Examples of fitness landscape analysis

Fitness landscape analysis for understanding and designing local search heuristics

SÉbastien Verel

LISIC - Université du Littoral Côte d'Opale, Calais, France http://www-lisic.univ-littoral.fr/~verel/

The 51st CREST Open Workshop
Tutorial on Landscape Analysis
University College London

Real-world problems and fitness landscape analysis

Two combinatorial black-box problems :

- Engineering design problem :

Design of the control program of rods
Toward landscape aware parameter settings

- Cellular automata problem :

Design of a complex system program
One more step to understand why it is possible

Real-world problems and fitness landscape analysis

Two combinatorial black-box problems :

- Engineering design problem : joined work M. Muniglia, J.-C. Le Pallec, J.-M. Do

Design of the control program of rods
Toward landscape aware parameter settings

- Cellular automata problem : joined work M. Clergue, E. Formenti

Design of a complex system program
One more step to understand why it is possible

Energy production problem

PhD of Mathieu Muniglia, Saclay Nuclear Research Centre (CEA), Paris

Challenge of the NPP control

Optimize the nuclear power plant (NPP) toward better manageability,
so they can cope with huge power variations

Real-world black-box combinatorial optimization problem

 PhD of Mathieu Muniglia, Saclay Nuclear Research Centre (CEA), Paris
\longrightarrow Circuit primaire
\longrightarrow Signaux
Multi-physic simulator

- core : neutronics, thermalhydraulics, fuel,
- boron management
- steam generator model

Expensive computation : 40 minutes of simulation

Program of the control rods

Insertion sequence of the PS rods :

- Power Shimming rods: 4 groups: G1, G2, N1, N2
- Temperature Regulation rods : 1 group : R

Speed program of the TR rods:

Parametric program defined by $n=11$ integers :

	PSR Overlaps			PSR Velocities				TRR V.			
	o_{1}	o_{2}	o_{3}	v_{1}	v_{2}	v_{3}	v_{4}	V	v	mb	db
lower b.	0	0	0	10	10	10	10	3	3	7	8
upper b.	255	255	255	110	110	110	110	13	13	117	16
ref. val.	185	175	160	60	60	60	60	72	8	27	8

Nuclear Reactor Operation Optimization problem [MDG ${ }^{+} 16$]

Control diagram

$\left(P_{r, i}, \Delta I_{i}\right)$: state of the core

Objective function

$x \in X$, set of integers vectors,

$$
\begin{aligned}
& f(x)= \\
& \frac{1}{4} \sum_{i}\left|P_{r, i+1}^{2}-P_{r, i}^{2}\right| \cdot\left(D\left(\Delta I_{i+1}\right)+D\left(\Delta I_{i}\right)\right)
\end{aligned}
$$

where :

- $D\left(\Delta I_{i}\right)=\left|\Delta I_{i}-\Delta I_{i}^{\text {ref }}\right|$
- $\Delta I_{i}^{\text {ref }}$: the power axial imbalance

Asynchronous distributed $(1+\lambda)$-Evolution Strategy

Master-slaves architecture

Algorithm on Master

```
\(\left\{x_{1}, \ldots, x_{\lambda}\right\} \leftarrow \operatorname{Initialization()}\)
for \(i=1 . . \lambda\) do
    Send (Non-blocking) \(x_{i}\) to slave \(S_{i}\)
    end for
    \(x_{\text {best }} \leftarrow \emptyset\), and \(f_{\text {best }} \leftarrow \infty\)
    repeat
    if there is a pending mess. from \(S_{i}\) then
        Receive fitness \(f_{i}\) of \(x_{i}\) from \(S_{i}\)
        if \(f_{i} \leqslant f_{\text {best }}\) then
            \(x_{\text {best }} \leftarrow x_{i}\), and \(f_{\text {best }} \leftarrow f_{i}\)
        end if
        \(x_{i} \leftarrow\) mutation \(\left(x_{\text {best }}\right)\)
        Send (Non-blocking) \(x_{i}\) to slave \(S_{i}\)
        end if
    until time limit
```


Parameter tuning : Mutation

Parametric program defined by $n=11$ integers :

	PSR Overlaps			PSR Velocities				TRR V.			
	o_{1}	o_{2}	o_{3}	v_{1}	v_{2}	v_{3}	v_{4}	V	v	mb	db
lower b.	0	0	0	10	10	10	10	3	3	7	8
upper b.	255	255	255	110	110	110	110	13	13	117	16
ref. val.	185	175	160	60	60	60	60	72	8	27	8

Mutation operator

Parameters :

- For each integer, a mutation rate is defined by p (default $p=1 / n$)
- For each integer, a mutation range is defined by δ (default $5 \%\left(\overline{x_{i}}-\underline{x_{i}}\right)$)

Procedure :

- For each integer, the value is changed according to the rate of mutation (Bernoulli law of parameter p)
- When an integer is modified, a random value (uniform distribution) is pick from : $\left[x_{i}-\delta, x_{i}+\delta\right] \cap\left[x_{i}, \overline{x_{i}}\right] \backslash\left\{x_{i}\right\}$

Performance vs. mutation parameters values

- Baseline settings :
punctuated equilibrium dynamics

- Impact of parameters values
- Best settings :

$$
p=0.2, r=0.5
$$

Fitness landscape analysis

One random walk of length 10^{3} for each mutation operator values

- Autocorrelation length $k:|\rho(k)| \leqslant 4 / \sqrt{\ell}$
- Neutral degree rate : estimated with $\ell-1$ solutions

In short : r impacts the ruggedness, p impacts the neutrality

Fitness landscape features vs. performance

Features of fitness landscape related to the performance?

In short : possible to tune mutation parameters based on the fitness landscape analysis (but the more rugged, the better!) Future work : bi-objective optimization...

Cellular automata

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

Transition function :

Cellular automata

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

Transition function :

Cellular automata

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

Transition function :

Cellular automata

- Discrete dynamical system
- Set of finite state machines
- Program : transition function
- Model of decentralized computation

Transition function :

Firing Squad Synchronization Problem John Myhill, 1957, published by Edward Moore, 1964 [Moo64]

Synchronization problem of decentralized computation nodes without global coordinator and bounded communication

The problem

- One-dimensional cellular automata
- Communication with left and right hands
- Initial configuration :
one cell in state "general", the others cells are in " rest" state
- All cells in "rest" state remains " rest"
- Goal : Find the set of rules such that all cells reach for the first time the
 "firing" state at the same time

Firing Squad Synchronization Problem

Precisions

- Neighborhood of a cell : left, middle and, right cells
- Special rules for left and right boundaries number of rules for k states : $n r_{k}=(k-1)^{3}+2(k-1)^{2}-3$ number of CA for k states: $k^{n r_{k}}$.
- Same rules (CA) for all lengths $n: \forall n \geq 2, \mathrm{fssp}_{n}(C A)$ true.
- Minimal time : $2 n-2$ time steps for n cells

Firing Squad Synchronization Problem

Precisions

- Neighborhood of a cell : left, middle and, right cells
- Special rules for left and right boundaries number of rules for k states : $n r_{k}=(k-1)^{3}+2(k-1)^{2}-3$ number of CA for k states: $k^{n r_{k}}$.
- Same rules (CA) for all lengths $n: \forall n \geq 2, \operatorname{fssp}_{n}(C A)$ true.
- Minimal time : $2 n-2$ time steps for n cells

History of the problem [Yun07]

Non-minimal time :

- 1967, Minsky \& McMarthy [Min67] 15 states, $3 n+O(\log (n))$ time steps

Minimal time :

- 1962, E. Goto [Got62] : $\approx 10^{6}$ states
- 1967, Waksman : 16 states, Balzer : 8 states [Bal67]
- 1987, Mazoyer [Maz87], 6 states

Minimal time with 4 states :

- 1967, No solution [Bal67] [San94]

History of the problem [Yun07]

Non-minimal time :

- 1967, Minsky \& McMarthy [Min67] 15 states, $3 n+O(\log (n))$ time steps

Minimal time :

- 1962, E. Goto [Got62] : $\approx 10^{6}$ states
- 1967, Waksman : 16 states, Balzer : 8 states [Bal67]
- 1987, Mazoyer [Maz87], 6 states

Minimal time with 4 states :

- 1967, No solution [Bal67] [San94]

Mazoyer

History of the problem [Yun07]

Non-minimal time :

- 1967, Minsky \& McMarthy [Min67] 15 states, $3 n+O(\log (n))$ time steps

Minimal time :

- 1962, E. Goto [Got62] : $\approx 10^{6}$ states
- 1967, Waksman : 16 states, Balzer : 8 states [Bal67]
- 1987, Mazoyer [Maz87], 6 states

Minimal time with 4 states :

- 1967, No solution [Bal67] [San94]

Mazoyer
"But I lost another solution..."

FSSP as a black-box combinatorial optimization problem

Associated optimization problem

- Search space : Set of all CA with 6 states,
- Objective function :
largest length of synchronized cells

$$
f(x)=n \text { iff } \forall i \in[2, n], \operatorname{fssp}_{i}(x)=\text { true and } \mathrm{fssp}_{n+1}(x)=\text { false }
$$

Huge search space : Brut force fails

For $k=6$ states :
number of rules: $n r_{k}=(k-1)^{3}+2(k-1)^{2}-3=172$
number of CA: $\sharp X=k^{n r_{k}} \approx 10^{133}$

Goal

Find one maximum of f which synchronizes the largest length.

Iterated Local Search

Choose randomly initial solution $x \in X$ $x \leftarrow \mathrm{hc}\left(x, e_{h c}\right)$
Initialize the number of evaluation $e_{\text {tot }}$
repeat
$y \leftarrow$ perturbation $_{k}(x)$
$z \leftarrow \mathrm{hc}\left(y, e_{h c}\right)$, and update the number of evaluation $e_{\text {tot }}$
if $f(x) \leq f(z)$ then $x \leftarrow z$
end if
until $e_{\text {tot }} \geq e_{\text {max }}$

- first-improvement hill-climbing with \leqslant acceptance criterion
- neighborhood relation: modification of 1 rule
- Perturbation : randomly modify k rules
- Number of evaluations: 100×10^{9}

Problem solved

2665 different solutions found

 (synchronization until $n=10^{3}$)Number of successful runs (over 200)

hc eval $e_{h c}$	Perturbation k				
$\left(\times 10^{6}\right)$	3	4	5	6	cumu.
0.5	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{2 1}$
0.7	$\mathbf{8}$	$\mathbf{8}$	$\mathbf{8}$	1	$\mathbf{2 5}$
0.9	$\mathbf{9}$	$\mathbf{8}$	$\mathbf{5}$	$\mathbf{2}$	$\mathbf{2 4}$
1.1	$\mathbf{8}$	$\mathbf{6}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{2 5}$
1.5	$\mathbf{9}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{2 2}$
5.0	$\mathbf{3}$	$\mathbf{5}$	1	0	$\mathbf{9}$
cumu.	$\mathbf{4 4}$	$\mathbf{3 4}$	$\mathbf{2 8}$	20	126

A minimal Kolmogorov complexity solution 80 (human + LS $)<119$ rules (human + paper)

Why it works?

Citation from an CA expert

"Local search can't work for solving a CA problem because when you change one rule, everything change"

But...

From the point of view of Local Search :

- A lot a one-rule modifications do not change the space-time diagram
- The rules which are not used for length n could be benefit for length $n+1$
- With "high" probability, it exists some modifications which can improve the CA

Fitness landscape analysis

Fitness cloud :

Average fitness in the neighborhood

Neutrality :

Neutral degree

- Performance of neighboring solution is correlated
- Same performance for ≈ 4 neighbors (from used rules) + equal fitness neighbors from unused rules.

Surprisingly, some local modifications of program are useful

Discussions

Fitness landscape analysis

- Helps to understand the structure of real-world problems
- Possible way to tune the parameters of local search heuristics.

References I

专
Robert Balzer.
An 8-state minimal time solution to the firing squad synchronization problem.
Information and Control, 10(1) :22-42, 1967.
E. Goto.

A minimum time solution of the firing squad problem. Course Notes for Applied Mathematics, 298, 1962.

圊 Jacques Mazoyer.
A six-state minimal time solution to the firing squad synchronization problem.
Theoretical Computer Science, 50(2) :183-238, 1987.

References II

嗇 Mathieu Muniglia, Jean-Michel Do, Hubert Grard, Sébastien Verel, S David, et al.
A multi-physics pwr model for the load following.
In International Congress on Advances in Nuclear Power Plants (ICAPP), 2016.

國 Marvin L. Minsky.
Computation : Finite and Infinite Machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.
E.E. Moore.

The Firing Squad Synchronization Problem in Sequential Machines, volume Sequential Machines. Selected Papers., pages 213-214.
Addison-Wesley, Reading MA, 1964.

References III

圊 P. Sanders.
Massively parallel search for transition-tables of polyautomata. In W. Wilhelmi C. Jesshope, V. Jossifov, editor, Proc. of the VI Int. Workshop on Parallel Processing by Cellular Automata and Arrays, pages 99-108. Akademie, Berlin, 1994.
J.-B. Yunes.

A propos d'automates cellulaires, suivi par des fonctions booléennes.
HDR, 2007.

