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Problems with Mutation Testing

A fault-based testing technique that help testers measure and improve the ability
of test suites to detect faults

Majority of First Order Mutants (FOMs) represent trivial faults that are often
easily detected [Jia and Harman 2008]

Real faults are complex

- Alarge majority of real faults cannot be simulated with FOMs

[Purush. and Perry 2005]

- Atypical real fault involves about three to four tokens
[Gopinath et al 2014]

Higher Order Mutants (HOMs) can be used to simulate real and complex faults



Subtle Higher Order Mutants

HOMs that are not killed by an existing test suite that kills all

the FOMs of a given program

Can help researchers and practitioners gain a better
understanding of the nature of faults and their interactions
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Subtle Higher Order Mutants...
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Can be costly to find:
- The search space of HOMs is (exponentially?) large
- Coupling effect makes subtle HOMs rare

- High computational cost of evaluating mutants

Involves compilation and execution



Contributions

Developed search techniques for finding subtle HOMs

- Search-based software engineering techniques
- Random search technique

- Enumeration search technique

Automated the process of finding subtle HOMs

- Developed a Higher Order Mutation Testing tool for Aspect) and Java programs
(HOMA))

Performed a set of empirical studies

- Evaluated the relative effectiveness of the developed search techniques

- Investigated different factors that impact the creation of subtle HOMs




Objective Function

Provides a metric to measure the quality of HOMs

fitness (HOM) = a. * difficulty of killing (HOM) + (1—a) * fault detection difference (HOM)

Classifies HOMs Based on their fithess value as follow:

—

0 -> Entirely Coupled HOMs

fitness (HOM)= —  0<&<1 -> Promising HOMs

1 -> Subtle HOMs (optimal solutions)
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Objective Function
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Objective Function

Note that every HOM not killed by the test set is a globally
optimal solution.

So we are looking for all (or many) globally optimal solutions.

This is different than many other types of objective functions.
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Local Search
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Data-Interaction Guided Local Search

Explores only neighboring HOMs that their mutated statements access the

same variable(s)

Example:

Mutation (fom,)= { return movieType; => return movieType++; }
Mutation (fom,)={ if (movieType == “C” => if ( movieType I=“C") }

Mutation (fom,)={ if (custName.equals(name) => if (L custName.equals(name) }

Considered HOMs = {(fom_,fom,), (fom,,fom,,fom,))

Discarded HOMs = {(fom,,fom;,), (fom,,fom,))



Test-Case Guided Local Search

Explores only neighboring HOMs that their constituent FOMs are killed by

similar/common test cases

Example:
KilledBy(fom,)={ tc,, tc,, tc,3, ... }

KilledBy(fom,)=1{ tc,, tc., tc,,, ..... }

KilledBy(fom,)= {tc., tc,, ..... }

Considered HOMs= { (fom,, fom,), (fom,,fom;,), (fom_, fom,,fom,) }

Discarded HOMs= { (fom,,fom,) }
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Restricted Random Search
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Experimental Setup

Used 5 Aspect) and 5 Java programs of different sizes

Generated random test cases for each program that achieved

statement coverage and killed all non-equivalent FOMs

Experiment steps:
- Ran each search technique 30 times per subject program

- The termination condition for each run was the exploration of 50,000 distinct

HOMs

- Calculated the number of distinct, subtle HOMs that were found by each run



Experimental Setup

%,

Table 6.1: Subject Programs

Subject program Type LOC # of | # of | #of as- | #ofad- | # of | # of | # of test
FOMs | classes | pects vices pointcuts | I'TDs cases

Coordinate Java 121 242 2 0 0 0 0 14
Roman Numbers Java 179 208 2 0 0 0 0 11
Cruise Control Java 917 129 6 0 0 0 0 18
Elevator Java 1046 249 17 0 0 0 0 14
XStream Java 14,388 | 1216 318 0 0 0 0 96
Kettle Aspect) | 125 125 1 2 - 3 2 12
Movie Rental Aspect] | 191 316 3 1 8 9 0 15
Banking Aspect] | 243 92 2 2 2 2 1 9
Telecom Aspect] | 928 152 10 3 9 12 9 10
Cruise Control Aspect] | 1008 215 9 3 18 19 15 26




Measuring the Relative Effectiveness
of the Search Techniques
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RQ1: What is the relative effectiveness of the search technique

in terms of their ability to find subtle HOMs?

- Effectiveness is measured in terms of the average number of subtle HOMs that

can be found

- Restricted Random Search was used as a base line measure for the other five

techniques



Average Number of Subtle HOMs

SRTHEL Genetic Data. Inter. Test. Case Restricte.d
Guided Guided Enumeration Random
Cruise Java 76.1 77.8 80.7 77.1 34.8 25.8
Banking 30.9 29.2 30.8 28.9 27.1 23.3
Cruise Aspect) 20.3 29 39.9 33.2 22.1 7
Movie Rental 39.1 59.8 93.3 15.3 22 4.7
Kettle 35.3 55.1 56.1 57.7 31.5 19.7
Coordinate 72.4 200.9 213.8 223.3 84.4 27.5
Elevator 13.7 26 24.1 20.6 19 5.7
Telecom 10.3 20.5 19 19.9 6.8 4
XStream 0.4 20 11.4 12 13.4 0.3
Roman 28.6 30.4 354 37.9 41 16.7




Cost of Killing Subtle HOMs

Subject program

# of test cases that killed all

# of test cases that were gener-

FOMs ated to kill subtle HOMs.

Coordinate 14 1290
Roman 11 876
Cruise (Java) 18 818
Elevator 14 1017
XStream 96 0
Kettle 12 912
Movie Rental 15 1015
Banking 9 1012
Telecom 10 1115
Cruise (Aspect]) | 26 908




Measuring the Relative Effectiveness of
the Search Techniques
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RQ2: How does the relative effectiveness of the search

technigues compare over time?
Investigated the growth in the average number of distinct, subtle HOMs

- The number of explored, distinct HOMs is considered a quasi-representation of

the time



Growth in the Average Number of Subtle HOMs
Over Time
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Growth in the Average Number of Subtle HOMs
Over Time
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Comparing Sets of Subtle HOMs Found
by Different Search Techniques
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RQ1: What set of subtle HOMs is found by all techniques and

what set of subtle HOMs is uniquely found by each technique?

Subtle HOMs were classified into:
- Easiest-to-find subtle HOM: can be found by all the search techniques

- Hardest-to-find subtle HOM: can be uniquely found by only one search

technique



Easiest-to-find and Hardest-to-find Subtle
HOM

Number of subtle HOMs
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Data from the Kettle program



Cost of Finding Subtle HOMs

RQ1: What is the computational cost of finding subtle HOMs

using the search techniques?

- The cost is measured in terms of the time taken to find subtle HOMs

Answer:
- On average, exploring and evaluating 50,000 HOMs requires around 19 hours

- The compilation and execution process of HOMs represented 98% of the

computational cost of finding subtle HOMs

- Optimizing the compilation process of HOMs reduced the computational cost of

finding subtle HOMs by 32%



Composition and Decomposition
Relationships between Subtle HOMs
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RQ1: Can subtle HOMs be composed to create new subtle
HOMs of higher degrees?

- Investigated composing subtle HOMs that were found by the Restricted
Enumeration Search to create new subtle HOMs of higher degrees



Composing HOMs: Variable Interaction

The Variable Interaction Graph




Composing Subtle HOMs
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Average Number of Subtle HOMs

SRTHEL Genetic Data. Inter. Test. Case Restricte.d
Guided Guided Enumeration Random
Cruise Java 76.1 77.8 80.7 77.1 34.8 25.8
Banking 30.9 29.2 30.8 28.9 27.1 23.3
Cruise Aspect) 20.3 29 39.9 33.2 22.1 7
Movie Rental 39.1 59.8 93.3 15.3 22 4.7
Kettle 35.3 55.1 56.1 57.7 31.5 19.7
Coordinate 72.4 200.9 213.8 223.3 84.4 27.5
Elevator 13.7 26 24.1 20.6 19 5.7
Telecom 10.3 20.5 19 19.9 6.8 4
XStream 0.4 20 11.4 12 13.4 0.3
Roman 28.6 30.4 354 37.9 41 16.7




Composing HOMs: Variable Interaction

The Variable Interaction Graph




Composing HOMs: Variable Interaction

Table 11.2: Comparing the number of subtle HOMs that were found by the search tech-
niques and by composing subtle HOMs that were found by Restricted Enumeration

Search

Program # of all subtle HOMs that | # of all subtle HOMs that
were found by the search | were found by composing
techniques subtle HOMs

Elevator 31 962

Cruise (Java) 355 3464

Roman 105 6717

XStream 216 291

Telecom 30 -

Banking 79 650

Kettle 150 724

Cruise (Aspect]) | 227 558

Movie Rental 283 764




Composition and Decomposition
Relationships between Subtle HOMs
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RQ2: To what extent do subtle HOMs of higher degrees
represent a composition of subtle HOMs of lower degrees?

Investigated the number of subtle HOMs that were found by each search
technigue with respect to their decomposition type

o Fully decomposable into other subtle HOMs
o Partially decomposable into other subtle HOMs

> Not decomposable into other subtle HOMs



Decomposing Subtle HOMs
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Conclusions

The search-based software engineering techniques can produce

a large number of distinct, subtle HOMs

Local Search and both the Guided Local Search techniques were
more effective than the other techniques in terms of their ability

to find subtle HOMs

Combining FOMs that are closer to each other in terms of their

location is more likely to create subtle HOMs



Conclusions...

Subtle HOMs of higher degrees are likely to exist as compositions of multiple

subtle HOMs of lower degrees

Subtle HOMs of higher degrees can be effectively found by composing subtle

HOMs of lower degrees

The search-based software engineering techniques were able to find subtle
HOMs of higher degrees that could not be found by composing subtle HOMs

of lower degrees
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