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Outline of this part

@ Basis of fitness landscape :

o introductory example (Done)
o brief history and background of fitness landscape (Done)
o fundamental definitions (Done)
o Geometries of fitness landscapes :
o multimodality (Done)
ruggedness (Done)
e neutrality (Done)
e neutral networks (Done)

@ Local optima network :
o Definition inspired by complex systems science
e Features of the network, design and performance
e Performance prediction and portfolio
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Key idea : Complex system tools

Principle of variables aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales

@ Study the system at the large scale
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Key idea : Complex system tools

Principle of variables aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales
@ Study the system at the large scale

Variables aggregation for fitness landscape

@ At solutions level (small scale) :

o .
X P X ° Stochastllc local search opera}tor,
o Exponential number of solutions,
e Exponential size of the stochastic matrix
of the process (Markov chain)

@ Projection on a relevant space :

e Reduce the size of state space
e Potentially loose some information
o Relevant information remains when :

p(op(x)) ~ op (p(x))
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Key idea : Complex system tools

Principle of variables aggregation

A model for dynamical systems with two scales (time/space)
@ Split the state space according to the different scales
@ Study the system at the large scale

Variables aggregation for fitness landscape

@ At solutions level (small scale) :

X —-°* . x o Stochastic local search operator,
o Exponential number of solutions,
Pl lp e Exponential size of the stochastic matrix
, of the process (Markov chain)
op . .
E — E @ Projection on a relevant space :

e Reduce the size of state space
e Potentially loose some information
o Relevant information remains when :

p(op(x)) ~ op (p(x))
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Key idea : Complex system tools

Complex network

Bring the tools of complex networks analysis to the study the
structure of combinatorial fitness landscapes

4

Methodology

@ Design a network that represents the landscape

o Vertices : local optima
e Edges : a notion of adjacency between local optima

o Extract features :
“complex” network analysis

@ Use the network features :
search algorithm design, difficulty, etc.

J. P. K. Doye, The network topology of a potential energy landscape : a static
scale-free network., Phys. Rev. Lett., 88 :238701, 2002. [Doy02]
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Complex networks

Scale free network Small world network
(Watts and Strogatz, 1998 (Barabasi and Albert, 1999
[WS98]) [BA99])
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Energy surface and inherent networks

Inherent network

@ Nodes : energy minima

@ Edges : two nodes are connected if the energy barrier
separating them is sufficiently low (transition state)

(a) Energy surface
(b) Contours plot :

partition of states space into
basins of attraction

(c) Landscape as a network

F. H Stillinger, T. A Weber. Packing structures and transitions in liquids and
solids. Science, 225.4666 , p. 983-9, 1984.[SW84]

J. P. K. Doye, The network topology of a potential energy landscape : a static
scale-free network., Phys. Rev. Lett., 88 :238701, 2002.[Doy02]
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

.0 .o .. .. o Bit strings of length N =6
e 2% = 64 solutions

® ® ° ° @ one point = one solution
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

o Bit strings of length N =6

@ Neighborhood size = 6

@ Line between points =
solutions are neighbors

@ Hamming distances between
solutions are preserved
(except for at the border of
the cube)
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

Color represent fitness value
@ high fitness
® |ow fitness
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Color represent fitness value
1 @ high fitness
® [ow fitness
—] o —7 point towards the
BB solution with highest fitness
in the neighborhood

Why not make a Hill-Climbing
walk on it?
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K =2

one basin of attraction

e ® ‘# @ Each color corresponds to
‘e ."-

@ Basins of attraction are
interlinked and overlapped

@ Basins have no "interior”
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Basins of attraction in combinatorial optimization
Example of small NK landscape with N =6 and K = 2

@ Basins of attraction are interlinked and overlapped !
@ Most neighbors of a given solution are outside its basin
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Local optima network

O 0.65

@ Nodes :
local optima

o Edges :
transition probabilities

fit=0.7046

0.33
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Basin of attraction

Hill-Climbing algorithm (best-improvement)

Choose initial solution x € X

repeat
choose x' € N(x) such that f(x') = max,crr(x) f(¥)
if £(x) < f(x') then

X X

end if

until x is a Local optimum

Basin of attraction of x* :

by = {x € X | HillClimbing(x) = x*}.
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local optima network

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
@ Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima
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local optima network

Definition : Local Optima Network (LON)
Orienter weighted graph (V, E, w)
@ Notes V : set of local optima {LO;,...,LO,}

@ Edges E : notion of connectivity between local optima

| A\

2 possible definitions of edges
o Basin-transition edges :

transition between random solutions from basin b; to basin b;
([0TVDO8], [VOTO08], [TVO08], [VOT10])

o Escape edges :
transition from Local Optimum / to basin b;
(EA 2011, GECCO 2012, PPSN 2012, EA 2013 [DVOT13])
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Basin-transition edges : random transition between basins

ejj between LO; and LO; if 3 x; € b; and x; € bj : xj € N(x;)

. . !
Prob. from solution x to solution x

p(x = x') = Pr(x" = op(x))
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Basin-transition edges : random transition between basins

ejj between LO; and LO; if 3 x; € bj and x; € bj : xj € N(x;)

. . !
Prob. from solution x to solution x

p(x = x') = Pr(x = op(x))

For example, X = {0,1}" and bit-flip operator
if x € N(x), p(x = x') = L, otherwise p(x — x') =0

Prob. from solution s to basin b;

p(x = bj) = Z p(x — x)

XIij

Weights : Transition prob. from basin b; to basin b;

1
wjj = p(bi — bj) = b ZP(S—> bj)
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LON with Escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
@ Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Escape edges

Edge ejj between LO; and LO;
if 3x : distance(LOj,x) < D and x € b;.

wij = t{x € X | d(LOj,x) < D, x € b;}

can be normalized by the number of solutions at

distance D
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LON with Escape edges

Definition : Local Optima Network (LON)

Orienter weighted graph (V, E, w)
@ Notes V : set of local optima {LOs,...,LO,}

@ Edges E : notion of connectivity between local optima

Escape edges

Edge ejj between LO; and LO;
if 3x : distance(LOj,x) < D and x € b;.

wij = t{x € X | d(LOj,x) < D, x € b;}

can be normalized by the number of solutions at

distance D

\
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Basins of attraction features

e Basin of attraction :
o Size :
average, distribution, etc.
e Fitness of local optima :
average, distribution, correlation, etc.
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NK-landscapes
[Kauffman 1993] [Kau93]

x€{0,1}"  f(x) =150 fi(x, X0 X,

Two parameters

@ Problem size n
@ Non-linearity k < n
(multi-modality, epistatic interactions)
@ k=0 : linear problem, one single maxima
2N

o k=n—1:random problem, number of local optima =5

remarks : "same” results with QAP, flow shop.
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Global optimum basin size vs. non-linearity degree k

N=16 ——
N=18 —xee
0.1
@ Basin size of maximum

decreases exponentially

. L with non-linearity degree

0.01

0.001

0.0001

Normalized size of the global optima’s basin

1e-05

e = Difficulty of
2 4 6 8 K1Cl 12 14 16 18 (beSt—improvement)
hill-climber from a random
Size of the global maximum basin solution

as a function of
non-linearity degree k
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Distribution of basin sizes

1000

exp.
regr. line -

@ Log-normal cumulative distribution
(not uniform!) :
o large number of small basins,
o small number of large basins.

cumulative distribution

O 1T o Effect of non-linearity :
Cumulative distribution of the distribution becomes more
basins sizes for n = 18 and uniform with non-linearity degree k

k=4
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Fitness of local optima vs. basin size

10000 - The highest, the largest! J

exp.
regr. ling -

1000

@ On average, the global
optimum easier to find than
one given other local

basin of attraction size
5]
8

3

. optimum
0.5 0.55 0.6 0.65 0.7 0.75 0.8 i i i
finess oflocal oplima @ But more difficult to find, as
Correlation fitness of local the number of local optima
optima vs. their corresponding increases exponentially with

basins sizes increasing K
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Basin : Interior and border sizes

0ots Do basins look like a " mountain” with

interior and border ?

solution € interior
if all neighbors are in the same basin

Interior size ratio

v

Average of basins interior
size ratio
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Basin : Interior and border sizes

Interior size ratio

Average of basins interior
size ratio

Question :

Do basins look like a " mountain” with
interior and border ?

solution € interior
if all neighbors are in the same basin

v

@ Interior is very small

@ Nearly all solutions € border
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Features of local optima network

@ Nnv : fvertices

g;%x @ /v : avg path length
M’ dj = 1/w;
i:;%f%‘ }\ @ /o : path length to best
Y lh 3 - @ fnn : fitness corr.
= (F(x), f(y)) with (x,y) € E

@ Wwii : self loops
@ wccC : weighted clust. coef.
@ zout : out degree
@ y2 : disparity
@ knn : degree corr.

(deg(x), deg(y)) with (x,y) € E
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Some formal definitions

Weighted clustering coefficient

local density of the network

X 1 Wi + Wip

w _ y W o en 20 .

<= -1 Z.h g oA
Js

where s; = Z#,- Wij, anm = 1 if Wpm >0, apm = 0 if Wym = 0 and

dishomogeneity of nodes with a given degree

A

1
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A fitness landscape analysis approach

@ Link between LON features and difficulty :
small size instances of NK-landscapes

Analysis of the LON structure :
small size instances of NK-landscapes, QAP and FSSP

Design of one local search component :
small size instances of NK-landscapes and FSSP

Explication de performance avec les propriétés du ROL :
corrélation simple, petites instances, NK et QAP
corrélation multi-linéaire, petites instances, FSSP

@ Prédiction de performance basée sur le ROL :
grandes instances NK et QAP

Portfolio d'algorithmes :
grandes instances NK et QAP
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Structure of Local Optima Network

o NK-landscapes (small instances) :
Most of the features are correlated with K
relevance of LON definition

—— Basi

ns
-+- Esc.D1

0.200
o
> 0.100
=
£ 0050

s
&0.020
g

average clustering coefficient

200101 --- K=

0.005{ —— K=

5 4 6 & 10 12 14 16 18 0.001 001 01 1
K w out-degree

@ LON is not a random network (NK, QAP, FSSP) :
Highly clustered network,
Distribution of weights and degrees have long tail, etc.
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Example : clustering coefficient for NK-landscapes

1.0 | ]
—— Basins
-+- Esc.D1

0.8 -=- Esc.D2

0.6

0.4 1

average clustering coefficient

0.2 1

@ Network highly clustered

o Clustering coefficient decreases with the degree of
non-linearity
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LON to compare of problem d|ff|culty
Local Optima Network for Quadratic Assignment Problem (QAP) [DTVO11]

— Community detection in LON for
Random instance Real- I|ke instance

[°} )
0 0
o o
0@ o 5\ 2 o
0 Q o° o
Q & o
[} °
00 %5 o5 @ o
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60 5 @O0~ O o p
o < a o0
© oL egy e i o
o po o o o4 P o
Wi o o
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s iics St c o S e
“ o 50 Oo. o 9)
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L3
o O~ o]
o o o
) o
o
[ol¥e} )

[}
[}
o

Structure of the LON related to problem difficulty
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LON to compare algorithm components (1)

Comparaison of operators for Flow Shop Scheduling Problem J
O .
rr r *'r r .
S B3 exchange K . B3 exchange
g oo B insertion % * - B3 insertion
S bt f Y et © O
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LON to compare algorithm components (2)

Comparaison of pivot rule in hill-climbing for NK-landscapes )
K fie /iy Y d dpest
b-LON | f-LON | b-LON | f-LON | b-LON | f-LON | b-LON | f-LON
2 0.81 0.96 0.326 0.110 56 39 16 12
4 0.60 0.92 0.137 0.033 126 127 35 32
6 0.32 0.79 0.084 0.016 170 215 60 70
8 0.17 0.65 0.062 0.011 194 282 83 118
10 0.09 0.53 0.050 0.009 206 340 112 183
12 0.05 0.44 0.043 0.008 207 380 143 271
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Information given by the local optima network

Advanced questions

@ Can we explain the performance from the LON features ?
@ Can we predict the performance from the LON features?

@ Can we select the relevant algorithm based on the LON
features?
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Correlation Matrix
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LON features vs. performance : simple correlation

Algorithm : lterated Local Search on NK-landscapes with N = 18

Performance : ert = E(T;) + (%) T oo

ny dpest d fnn Wi cv zout %

knn
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ILS Performance vs LON Metrics

NK-landscapes [DVOT12]

16

14

12

10

log expected time to success

T T
50 100 150
average distance to the global optimum

Expected running times
vS.
Average shortest path to the global optimum.
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ILS Performance vs LON Metrics
Flow-Shop Scheduling Problem [EA'13]
[ o= Operator =2
w S

B L TR I o o
10° 100 10*  10° o* 10° 100 10*  10° 10*
Average Length to the Global Optimum

Estimated Run-Length with Restarts

Expected running times
vS.
Average shortest path to the global optimum.
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LON features vs. performance : multi-linear regression

© Multiple linear regression on all possible predictors :
log(ert) = Bo + P1k + Balog(nv) + Palo + - - - + Broknn + €

@ Step-wise backward elimination of each predictor in turn.

Predictor Bi Std. Error p-value

(Intercept) 10.3838  0.58512 9.24-10~*'
lo 0.0439  0.00434 1.67-10"2°
zout —0.0306  0.00831 2.81-10704
y2 —7.2831  1.63038 1.18-107%
knn —0.7457  0.40501 6.67-10702

Multiple R-squared : 0.8494, Adjusted R-squared : 0.8471.
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LON features vs. performance : multi-linear regression

For Flow Shop Scheduling Problem using exhaustive selection

J

1P ‘ log(Nv) ccw Fon knn r log(Lopt) log(Ly) wii Y2 kout G adjR?
1 2.13 265.54 0.574
2 —5.18 1.43 64.06 0.675
3 1.481 0.895 —0.042 | 16.48 0.700
4 —2.079 1.473 0.540 —0.032 8.75 0.704
5 —2.388 —1.633 1.470 0.528 —0.030 5.97 0.706
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Sampling methodology for large size instances

From the sampling of large-size complex network :
@ Random walk on the network
@ Breadth-First-Search

Procedure LONSampling(d, m, /)
Xo ¢ hc(x) with x random solution
for t < 0,.../—1do

Snowball(d, m, x;)

Xe+1 < RandomWalkStep(x;)
end for
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Set of estimated LON features for large size instances

fit
wii
zout
2
knn
wcce
fnn

LON metrics

Average fitness of local optima in the network.
Average weight of self-loops.

Average outdegree.

Average disparity for outgoing edges.
Weighted assortativity.

Weighted clustering coefficient.

Fitness-fitness correlation on the network.

lhc
mlhc
nhc

Metrics from the sampling procedure

Average length of hill-climbing to local optima.
Maximum length of hill-climbing to local optima.
Number of hill-climbing paths to local optima.




Performance prediction
0O®0000000000

Performance prediction based on estimated features

Optimization scenario using off-the-shelf metaheuristics :
TS, SA, EA, ILS on 450 instances for NK and QAP.

@ Performance measures :
average fitness / average rank

Model of regression :
linear model / random forest

Set of features :
o basic : 1% autocorr. coeff. of fitness (rw of length 10%),
Avg. fitness of local optima (10° hc),
Avg. length to reach local optima (10° hc).
e lon : see previous,
e all : basic and lon features

Quality measure of regression :
R? on cross-validation (repeated random sub-sampling)
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R? on cross-validation for NK-landscapes and QAP

Sampling parameters : length / = 100, sampled edge m = 30, and deep d =2

NK QAP
Mod. Feat. Perf. TS SA EA ILS avg TS SA EA ILS avg

Im basic  fit 0.8573 0.8739 0.8763 0.8874 0.8737 -38.42 -42.83 -41.63 -39.06 -40.48
Im lon fit 0.8996 0.9015 0.9061 0.8954 0.9007 0.9995 1.0000 1.0000 0.9997 0.9998
Im all fit 0.9356 0.9455 0.9442 0.9501 0.9439 0.9996 0.9997 0.9999 0.9997 0.9997

Im basic rank 0.8591 0.9147 0.6571 0.6401 0.7678 0.2123 0.8324 -0.0123 0.4517 0.3710
Im lon rank  0.9517 0.9332 0.7783 0.7166 0.8449 0.7893 0.9673 0.8794 0.9015 0.8844

Im all rank  0.9534 0.9355 0.7809 0.7177 0.8469 0.6199 0.9340 0.8577  0.9029 0.8286
rf basic  fit 0.9043 0.9104 0.9074 0.8871 0.9023 0.8811 0.8820 0.8806 0.8801  0.8809
rf lon fit 0.8323 0.8767 0.8567 0.8116 0.8443 0.9009 0.9025 0.9027  0.9019  0.9020
rf all fit 0.8886 0.9334 0.9196 0.8778 0.9048 0.9431 0.9445 0.9437 0.9429 0.9436
rf basic rank 0.9513 0.9433 0.7729 0.8075 0.8687 0.9375 0.9653 0.8710 0.9569  0.9327
rf lon rank  0.9198 09291 0.7979 0.7798 0.8566 0.9308 0.9630 0.8820 0.9601  0.9340

rf all rank  0.9554 0.9465 0.8153 0.8151 0.8831 0.9381 0.9668 0.8779 0.9643 0.9368
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Scatter plots of the observed-estimated performance

@ On the 32 possibles cases (Mod. x Feat. x Algo.),
the best set of features : all 27 times, lon 12 times, basic 6 times.

@ With linear model : basic set is never the one of the best set,
lon features are more linearity correlated with perf.

@ Random forest model obtains higher regression quality :
basic can be one of the best set (2 times),
Nevertheless, 7/8 cases, all features are the best one.

250
250
250

200
200
200

Estimation
100 150
Estmation
00 150
Estimation
100 150

50

50 100 150 200 250 50 100 150 200 250 50 100 15 200 250
Performance Performance Performance

basic, R? = 0.9327 lon, R? = 0.9601 all, R? = 0.9643



Portfolio scenario

@ Portfolio of 4 metaheuristics : TS, SA, EA, ILS

@ Classification task : selection of one of the best metaheuristic

@ Models : logit, random forest, svm

@ Quality of classification :
error rate (algo. is not one of the best) on cross-validation.

Performance prediction
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Avg. error rate

Probl.  Feat. logit rf svm cst rnd
basic  0.0379 0.0278 0.0158

NK lon 0.0203 0.0249 0.0168 0.4711 0.6749
all 0.0244 0.0269 0.0165
basic 0.0142 0.0107 0.0771

QAP lon 0.0156 0.0086 0.0456 0.4222 0.6706
all 0.0161 0.0106 0.0431
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Conclusions and perspectives

@ Structure of the local optima network
can explain problem difficulty

@ Features of LON can be used for performance prediction

@ The sampling methodology gives relevant estimation of LON
features for performance prediction and portfolio design

@ Reduce the cost and improve the efficiency of the sampling

@ Test on others (real world black-box) problems with others
metaheuristics

@ Understand the link between problem definition
and structure of LON

o Study LON as a landscape at large scale
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