(0.182)	(-0.030)	(0.022)
Logistic Regression	< 0.001	< 0.001	0.338
Logistic Regression	(0.164)	(-0.020)	(0.005)
Random Forest	0.858	0.005	0.920
	(-0.008)	(0.013)	(0.000)
.148	< 0.001	< 0.001	0.007
010	(0.070)	(-0.019)	(0.057)

RQ1: Do Mutation Metrics Improve Performance?

RQ2: What is the effect size of improvements in predictive model performance due to mutation metrics? Top 10 most frequently used metrics

	Apache	Eclipse	TelCom
	$\mathrm{HEFF}(492)$	FOUT(500)	FOUT(465)
	MuMS2(488)	$\operatorname{MINC}(500)$	MuMS7(458)
0	MuMSA(340)	NOM(500)	MuMS4(427)
rye:	R-R(306)	MuMSC4(471)	$MuNOM^S 7(418)$
B_{3}	MI(266)	MuNOC2(342)	MuNNC3 (416)
Ve	LCOM(155)	MuMSC3(309)	MuMSA(398)
Vaï	$MuNOM^{S}3(120)$	MuMS1(226)	MI(373)
	SIX(117)	MAXCC(210)	MuNNC7(317)
	MuMSC3(85)	MuMSA(209)	SIX(268)
	MuNOC7 (71)	MuMSC5(206)	MuMSC7(259)

RQ2: What is the effect size of improvements in predictive model performance due to mutation metrics?

Frequency of mutation metrics in the top 10 metrics

Technique	Apache	Eclipse	TelCom
Naïve Bayes	5	6	7
Logistic Regression	6	1	7
Random Forest	5	4	1
J48	6	5	3

RQ2: What is the effect size of improvements in predictive model performance due to mutation metrics? Effect of each metric to model performance: global

Apache	Eclipse	TelCom
${ m HEFF}(0.292,\!492)$	FOUT(0.104,500)	FOUT(0.094, 465)
MuMS2(0.252, 488)	MINC(0.074,500)	MuNNC3(0.056,416)
MuMSA(0.152,340)	MuMSC4(0.046, 471)	MuMS7(0.055, 458)
\$ MI(0.073,266)	MAXCC(0.034,210)	MuMSA(0.055,398)
R-R(0.063,306)	MuNOC2(0.029, 342)	MuMS4(0.054, 427)
LCOM(0.042, 155)	NOM(0.025,500)	SIX(0.051,268)
$MuNOM^{S}3(0.036,120)$	MuMS1(0.023, 226)	$MuNOM^{S}7(0.049,418)$
MuMSCA(0.033,66)	MuMSC3(0.021,309)	MI(0.047,373)
MuMSC7(0.031, 49)	MuMS6(0.018,254)	MuNNC4(0.042,225)
MuMSC3(0.021,85)	MuMSC5(0.018, 206)	CBO(0.036,238)

RQ2: What is the effect size of improvements in predictive model performance due to mutation metrics? Effect of each metric to model performance: local

	Apache	Eclipse	TelCom
	$\operatorname{MINC}(0.507,5)$	MuMSC7(0.138,7)	S-R(0.394,1)
	HVOL(0.437, 4)	HVOL(0.127,4)	$\mathrm{NSUB}(0.349,1)$
\mathbf{v}	CBO(0.342,2)	FOUT(0.104,500)	RFC(0.155,4)
aye	MuNOC2 (0.317,4)	TCC(0.102,11)	MuMSC1(0.143,2)
B.	MuMSC7 (0.316,49)	$MuNOM^{S}5(0.094,3)$	MuNOC4(0.126, 45)
ive	MuNOM ^S $7(0.311,1)$	MuMS2(0.086, 28)	MuNOM S 5 (0.121,5)
Na.	MuNOC1(0.303,1)	MAXCC(0.082,210)	Coh(0.118,6)
	HEFF(0.297, 492)	MuMS4(0.078,11)	HLTH(0.111, 152)
	MuMSC1(0.292,21)	MuNOM S 2 $(0.074,20)$	NCO(0.107,2)
	MuNNC7(0.287,5)	MINC(0.074,500)	NOM(0.107,5)

RQ3: What is the relative performance of static and

RQ3: What is the relative performance of static and dynamic mutation metrics?

	Apache	Eclipse	TelCom		
Naïve Bayes	0.008	0.450	< 0.001		
Marve Dayes	(-0.028)	(0.003)	(0.027)		
Logistic Regression	< 0.001	< 0.001	0.259		
Logistic Regression	(-0.055)	$\begin{array}{c c} & \text{Eclipse} \\ \hline 0.450 \\ (0.003) \\ \hline <0.001 \\ (-0.010) \\ \hline 0.010 \\ (0.012) \\ \hline 0.030 \\ (-0.009) \\ \hline \\ \textbf{amic} \\ \hline \\ $	(-0.009)		
Bandom Forest	0.036	0.010	0.427		
Itandom POLSt	(0.025)	(0.012)	(0.013)		
148	< 0.001	0.030	0.044		
J 40	(-0.055)	(-0.009)	(0.044)		
(b) Dynamic					
	Apache	Eclipse	TelCom		
Naïve Baves	0.569	< 0.001	< 0.001		
Marve Dayes	(-0.014)	(-0.033)	(0.039)		
Logistic Regression	0.555	< 0.001	0.368		
Logistic Regression	(0.017)	(-0.019)	(-0.009)		
Bandom Forest	0.036	0.101	0.048		
	(-0.052)	(0.012)	(0.036)		
148	< 0.001	0.429	0.012		
010	(-0.088)	(-0.005)	(0.050)		

(a) Static

Conclusions

- Mutation awareness can significantly improve predictive performance and with worthwhile effect sizes.
- The effects vary from:
 - System to system
 - Algorithm to algorithm
- Combinations of metrics are generally good.
- Our results are good for:
 - Defect prediction
 - Mutation testing
- More work needed....

Questions?

Highlights:

- Our work addresses important gaps in defect prediction:
 - Testing Information rarely used
 - Dynamic Information rarely used
 - Industrial data rarely used
- Findings have lots of promise:
 - Adding mutation information improves predictive performance
 - Models are significantly improved
 - Worthwhile effect sizes occur
- Could improve mutation testing?
- A novel way of working out the effect of metrics