Examples of fitness landscape analysis

Fitness landscape analysis for understanding and designing local search heuristics

SÉBASTIEN VEREL

LISIC - Université du Littoral Côte d'Opale, Calais, France http://www-lisic.univ-littoral.fr/~verel/

The 51st CREST Open Workshop Tutorial on Landscape Analysis University College London

Real-world problems and fitness landscape analysis

Two combinatorial black-box problems :

- Engineering design problem :
 Design of the control program of rods
 Toward landscape aware parameter settings
- Cellular automata problem :
 Design of a complex system program
 One more step to understand why it is possible

Real-world problems and fitness landscape analysis

Two combinatorial black-box problems :

- Engineering design problem:
 joined work M. Muniglia, J.-C. Le Pallec, J.-M. Do
 Design of the control program of rods
 Toward landscape aware parameter settings
- Cellular automata problem :
 joined work M. Clergue, E. Formenti
 Design of a complex system program
 One more step to understand why it is possible

Energy production problem

PhD of Mathieu Muniglia, Saclay Nuclear Research Centre (CEA), Paris

Large scale deployment of **intermittent** renewable energies in France

Highly fluctuating production rate (up to 3 times the average)

Challenge of the NPP control

Optimize the nuclear power plant (NPP) toward better manageability, so they can cope with huge power variations

Real-world black-box combinatorial optimization problem PhD of Mathieu Muniglia, Saclay Nuclear Research Centre (CEA), Paris

Multi-physic simulator

- core : neutronics, thermalhydraulics, fuel,
- boron management
- steam generator model

Expensive computation: 40 minutes of simulation

Program of the control rods

Power Shimming rods:4 groups: G1, G2, N1, N2

• Temperature Regulation rods :

1 group : R

Insertion sequence of the PS rods :

Speed program of the TR rods :

Parametric program defined by n = 11 integers :

	PSR Overlaps			PSR Velocities				TRR V.			
	01	0 2	<i>0</i> ₃	v ₁	v ₂	<i>V</i> 3	<i>V</i> 4	V	V	mb	db
lower b.	0	0	0	10	10	10	10	3	3	7	8
upper b.	255	255	255	110	110	110	110	13	13	117	16
ref. val.	185	175	160	60	60	60	60	72	8	27	8

Nuclear Reactor Operation Optimization problem [MDG⁺16]

Objective function

 $x \in X$, set of integers vectors,

$$f(x) =$$

$$\frac{1}{4}\sum_{i}|P_{r,i+1}^2-P_{r,i}^2|\cdot\left(D(\Delta I_{i+1})+D(\Delta I_i)\right)$$

where:

ullet ΔI_i^{ref} : the power axial imbalance

Asynchronous distributed $(1 + \lambda)$ -Evolution Strategy

Master-slaves architecture


```
Algorithm on Master
     \{x_1, \dots, x_{\lambda}\} \leftarrow \text{Initialization()}
     for i = 1...\lambda do
         Send (Non-blocking) x_i to slave S_i
     end for
     x_{best} \leftarrow \emptyset, and f_{best} \leftarrow \infty
     repeat
         if there is a pending mess. from S_i then
             Receive fitness f_i of x_i from S_i
             if f_i \leqslant f_{hest} then
                 x_{best} \leftarrow x_i, and f_{best} \leftarrow f_i
             end if
             x_i \leftarrow \mathtt{mutation}(x_{best})
             Send (Non-blocking) x_i to slave S_i
         end if
     until time limit
```

3072 computation nodes during 24h max.

Parameter tuning : Mutation

Parametric program defined by n = 11 integers :

	PSR Overlaps			PSR Velocities				TRR V.			
	<i>o</i> ₁	0 2	0 3	v ₁	v ₂	<i>V</i> 3	<i>V</i> 4	V	V	mb	db
lower b.	0	0	0	10	10	10	10	3	3	7	8
upper b.	255	255	255	110	110	110	110	13	13	117	16
ref. val.	185	175	160	60	60	60	60	72	8	27	8

Mutation operator

Parameters:

- ullet For each integer, a mutation rate is defined by p (default p=1/n)
- For each integer, a mutation range is defined by δ (default $5\%(\overline{x_i} \underline{x_i})$)

Procedure:

- For each integer, the value is changed according to the rate of mutation (Bernoulli law of parameter p)
- When an integer is modified, a random value (uniform distribution) is pick from : $[x_i \delta, x_i + \delta] \cap [x_i, \overline{x_i}] \setminus \{x_i\}$

Performance vs. mutation parameters values

 Baseline settings : punctuated equilibrium dynamics

- Impact of parameters values
- Best settings :

$$p = 0.2, r = 0.5$$

Fitness landscape analysis

One random walk of length 10^3 for each mutation operator values

- Autocorrelation length $k: |\rho(k)| \leqslant 4/\sqrt{\ell}$
- \bullet Neutral degree rate : estimated with $\ell-1$ solutions

In short : r impacts the ruggedness, p impacts the neutrality

Fitness landscape features vs. performance

Features of fitness landscape related to the performance?

In short : possible to tune mutation parameters based on the fitness landscape analysis (but the more rugged, the better!) Future work : bi-objective optimization...

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

Firing Squad Synchronization Problem John Myhill, 1957, published by Edward Moore, 1964 [Moo64]

Synchronization problem of decentralized computation nodes without global coordinator and bounded communication

The problem

- One-dimensional cellular automata
- Communication with left and right hands
- Initial configuration:
 one cell in state "general",
 the others cells are in "rest" state
- All cells in "rest" state remains "rest"
- **Goal**: Find the set of rules such that all cells reach for the first time the "firing" state at the same time

Firing Squad Synchronization Problem

Precisions

- Neighborhood of a cell: left, middle and, right cells
- Special rules for left and right boundaries number of rules for k states : $nr_k = (k-1)^3 + 2(k-1)^2 3$ number of CA for k states : k^{nr_k} .
- Same rules (CA) for all lengths $n : \forall n \geq 2$, $fssp_n(CA)$ true.
- Minimal time : 2n-2 time steps for n cells

Firing Squad Synchronization Problem

Precisions

- Neighborhood of a cell: left, middle and, right cells
- Special rules for left and right boundaries number of rules for k states : $nr_k = (k-1)^3 + 2(k-1)^2 3$ number of CA for k states : k^{nr_k} .
- Same rules (CA) for all lengths $n : \forall n \geq 2$, $fssp_n(CA)$ true.
- Minimal time : 2n 2 time steps for n cells

History of the problem [Yun07]

Non-minimal time:

• 1967, Minsky & McMarthy [Min67] 15 states, 3n + O(log(n)) time steps

Minimal time:

- 1962, E. Goto [Got62] : $\approx 10^6$ states
- 1967, Waksman: 16 states, Balzer: 8 states [Bal67]
- 1987, Mazoyer [Maz87], **6** states

Minimal time with 4 states:

• 1967, No solution [Bal67] [San94]

Waksmann / Balzer

History of the problem [Yun07]

Non-minimal time:

• 1967, Minsky & McMarthy [Min67] 15 states, 3n + O(log(n)) time steps

Minimal time:

- 1962, E. Goto [Got62] : $\approx 10^6$ states
- 1967, Waksman: 16 states, Balzer: 8 states [Bal67]
- 1987, Mazoyer [Maz87], **6** states

Minimal time with 4 states:

• 1967, No solution [Bal67] [San94]

Mazoyer

History of the problem [Yun07]

Non-minimal time:

• 1967, Minsky & McMarthy [Min67] 15 states, 3n + O(log(n)) time steps

Minimal time:

- ullet 1962, E. Goto [Got62] : pprox 10⁶ states
- 1967, Waksman : 16 states, Balzer : 8 states [Bal67]
- 1987, Mazoyer [Maz87], **6** states

Minimal time with 4 states:

• 1967, No solution [Bal67] [San94]

Mazoyer

FSSP as a black-box combinatorial optimization problem

Associated optimization problem

• Search space :

Set of all CA with 6 states,

Objective function :

largest length of synchronized cells

$$f(x) = n$$
 iff $\forall i \in [2, n]$, $fssp_i(x) = true$ and $fssp_{n+1}(x) = false$

Huge search space : Brut force fails

For k = 6 states :

number of rules :
$$nr_k = (k-1)^3 + 2(k-1)^2 - 3 = 172$$

number of CA : $\sharp X = k^{nr_k} \approx 10^{133}$

Goal

Find one maximum of f which synchronizes the largest length.

Iterated Local Search

```
Choose randomly initial solution x \in X
x \leftarrow hc(x, e_{hc})
Initialize the number of evaluation e_{tot}
repeat
   y \leftarrow \operatorname{perturbation}_k(x)
   z \leftarrow hc(y, e_{hc}), and update the number of evaluation e_{tot}
   if f(x) \leq f(z) then
      x \leftarrow 7
   end if
until e_{tot} \geq e_{max}
```

- first-improvement hill-climbing with ≤ acceptance criterion
- neighborhood relation : modification of 1 rule
- ullet Perturbation : randomly modify k rules
- Number of evaluations : 100×10^9

A minimal Kolmogorov complexity solution 80 (human +LS) < 119 rules (human+paper)

Problem solved

2665 different solutions found (synchronization until $n = 10^3$)

Number of successful runs (over 200)

hc eval e _{hc}							
$(\times 10^6)$	3	4	5	6	cumu.		
0.5	7	4	5	5	21		
0.7	8	8	8	1	25		
0.9	9	8	5	2	24		
1.1	8	6	4	7	25		
1.5	9	3	5	5	22		
5.0	3	5	1	0	9		
cumu.	44	34	28	20	126		

Why it works?

Citation from an CA expert

"Local search can't work for solving a CA problem because when you change one rule, everything change"

But...

From the point of view of Local Search:

- A lot a one-rule modifications do not change the space-time diagram
- ullet The rules which are not used for length n could be benefit for length n+1
- With "high" probability, it exists some modifications which can improve the CA

Fitness landscape analysis

Neutrality:

Average fitness in the neighborhood

Neutral degree

- Performance of neighboring solution is correlated
- Same performance for \approx 4 neighbors (from used rules) + equal fitness neighbors from unused rules.

Surprisingly, some local modifications of program are useful

Discussions

Fitness landscape analysis

- Helps to understand the structure of real-world problems
- Possible way to tune the parameters of local search heuristics.

References I

An 8-state minimal time solution to the firing squad synchronization problem.

Information and Control, 10(1):22 – 42, 1967.

A minimum time solution of the firing squad problem. *Course Notes for Applied Mathematics*, 298, 1962.

A six-state minimal time solution to the firing squad synchronization problem.

Theoretical Computer Science, 50(2):183 - 238, 1987.

References II

Mathieu Muniglia, Jean-Michel Do, Hubert Grard, Sébastien Verel, S David, et al.

A multi-physics pwr model for the load following. In *International Congress on Advances in Nuclear Power Plants* (ICAPP), 2016.

Marvin L. Minsky.

Computation: Finite and Infinite Machines.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.

E.F. Moore.

The Firing Squad Synchronization Problem in Sequential Machines, volume Sequential Machines. Selected Papers., pages 213–214.

Addison-Wesley, Reading MA, 1964.

References III

P. Sanders.

Massively parallel search for transition-tables of polyautomata. In W. Wilhelmi C. Jesshope, V. Jossifov, editor, *Proc. of the* VI Int. Workshop on Parallel Processing by Cellular Automata and Arrays, pages 99-108. Akademie, Berlin, 1994.

J.-B. Yunes.

A propos d'automates cellulaires, suivi par des fonctions booléennes.

HDR, 2007.