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Outline of this part

Basis of fitness landscape (Done)

Geometries of fitness landscapes (Done)

Local optima network : (Done)
o Definition inspired by complex systems science (Done)
o Features of the network, design and performance (Done)
o Performance prediction and portfolio (Done)
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Fitness landscape analysis

for multi-objective optimization problems
Brief introduction on MO and MO algorithms
Fitness landscapes features

Performance prediction based on MO features
Set-based fitness landscape
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Multiobjective optimization

Multiobjective optimization problem

e Search space : decision space X
e Objective function : objective space f : X — R"”

component f; : objective, criterion.

X2

Decision space X1 Objective space fi
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Definition

Pareto dominance relation

A solution x € X dominates a solution x’ € X (x’ < x) iff
o Vie{l,2,...,M}, fi(x) < fi(x)
e Jj€{1,2,..., M} such that fj(x") < fj(x)

X f J
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Pareto set, Pareto front
X f
2A — 21\ Pareto front

efficient o
solution .~ © O

. .
> >

Objective space 1

Goal of multi-objective optimization

Find the whole Pareto Optimal Set,
or a good approximation of the Pareto Optimal Set
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Why multiobjective optimization ?

Position of multiobjective optimization : Decision making

@ No a priori on the importance of the different objectives

@ a posteriori selection by a decision marker :
Selection of one Pareto optimal solution after a deep study of
the possible solutions.
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Multi-objective, many-objective optimization

Approximative definition

o Multi-objective : 2, 3 or 4 objectives

@ Many-objective : 4, 5 and more objectives

V.

Number of Pareto optimal solutions

Suppose that :

@ Probability to improve : p for all objective,

@ Objective are independent.

Probability to be non-dominated for m objectives is :
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Multi-objective, many-objective optimization

Approximative definition

o Multi-objective : 2, 3 or 4 objectives

@ Many-objective : 4, 5 and more objectives

V.

Number of Pareto optimal solutions

Suppose that :

@ Probability to improve : p for all objective,

@ Objective are independent.

Probability to be non-dominated for m objectives is : 1 — p™
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Multi-objective, many-objective optimization

Approximative definition

o Multi-objective : 2, 3 or 4 objectives

@ Many-objective : 4, 5 and more objectives

| A\

Number of Pareto optimal solutions

Suppose that :
@ Probability to improve : p for all objective,

@ Objective are independent.

Probability to be non-dominated for m objectives is : 1 — p™

Intuitive goals

Convergence toward the front, and diversity of the solutions.
Many-objective : convergence "easy”, diversity "hard"”

Note : objective correlation is also important.
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Performance assessment

Quality of the approximation of the Pareto front [FKTZ05]

@ Goal : indicator function related to the quality of the set.

@ No universal indicator

v

Indicator functions

@ Hypervolume indicator

e Epsilon indicator

@ Atteinment function :
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Performance assessment

Quality of the approximation of the Pareto front [FKTZ05]

@ Goal : indicator function related to the quality of the set.

@ No universal indicator

v

Indicator functions

@ Hypervolume indicator

e Epsilon indicator

@ Atteinment function :
Probability to reach a point in objective space with algo.

s 1
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Hypervolume (Iy)

:
2

e Compliant with the (weak) Pareto
dominance relation
= — A< B= IH(A) = IH(B)
@ A single parameter :
the reference point

reroncs > @ Minimal solution-set maximizing Iy
1

Pomt  Objective space — subset of the Pareto optimal set
Volume cover

by the set. arg maxyey In(0)
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Epsilon indicator (I.)

Definition

Smallest coefficient € to translate the set A to "cover” each point

of the set B
Vzp € B, 3z, € Asuch that z, < (1+¢) . z,

e Compliant with the (weak) Pareto dominance relation (using
Pareto front)
— A< B=1.(A)<I(B)

@ A parameter : the reference set

N
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Main types of MO local search algorithms

Three main classes :

@ Pareto-based approaches : directly or indirectly focus the
search on the Pareto dominance relation.
Pareto Local Search (PLS), Global SEMO, NSGA-II, etc.

@ Indicator approaches : Progressively improvement the
indicator function : IBEA, SMS-MOEA, etc.

@ Scalar approaches : multiple scalarized aggregations of the
objective functions : MOEA/D, etc.

supported
solution
o

fy f

Objective space Objective space
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Pareto-based approaches

Simple dominance-based EMO with unbounded archive

local search :
Pareto Local Search (PLS)

global search :
Global-Simple EMO (G-SEMO) J

Pick a random solution xg € X
A+ {X()}
repeat
Select a non-visited x € A
Create N(x) by flipping each bit
of x in turns
Flag x as visited
A < non-dom. from AU N(x)
until all-visited VV maxeval

[Paquete et al. 2004][PCS04]

Pick a random solution xp € X
A+ {Xo}
repeat
Select x € A at random
Create x’ by flipping each bit of
x with a rate 1/N

A < non-dom. from AU {x'}
until maxeval

[Laumanns et al. 2004][LTZ04]
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A Pareto-based approach : Pareto Local Search

e Archive solutions using Dominance relation

e |teratively improve this archive by exploring the neighborhood

f

current
archive

current
archive \o

fi

Objective space

f

o
No Accept
o

current

current
archive °

fi

Objective space
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SMS-MOEA : § metric selection- EMOA

[Beume et al. 2007][BNEOQ7]

P «+ initialization()
repeat

q < Generate(P)

P + Reduce(P U {q})
until maxeval

@ Remove the worst solution according to non-dominated sorting, and S
metric

Algorithm 2. Reduce(Q)

1: {#,...,R,} « fast-nondominated-sort(Q) /* all v fronts of Q */

2: r — argmingy, [Ag(s, &,)] [* s € R, with lowest Ay (s, R,) */
3: return (Q\{r}) /* eliminate detected element */
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IBEA : Indicator-Based Evolutionary algorithm
[Zitzler et al. 2004][ZK04]

P «+ initialization()
repeat
P selection(P)
Q random,variation(P/)
Evaluation of @
P «+ replacement(P, Q)
until maxeval

Fitness assignment

@ Pairwise comparison of solutions in a population w.r.t. indicator /

@ Fitness value : "loss in quality” in the population P if x was removed

)= Y (—e 0/

x" eP\{x}

@ Often the e-indicator is used
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Original MOEA/D [ZLO07] (minimization)

/* u sub-problems defined by p directions */

(AL, ..., \*) < initialization_direction()

Initialize Vi = 1.. B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */

(x*,...,x") < initialization_solution()
repeat
for i=1..u do

Select x and x randomly in {x : je€B(i)}
y < mutation_crossover(x, x,)
for j € B(i) do
if g(y‘)‘sz*) < g(Xj‘Ajv Zf) then
Xj <y
end if
end for
end for
until max_eval

B(i) is the set of the T closest neighboring sub-problems of sub-problem i
g( |\, z) : scalar function of sub-pb. i with \; direction, and z/ reference
point
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MOEA/D steady-state variant

Another MOEA/D (minimization)

/* p sub-problems defined by u directions */
(AL,..., \*) < initialization_direction()
Initialize Vi = 1..u B(i) the neighboring sub-problems of sub-problem i
/* one solution for each sub-problem */
(x*,...,x") < initialization_solution()
repeat
Select i at random € 1.
Select x randomly in {x; : j € B(i)}
y  mutation_crossover(x;, x)
for n, sub-problems € B(i) do
if g(y|Ni,z) <g(x|\i,z) then
Xy
end if
end for
until max_eval
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Representation of steady-state MOEA /D

f
2A )\1 )\2
Aiq
Z |z A
o 62 :
Ziq A
o
Oz;
Oz
20,
o**
Z*

Population at iteration t

>
fl

@ Minimization problem
@ One solution x; for each sub pb. i

@ Representation of solutions in

objective space : zi = g(xi|\i, z)

Same reference point for all
* ok o
sub-pb. 2" =z = ... =z

Scalar function g :
Weighted Tchebycheff

Neighborhood size §B(i) = T =3
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Representation of steady-state MOEA /D

f
ZA )\1 )\2
Aig
Z4 Z A
o (07 :
(Z3y i+1
\\o B\(|)
Oz; ~
S~
Lomy
2.91 Ayt
Zy
z ° &
>
f1

From the neigh. B(i) of sub-pb. i,
Xit1 is selected

@ Minimization problem
@ One solution x; for each sub pb. i

@ Representation of solutions in
objective space : zi = g(xi|\i, )

Same reference point for all
* * _ *
sub-pb. z* =z = ... =z,

Scalar function g :
Weighted Tchebycheff

Neighborhood size §B(i) = T =3
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Representation of steady-state MOEA /D

Aiq @ Minimization problem
(oN¢) @ One solution x; for each sub pb. i

G @ Representation of solutions in
C oA objective space : zi = g(xi|\i, z)
""" @ Same reference point for all
o A sub-pb. z* =z =... =z
@ Scalar function g :
A Weighted Tchebycheff

? @ Neighborhood size #B(i) = T = 3
1 o

The mutated solution y is created
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Representation of steady-state MOEA /D

According to scalar fonction,
y is worst than x;_1,
y is better than x; and replaces it.

@ Minimization problem

@ One solution x; for each sub pb. i

@ Representation of solutions in
objective space : zi = g(xi|Ai, z)

@ Same reference point for all
sub-pb. z* =z = ... = z;

@ Scalar function g :
Weighted Tchebycheff

@ Neighborhood size §B(i) = T =3
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Representation of steady-state MOEA /D

@ Minimization problem
@ One solution x; for each sub pb. i

@ Representation of solutions in

objective space : zi = g(xi|Ai, z)

Same reference point for all
* * B *
sub-pb. z" =z = ... =z

Scalar function g :
Weighted Tchebycheff

Neighborhood size §B(i) = T =3

According to scalar fonction,
y is also better than xji1
and replaces it for the next iteration.
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Arnaud Liefooghe, Fabio Daolio, Hernan Aguirre, Kiyoshi Tanaka,
Clarisse Daehnens, Laetitia Jourdan,
Manuel Lépez-Ibaniez, Mathieu Basseur, Adrien Goéffon

Slides are shared with those co-authors,
special thanks to Arnaud and Fabio
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Fitness landscape for Multi-Objective optimization

@ MO problems are hard :
underlying single-objective functions, join functions, etc.

@ Learning the problem structure :
to understand and improve algorithms

@ Questions :

o What are the relevant problem features ?
o Replace one-dimensional by d-dimensional objective function ?

V.
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Problem features from the Pareto set

#po proportion of solutions that belong to the Pareto set
#supp proportion of supported solutions in the Pareto set
hv hypervolume-value of the Pareto front (2" = (0,...,0))

Pareto front

. 1 L
decision space objective space



Features in MO
000®000000000000

Problem features from the Pareto set topology

dist_avg average distance between solutions from the Pareto set
dist_maz maximum distance between solutions from the Pareto set
#cc relative number of connected components in the Pareto set
#lcc proportional size of the largest connected component

Pareto graph ..o

o Pareto front

decision space objective space
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Problem features related to multi-modality and ruggedness

> Features sampled along adaptive walks :
#lnd_avg_aws proportion of locally non-dominated solutions
ladapt length of a Pareto-based adaptive walk

> Features sampled along random walks :
hv_rl_rws autocorrelation coeff. of solution hypervolume
nhv_rl_rws autocorrelation coeff. of neighborhood hypervolume

X34

decision space objective space
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Summary of problem features

BENCHMARK parameters

n  number of (binary) variables
kn  proportional number of variable interactions (epistatic links) : k/n
n  number of objectives
p correlation between the objective values
FEATURES FROM enumeration
#po  proportion of Pareto optimal (PO) solutions knowles2003
#supp proportion of supported solutions in the Pareto set knowles2003
hv  hypervolume-value of the (exact) Pareto front aguirre2007
#plo proportion of Pareto local optimal (PLO) solutions paquete2007
#slo_avg average proportion of local optimal solutions per objective
podist_avg average Hamming distance between Pareto optimal solutions liefooghe2013
podistmax maximal Hamming distance between Pareto optimal solutions (diameter of the Pareto set) knowles2003
po_ent entropy of binary variables from Pareto optimal solutions knowles2003
fdc fitness-distance correlation in the Pareto set (Hamming dist. in solution space vs. Manhattan dist. in objective space) knowles2003
#cc  proportion of connected components in the Pareto graph paquete2009
#sing proportion of isolated Pareto optimal solutions (singletons) in the Pareto graph paquete2009
#1lcc  proportional size of the largest connected component in the Pareto graph verel2011a
lccdist average Hamming distance between solutions from the largest connected component
lcchv  proportion of hypervolume covered by the largest connected component
#fronts proportion of non-dominated fronts aguirre2007
front_ent entropy of the non-dominated front’s size distribution
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of problem features (cont'd)

FEATURES FROM RANDOM WALK sampling

hv_avg_rus
hv_rl_rus
hvd_avg_rus
hvd_r1_rus
nhv_avg_rus
nhv_rl_rus
#1nd_avg_rus
#1nd_ri_rus
#1supp_avg rus
#1supp_r1_rus
#inf_avg_rus
#inf_ri_rus
#sup_avg_rus
#sup_rl_rus
#inc_avg_rus
#inc_rl_rus

average (single) solution's hypervolume-value

first autocorrelation coefficient of (single) solution’s hypervolume-values liefooghe2013
average (single) solution’s hypervolume difference-value
first autocorrelation coefficient of (single) solution's hypervolume difference-values liefooghe2013

average neighborhood's hypervolume-value
first autocorrelation coefficient of neighborhood’s hypervolume-value

average proportion of locally non-dominated solutions in the neighborhood

first autocorrelation coefficient of the proportion of locally non-dominated solutions in the neighborhood

average proportion of supported locally non-dominated solutions in the neighborhood

first autocorrelation coefficient of the proportion of supported locally non-dominated solutions in the neighborhood
average proportion of neighbors dominated by the current solution

first autocorrelation coefficient of the proportion of neighbors dominated by the current solution

average proportion of neighbors dominating the current solution

first autocorrelation coefficient of the proportion of neighbors dominating the current solution

average proportion of neighbors incomparable to the current solution

first autocorrelation coefficient of the proportion of neighbors incomparable to the current solution

f_cor_rws estimated correlation between the objective values
FEATURES FROM ADAPTIVE WALK sampling
hv_avgaws average (single) solution’s hypervolume-value

hvd_avg_aus
nhv_avg_aus
#1nd_avg_avs
#1supp_avg-aws
#inf_avg_avs
#sup_avg_aws
#inc_avg_avs
length_aus

average (single) solution’s hypervolume difference-value

average neighborhood’s hypervolume-value

average proportion of locally non-dominated solutions in the neighborhood

average proportion of supported locally non-dominated solutions in the neighborhood

average proportion of neighbors dominated by the current solution

average proportion of neighbors dominating the current solution

average proportion of neighbors incomparable to the current solution

average length of Pareto-based adaptive walks verel2011a
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NK-landscapes [Kauffman 1993] [Kau93]

general-purpose family of multi-modal pseudo-boolean optimization functions

superposition of n Walsh functions of order k+1

1 n
maXx f(X)_EZJ 1CJ(XJ7XJla 7X_/k)
st. x; € {0,1} , J€A{1,...,n}
> problem size n (decision space dimension)
> problem non-linearity kK < n
(multi-modality, epistatic interactions)
X1 X2 X4 C1 X1X2X3 C2 X2X3X4 C3 X1X2Xa Ca
000 | 0.9 000 | 0.4 000 | 0.2 000 | 0.1
001 | 0.6 001 | 0.8 R 001 | 0.2
010 | 0.1 010 | 0.3 101 | 0.9 010 | 0.8
011 | 0.2 011 | 0.2 110 | 0.1 011 | 0.0
111 | 0.5
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MNK-landsca PES [Aguirre and Tanaka 2007][AT07]

max fi(x) =1 }7:1<:j()<j,>g1,...,><jk) , 1e{l,...,m}
st. x; € {0,1} , je{1l,...,n}

> m independent objective functions
> different variable interactions for each objective function

X1 X0 X4 Cl1 X1X2X3 C21 X2X3X4 C% X1X2X4 Ci
000 | 0.9 000 | 0.4 000 | 0.2 000 | 0.1
001 | 0.6 001 | 0.8 R 001 | 0.2
010 | 0.1 010 | 0.3 101 | 0.9 010 | 0.8
011 | 0.2 011 | 0.2 110 | 0.1 011 | 0.0

.. .. . 111 | 0.5 e

X1 X0 X4 612 X1X2X3 622 X2X3X4 Cg X1X2 X4 CE
000 | 0.1 000 | 0.2 000 | 0.6 000 | 0.9
001 | 0.2 001 | 0.6 R 001 | 0.2
010 | 0.7 010 | 0.4 101 | 0.1 010 | 0.6
011 | 0.3 011 | 0.2 110 | 0.3 011 | 0.1

111 | 0.9
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pMNK-landscapes [Verel et al. 2011] [VLID11]

max ﬁ(X):%ZJr']:1CJi(XJ"lev"'7XJ'k) o ie{l,...,m}
s.t. x; € {0,1} , je{l,...,n}

> cj’s follow a multivariate uniform law of correlation p
> same variable interactions for each objective function

X1 X0 X4 C11 X1X2X3 Czl X2X3X4 C31 X1X2 X4 Ci
000 | 0.9 000 | 0.4 000 | 0.2 000 | 0.1
001 | 0.6 001 | 0.8 RO 001 | 0.2
010 | 0.1 010 | 0.3 101 | 0.9 010 | 0.8
011 | 0.2 011 | 0.2 110 | 0.1 011 | 0.0

.. 111 | 0.5

X1X0X4 c12 X1X2X3 c22 Xp X3X4 c?? X1X0X4 cf
000 | 0.8 000 | 0.6 000 | 0.5 000 | 0.4
001 | 0.7 001 | 0.7 R 001 | 0.3
010 | 0.2 010 | 0.1 101 | 0.6 010 | 0.7
011 | 0.3 011 | 0.2 110 | 0.2 011 | 0.1

111 | 0.3
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pMNK-landscapes

max fi(x) =1 y 1J(XJ,XJI,...,Xjk) , 1e{l,...,m}

st. x; € {0,1} , j€{1l,...,n}
oo /
~ / Benchmark parameters :
g o , .
£l 4 S > problle.m size n .
o S (decision space dimension)
A T > problem non-linearity k < n
e ~ (multi-modality, epistatic interactions)
— 5 & / > number of objective functions m
IR (objective space dimension)
g /
2 s > objective correlation p > — =5

rho

http://mocobench.sf.net


http://mocobench.sf.net
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Some intuitions on objective correlation p

0.8 0.8 T T T T T 0.8 T T T T T
0.7 | 0.7 | 0.7 |
0.6 0.6 0.6
o o o
2 2 2
B 051 B 051 B 051
2 2 2,
o ) o
[¢] [e] [¢]
04 r 04 r 04 r
03 03 03
0.2 L L L L L 0.2 L L L . L L 0.2 L L L L L
02 03 04 05 06 07 08 02 03 04 05 06 07 08 02 03 04 05 06 07 08
Objective 1 Objective 1 Objective 1
conflicting objectives independent objectives correlated objectives
p=—0.9 p=0.0 p=09
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Experimental setup for enumerable instances

Small-size pMNK-landscapes, factorial design, 30 instances/unit
> problem size n € {10,11,12,13,14,15,16}
> problem non-linearity k € {0,1,2,3,4,5,6,7,8}
> number of objectives m € {2,3,4,5}
> obj. corr. p € {-0.8,—-0.6,—-0.4,—0.2,0,0.2,0.4,0.6,0.8,1},
P> oy

60480 problem instances overall
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Pairwise feature association (enumerable instances)

Kendall's tau

3
°m
10 1

Value

Optimization algorithms
00000000

Features in MO
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Lo o L

#lsupp_avg_rws
#lsupp_avg_aws
T_cor_rws
rho

#ronts
n

front_ent mom o

max
#plo
length_aws

#po
aws
ws
hv
g_rws

podist_r

wd_av(
nhv_ave
nhv_avg_aws

I .
=

Prediction
00000

#lsupp_avg_rws
#supp_avg_aws
1 cor fws

Mo

ﬁlrams
front_ent

#PQ

odist_max
length_aws

podist_avg
#lec
#NC_r1_rws
#Ind_r1”"rws
lcc_Av’

gscmg

#ee

th rlrws
#slo” arg
nhv Tl fws
hv_F1_Tws
kn
#Sup_rl_rws
ﬁ\rgfﬂ ws
Va—avg_aws
m
hv_avg_rws

hv-avg—aws
hva_avg_rws

hv_avg_rws
nhv-avg-aws

Set-based FL
00000000000
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Experimental setup for large-size instances

Large-size pMNK-landscapes, constrained random LHS DOE
> problem size n € {64,256}
> problem non-linearity k € {0, 8}
> number of objectives m € {2,5}
> objective correlation p € [-1,1], p > m_—_ll

1000 problem instances overall
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Pairwise feature association (large instances)

Kendall's tau
°
40 1
- e

rho

#lsupp_avg_rws

#lsupp_avg_aws

#Ind_avg_rws
| | #Ind_avg_aws
length_aws
#sup_avg_aws
#sup_avg_rws
#inc_avg_rws
#inf_avg_rws
#inc_avg_aws
#inf_avg_aws
hv_rl_rws
#sup_rl_rws
#inf_r1_rws
#ind_r1_rws
nhv_rl_rws
hvd_r1_rws
#inc_rl_rws
kn
#supp_rl_rws
n
hvd_avg_rws
hvd_avg_aws
hv_avg_aws
hv_avg_rws
m
nhv_avg_rws
nhv_avg_aws

[l
I

° 2 2 2 cge e
2822822288888 8288828280¢8°288288E8¢2¢
5 gdddcddddddrdddddd o Jddg o
229LQ gg gg g

S RRERERRE3E g e & 5E5 5 5%
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F3FF gESEsS E H £
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Set-based FL
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Experimental setup for large-size instances

Large-size pMNK-landscapes, constrained random LHS DOE
> problem size n € {64,256}
> problem non-linearity k € {0, 8}
> number of objectives m € {2,5}
> objective correlation p € [-1,1], p > m;_ll

1000 problem instances overall

GSEMO and IPLS algorithms
> 30 independent runs per instance
> Fixed budget of 100000 evaluation calls

> epsilon approximation ratio to best-found non-dominated set
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Prediction accuracy (large instances)
cross validation with repeated subsampling, 50 iterations, 90/10 split

feature set MAE MSE R?  rank
GSEMO
all 0.003049 0.000017 0.891227 1
sampling all 0.003152 0.000018 0.883909 13
sampling rws 0.003220 0.000019  0.878212 2
sampling aws 0.003525  0.000023  0.854199 3
p+m+n+k/n | 0.003084 0.000017 0.892947 1
p+m+n 0.009062 0.000148  0.065258 4
m+n 0.010813  0.000206 -0.303336 5
IPLS
all 0.004290 0.000034 0.8865638 1
sampling all 0.004359 0.000035 0.883323 1
sampling rws | 0.004449  0.000036 0.879936 1.3
sampling aws | 0.004663  0.000039  0.871011 2
p+m+n+k/n | 0.004353 0.000033 0.889872 1
p+m+n 0.008415  0.000119  0.600965 3
m+-n 0.016959  0.000472 -0.568495 4
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Predicted vs observed values (out-of-folds)
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Portfolio accuracy

Prediction
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cross validation with repeated subsampling, 50 iterations, 90/10 split

Portfolio : { GSEMO, IPLS }

feature set error rate  rank
all 0.0128 1
sampling all 0.0138 1
sampling rws 0.0150 1
sampling aws 0.0144 1
p+m+n+k/n 0.0134 1
p+m—+n 0.0824 2
m+-n 0.1328 3
const=GSEMO 0.0880

const=IPLS 0.7250
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Practice : Bi-objective squares problem

Squares Problem (SP)

Find the position of 5 squares

in order to maximize inside squares the number of brown points
and the number of blue points

f(x) = (number of brown points, number of blue points)

Fitness landscape analysis

Execute line by line the main function of the code ex05.R :
random walk and Pareto adaptive walk
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Set-based multiobjective fitness landscapes [VLD11]

The key idea
EMO algorithms are local search algorithms performing on sets

Set-based multiobjective fitness landscape

(L,N, 1)

e Set-domain search space (X)
Y C 2X is a set of feasible solution-sets
(where X is the set of feasible solutions)

o Set-domain neighborhood relation (N)

N: ¥ — 2% is a neighborhood relation between solution-sets
e Set-domain fitness function (I)

I:Y — R is a unary quality indicator,

i.e. a fitness function measuring the quality of solution-sets

<



Set-based FL
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Set-domain fitness function

Quality indicator
I(o) € R : quality of a set of solutions o

2\ Hypervolume (Iy)

e Compliant with the (weak) Pareto
dominance relation :
o<0 =1Iy(o)<Iy(o)

Hypervolume @ A single parameter :
It the reference point
Reference @ Minimal set maximizing Iy :
point _ _
> subset of the Pareto optimal set
Objective space f1 ‘
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Set-domain fitness function

Quality indicator
I(o) € R : quality of a set of solutions o

2\ Hypervolume (Iy)

e Compliant with the (weak) Pareto
dominance relation :
o<0 =1Iy(o)<Iy(o)

Hypervolume @ A single parameter :
the reference point
Reference @ Minimal set maximizing Iy :
point _ _
> subset of the Pareto optimal set
Objective space f1 ‘
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jective Optimization Optimization algorithms

Set-domain neighborhood relations [BGLV13

N1 NC*)
set neighbor

set neighbor

solutions
neighbors

> >
Objective space f1 Objective space fi



Ruggedness and multimodality
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Autocorrelation length (7)
@ non-linearity degree K
— 7 decreases wrt. K
@ number of objectives M
— no influence
@ objective correlation p
— no influence
Adaptive walk length (£)

@ non-linearity degree K
— L decreases wrt. K

@ number of objectives M
— no clear trend

@ objective correlation p
— L decreases wrt. p!!
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Pareto Local Optima set vs. archive size

10000 — 9,
5000 —

m
1000 \o g Pareto set-size
g %7 AN —— 5
2 10 B °\ for unbounded solution-set (archive)
o) _ Crg . . .
& %3 3 8 @ objective correlation p
3
‘ T ‘ — decreases wrt. p
-0.7 -02 0 02 0.7
P @ number of objectives M
— increases wrt. M

o’

200 —

150

Pareto Local search Length

7 for bounded solution-set (archive)

PLS length

50 o

— ‘ ‘ @ Increases with archive size




Set-based FL
00000®00000

Fitness landscapes analysis for MO optimization

@ A number of features are shown to be related to problem
difficulty

@ Better knowledge on problem difficulty for MO optimization

@ Performance can be predicted using such relevant features
(for some algo/problems)
@ And now,

toward a better design ?

toward a algorithm portfolio ?
toward more theoretical works ?
design low complexity features?...
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